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Abstract: The nonlinear influence on system output spectrum is studied for a class of 
nonlinear systems which have Volterra series expansion. It is shown that system output 
spectrum can be expressed into an alternating series with respect to some model 
nonlinear parameters under certain conditions. This alternating series has some 
interesting properties by which system output spectrum can be suppressed easily. The 
sufficient (and necessary) conditions in which the output spectrum can be transformed 
into an alternating series are studied. These results reveal a novel characteristic of the 
nonlinear influence on a system in the frequency domain, and provide a novel insight into 
the analysis and design of a class of nonlinear systems. Examples are given to illustrate 
the results.  
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1  Introduction 
       
It is known that, the transfer function of a linear system provides a coordinate-free and 
equivalent description for system characteristics, by which it is convenient to conduct the 
system analysis and design. Thus frequency domain methods are quite usual to engineers 
and widely applied in engineering practice. However, although the analysis and design of 
linear systems in the frequency domain have been well established, the frequency domain 
analysis for nonlinear systems is not straightforward. Nonlinear systems usually have 
very complicated output frequency characteristics and dynamic behaviour such as 
harmonics, inter-modulation, chaos and bifurcation. Investigation and understanding of 
these nonlinear phenomena in the frequency domain are far from full development. 
Frequency domain methods for nonlinear systems have also been investigated for many 
years. There have already been several different approaches to the analysis and design for 
nonlinear systems, such as describing functions (Graham and McRuer 1961, Nuij et al 
2006), harmonic balance (Solomou et al 2002), and frequency domain methods 
developed from the absolute stability theory (Leonov et al 1996), for example the well-
known Popov circle theorem, and so on.  
       
Investigation of nonlinear systems in the frequency domain can also be done based on 
Volterra functional series expansion theory (Volterra 1959, Rugh 1981). There are a quite 
large class of nonlinear systems which have a convergent Volterra series expansion 
(Boyd and Chua 1985). For this class of nonlinear systems, referred to as Volterra 
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systems, the generalized frequency response function (GFRF) was defined in George 
(1959), which is similar to the transfer function of linear systems. To obtain the GFRFs 
for Volterra systems described by nonlinear differential equations, the probing method 
can be used (Rugh 1981). Once the GRFRs are obtained for a practical system, system 
output spectrum can then be evaluated (Lang 1996). These form a fundamental basis for 
the analysis of nonlinear Volterra systems in the frequency domain.  
       
In this study, understanding of nonlinearity in the frequency domain is investigated from 
a novel viewpoint for Volterra systems. The system output spectrum is shown to be an 
alternating series with respect to some model nonlinear parameters under certain 
conditions. This property has great significance in that the system output spectrum can 
therefore be suppressed easily. This also provides a novel insight into the understanding 
of nonlinear influence on a system. The sufficient (and necessary) conditions in which the 
output spectrum can be transformed into an alternating series are studied. These results 
are illustrated by two example studies which investigate a SDOF spring-damping system 
with a cubic nonlinear damping. The results established in this study reveal a novel 
characteristic of the nonlinear influence on a system in the frequency domain, and 
provide a novel insight into the analysis and design of nonlinear systems.   
       
The paper is organised as follows. Section 2 provides a detailed background of this study. 
The novel nonlinear characteristic and its influence are discussed in Section 3. Section 4 
gives a sufficient and necessary condition under which system output spectrum can be 
transformed into an alternating series. A conclusion is given in Section 5. 
 

2  Frequency response functions of nonlinear systems 
       
Nonlinear systems can be approximated by a Volterra series up to a maximum order N 
around the zero equilibrium (Boyd and Chua 1985) as 

∑ ∫ ∏∫
=

∞

∞−
=

∞

∞−
−=

N

n

n

i
iinn dtuhty

1 1
1 )(),,()( ττττ LL                                      (1) 

where ),,( 1 nnh ττ L is a real valued function of nττ ,,1 L  called the nth-order Volterra kernel. 
Consider this class of nonlinear systems described by the following nonlinear differential 
equation (NDE) model 
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nonlinear terms in the model of the form ∏∏
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By using the probing method (Rugh 1981), a recursive algorithm for the computation of 
the nth-order generalized frequency response function (GFRF) for the NDE model (2) is 
provided in Billings and Peyton-Jone (1990). Therefore, the output spectrum of model (2) 
can be evaluated as (Lang and Billings 1996) 
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is known as the nth-order GFRF defined in George (1959). When the system input is a 
multi-tone function described by 
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The system output frequency response function can be described as (Lang and Billings 
1996): 
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In order to explicitly reveal the relationship between these frequency response functions 
above and model parameters, the parametric characteristics of the GFRFs and output 
spectrum are studied in Jing et al (2006). The nth-order GFRF can then be expressed into 
a more straightforward polynomial form as  

( ) ),,(),,(),,( 111 nnnnnn jjfjjHCEjjH ωωωωωω LLL ⋅=                           (7) 
where, ( )),,( 1 nn jjHCE ωω L is referred to as the parametric characteristic of the nth-order 
GFRF ),,( 1 nn jjH ωω L , which can recursively be determined as 
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and ),,( 1 nn jjf ωω L is a complex valued vector with the same dimension as 
( )),,( 1 nn jjHCE ωω L . In Jing et al (2008), a mapping ),,));((( 1 nnn HCE ωωϕ L⋅ from the 

parametric characteristic ( )),,( 1 nn jjHCE ωω L  to its corresponding correlative function 
),,( 1 nn jjf ωω L  is established as  
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The mapping function ),,));((( 1 nnn HCE ωωϕ L⋅ enables the complex valued function 

),,( 1 nn jjf ωω L to be analytically and directly determined in terms of the first order GFRF 
and model nonlinear parameters. Therefore, the nth-order GFRF can directly be written 
into a more straightforward and meaningful polynomial function in terms of the first 
order GFRF and model parameters by using the mapping function 
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As discussed in Jing et al (2008), it can be seen from equations (10) and (11) that the 
mapping function ),,));((( 1 nnn HCE ωωϕ L⋅ can facilitate the frequency domain analysis of 
nonlinear systems such that the relationship between the frequency response functions 
and model parameters, and the relationship between the frequency response functions and 

)( )1(1 ljH ω can be demonstrated explicitly, and some new properties of the GFRFs and 

output spectrum can be revealed.  
       
In this study, a novel property of the nonlinear influence on system output spectrum is 
revealed by using the new mapping function ),,));((( 1 nnn HCE ωωϕ L⋅  and frequency 
response functions defined in Equations (10-11). It is shown that the nonlinear terms in a 
system can drive the system output spectrum to be an alternative series at certain 
frequencies when the system subjects to a sinusoidal input. This provides a novel insight 
into the nonlinear effect on the system output spectrum from a specific nonlinear term.  
 
3   Alternating phenomenon in the output spectrum and its 
influence 
       
For any specific nonlinear parameter c in model (2), the output spectrum (11a,b) can be 
expanded with respect to this parameter into a power series as 
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be discussed in detail in the next section. In this section, the alternating phenomenon of 
this power series and its influence are discussed.  
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Definition 1 (Alternating series). Consider a power series of form (12) with c>0. If 
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From definition 1, if )( ωjY is an alternating series, then ))(Re( ωjY and ))(Im( ωjY  are both 
alternating. When (12) is an alternating series, there are some interesting properties 
summarized in Proposition 1. Denote  
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The proof is omitted. Proposition 1 shows that once the system output spectrum can be 
expressed into an alternating series with respect to a specific parameter c, it is always 
easier to find c such that the output spectrum is convergent, and its magnitude can always 
be suppressed by a properly designed c. Moreover, it is also shown that the low limit of 
the magnitude of the output spectrum that can be reached is larger than 21)( +→TjY ω  and 

the truncation error can be easily evaluated if the output spectrum can be expressed into 
an alternating series. 
       
An example is given to illustrate these results.  
 
Example 1. Consider a SDOF spring-damping system with a cubic nonlinear damping 
which can be described by the following differential equation, 
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Proceeding with the recursive computation above, it can be seen that ),,( 1 nn jjH ωω L  is a 
polynomial of )111(30c , and substituting these equations above into (11) gives another 
polynomial for the output spectrum. By using the relationship (10) and the mapping 
function ),,));((( 1 nnn HCE ωωϕ L⋅ , these results can be obtained directly as follows.  
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where },{ Ω−Ω∈iω , and so on. Substituting these results into Equation (18), the output 
spectrum is clearly a power series with respect to the parameter c. When there are more 
nonlinear terms, it is obvious that the computation process above can directly result in a 
straightforward multivariate power series with respect to these nonlinear parameters. To 
check the alternating phenomenon of the output spectrum, consider the following values 
for each linear parameter: m=240, k0=16000, B=296, Fd=100, and 165.8=Ω . Then it is 
obtained that 
 

L

L

+
Ω−
Ω−

+
Ω
Ω

+
Ω
Ω

Ω

ΩΩΩ
+

Ω

ΩΩΩ
+Ω−=

+Ω+Ω+Ω=Ω

)
)(

3

)3(

3

)(

6
(

)(

)()(
)

2
(3         

)(

)()(
)

2
(3)()

2
(           

)(
~

)(
~

)(
~

)(

1111

1

4

1
5

5

1

1

2

1
3

3
1

5
2

31

jL

j

jL

j

jL

j

jL

jHjHF

jL

jHjHF
jH

F
j

FcFcFjY

d

dd  

=(-0.02068817126756 + 0.00000114704116i) 
  +(5.982851578532449e-006 -6.634300276113922e-010i)c 
  +(-5.192417616715994e-009 +3.323565122085705e-011i)c2+…               (20a) 

 
The series is alternating. In order to check the series further, computation of 

),,;)1,1,1(( 1213012 ++ n
n

n c ωωϕ L can be carried out for higher orders. It can also be verified that 
the magnitude square of the output spectrum (20a) is still an alternating series, i.e.,  
 
    2

)( ΩjY = (4.280004317115985e-004)-(2.475485177721052e-007)c 

              +(2.506378395908398e-010)c2-…                                                             (20b) 
 
As pointed in Proposition 1, it is easy to find a c such that (20a-b) are convergent and 
their limits are decreased. From (20b) and according to Proposition 1, it can be computed 
that 0.01671739< )( ΩjY <0.0192276<0.0206882 for c=600. This can be verified by 

Figure 1. Figure 1 is a result from simulation tests, and shows that the magnitude of the 
output spectrum is decreasing when c is increasing. This property is of great significance 
in practical engineering systems for output suppression through structural characteristic 
design or feedback control.  
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Figure 1. Magnitude of output spectrum 

 

4  Alternating conditions 
       
In this section, the conditions under which the output spectrum of Equation (12) can be 
expressed into an alternating series with respect to a specific nonlinear parameter are 
studied. Suppose the system subjects to a harmonic input )0()sin()( >Ω= dd FtFtu  and 
only the output nonlinearities (i.e., cp,0(.) with p 2≥ ) are considered. For convenience, 
assume that there is only one nonlinear parameter cp,0(.) in model (2) and all the other 
nonlinear parameters are zero. The results for this case can be extended to the general one.  
       
Under the assumptions above, it can be obtained from the parametric characteristic 
analysis in Jing et al (2006) as demonstrated in Example 1 and Equation (11b) that 

(21a)                                )(
~

)()(
~

)()(
~

)(
~

)()(
~

)()(
~

)()()()(

1)1(0,0,1

1)1(0,0,1

1)1(1

LL

LL

LL

+Ω⋅++Ω⋅+Ω=

+Ω⋅++Ω⋅+Ω=

+Ω++Ω+Ω=Ω

+−

+−

+−

np
n

ppp

np
n

ppp

npp

FcFcF

FcFcF

jYjYjYjY

 

where { }Ω±∈
ikω , )(

~
1)1( Ω+− jF np can be computed from (11b), and n is positive integer. 

Noting that dlk FjkF
l

−=)(ω , Ω=±= lkl kk
l

ω,1 , and nl ,,1L=  in (11b),  

∑
Ω=++

+−
+−

+−+−+−

+−

+−
⋅−⋅⋅=Ω

1)1(1

1)1(1 1)1(21
1)1(

0,1)1(1)1(1)1( )(),,;)((
2

1
)(

~

npkk

np np
np

dkk
n

pnpnpnp kkkjFcjF
ωω

ωωϕ
L

LL   (21b) 

If p is an odd integer, then (p-1)n+1 is also an odd integer. Thus there should be (p-1)n/2 
frequency variables being Ω−  and (p-1)n/2+1 frequency variables being Ω  such that 

Ω=++
+− 1)1(1 npkk ωω L . In this case,  

( ) 1)1(2/)1(1)1(2/)1(2
1)1(21

1)1( )()1()()1()( +−−+−−
+−

+− −=−⋅⋅⋅⋅−=⋅− np
d

npnp
d

np

np
np

d FjFjjkkkjF L  
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If p is an even integer, then (p-1)n+1 is an odd integer for n=2k (k=1,2,3,…) and an even 
integer for n=2k-1 (k=1,2,3,…). When n is an odd integer, Ω≠++

+− 1)1(1 npkk ωω L for 

{ }Ω±∈
lkω . This gives that )(

~
1)1( Ω+− jF np =0. When n is an even integer, (p-1)n+1 is an odd 

integer. In this case, it is similar to that p is an odd integer. Therefore, for n>0 

⎪
⎪
⎩

⎪⎪
⎨

⎧
⋅⎟

⎠

⎞
⎜
⎝

⎛−
=Ω ∑

Ω=++
+−

+−

+−
+−

+−

else                                                                                            0

even isn or  odd is p if),,;)((
2)(

~
1)1(1

1)1(10,1)1(

1)1(

1)1(
npkk

npkk
n

pnp

np

d

np

c
F

j
jF ωω

ωωϕ
L

L
(21c) 

       
From Equations (21a-c) it is obvious that the property of the new mapping 

),,;)((
1)1(10,1)1( +−

⋅+− npkk
n

pnp c ωωϕ L  plays a key role in the series. To develop the alternating 

conditions for series (21a), the following results can be obtained.  
 
Lemma 1. That ),,;)((

1)1(10,1)1( +−
⋅+− npkk

n
pnp c ωωϕ L  is symmetric or asymmetric has no 

influence on )(
~

1)1( Ω+− jF np .  

       
This lemma is obvious since ∑

Ω=++
+−

⋅
1)1(1

)(
npkk ωω L

includes all the possible permutations of 

),,(
121 +nkk ωω L . Although there are many choices to obtain the asymmetric 

),,;)((
1)1(10,1)1( +−

⋅+− npkk
n

pnp c ωωϕ L  which may be different at different 

permutation ),,(
1)1(1 +− npkk ωω L , they have no different effect on the analysis of )(

~
1)1( Ω+− jF np .  

 
Lemma 2. Consider parameter cp,q(k1,k2,…,kp+q).  
      (1) If 2≥p and q=0, then  
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L =  , n1+…+ne=p, e is the number of 

distinct differentials ki appearing in the combination, ni is the number of repetitions of ki, 
and a similar definition holds for ),,( 1

*
px xxn L . 

      (2) If 2≥p , q=0 and k1=k2=…=kp=k, then 
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where, if ix =0, 1);)((
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The recursive terminal of );)(( )1)1()(()1)((0,1)1( +−+++− ⋅′′
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),,( 1
*

px xxn L and ),,( 1
*

pk kkn L  are the numbers of the corresponding combinations involved, 

which can be obtained from the combination theory and can also be referred to Peyton-
Jones (2007). Inspection of the recursion in the equation above, it can be seen that there 
are (p-1)n +1 )(1 ijH ω  with different frequency variable at the end of the recursion. Thus 
they can be brought out as a common factor. This gives 
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where, 
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c

ωωϕ
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ωωϕωω

ωω

ωω
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L
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L
L

L
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L

L

L

 

The recursive terminal of (24b) is ix =1. Replacing (22b) into (22a) and replacing (24ab) 

into (23a), the lemma can be obtained. This completes the proof. ƶ  
 
       
For convenience, define an operator “*” for sgnc(.) satisfying 

[ ]))(Im(sgn))(Re(sgn)(sgn*)(sgn 212121 υυυυυυ rrcc =  

for any ∈21,υυ ഑. It is obvious )(sgn)(sgn*)(sgn 2121 υυυυ ccc = .  
       
The following lemma is straightforward.  
 

Lemma 3. For ∈νυυ ,, 21 ഑, suppose )(sgn)(sgn 21 υυ cc −= . If 0)Im()Re( =νν , then 

)(sgn)(sgn 21 νυνυ cc −= . If 0)Im()Re( =νν and 0≠ν , then )(sgn)(sgn 21 νυνυ cc −= . ƶ  
 
Proposition 2.  The output spectrum in (21a-c) is an alternating series with respect to any 
specific parameter cp,0(k1,k2,…,kp) satisfying cp,0(.)>0 and 12 += rp  for r=1,2,3,...  
      (1) if and only if  
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n
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n
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⎜
⎜
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⎥
⎥
⎦

⎤
++⋅⋅

⎢
⎢
⎣

⎡
⋅′

Ω
Ω

∑ ∏
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=
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=
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)x,,x(

                     

);)((
)(

)(
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L

L

L

L
L

L
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ωω

ωωϕ
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(25) 
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      (2) if k1=k2=…=kp=k in cp,0(.), 0)
)(

)(
Im()

)(

)(
Re(

1)1(

1

1)1(

1 =
Ω

Ω
Ω

Ω

+−+− jL

jH

jL

jH

npnp

, and 

[

]
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c

n

p

i
xpiXliXl

x
pxp

n

x

c

i

i

i

npkk

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅′′⋅∏

∑ ∑

=
+−+++−

Ω=++

≤≤−=++

+−

1
)1)1()(()1)((0,1)1(

1-nx0 ,1xx
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*

);)((                                   

)x,,x(

sgn
1)1(1

ip1

p21

ωωϕ

ωω

L

L
L

L          (26) 

where const is a two-dimensional constant vector whose elements are +1, 0 or -1. ƶ 
 
The proof is completed. Proposition 2 provides a sufficient and necessary condition for 
the output spectrum series (21a-c) to be an alternating series with respect to a specific 
nonlinear parameter cp,0(k1,k2,…,kp) satisfying cp,0(.)>0 and 12 += rp  for r=1,2,3,.... 
Similar results can also be established for any other nonlinear parameters. Regarding 
nonlinear parameter cp,0(k1,k2,…,kp) satisfying cp,0(.)>0 and rp 2=  for r=1,2,3,...., it can 
be obtained from (21a-c) that 

LL +Ω⋅++Ω⋅+Ω=Ω +−+− )(
~

)()(
~

)()(
~

)( 1)1(2
2

0,1)1(2
2

0,1 np
n

ppp FcFcFjY  

)(
~

1)1(2 Ω+− npF for n=1,2,3,… should be alternating so that )( ΩjY is alternating. This yields 

that 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅

∑

∑

Ω=++
++−

+
++−

Ω=++
+−+−

++−

+−

1)1)(1(21

1)1(21

);)((sgn

);)((sgn

)1)1)(1(2()1(
)1(2

0,1)1)(1(2

)1)1(2()1(
2

0,1)1(2

npkk

npkk

npll
n

pnpc

npll
n

pnpc

c

c

ωω

ωω

ωωϕ

ωωϕ

L

L

L

L

 

Clearly, this is completely different from the conditions in Proposition 2. It may be more 
difficult for the output spectrum to be alternating with respect to cp,0(.)>0 with rp 2= than 
cp,0(.)>0 with 12 += rp .  
       
Note that Equation (21a) is based on the assumption that there is only nonlinear 
parameter cp,0(.) and all the other nonlinear parameters are zero. If the effects from the 
other nonlinear parameters are considered, Equation (21a) can be written as 

(27a)                                )(
~

)()(
~

)()(
~

)( 1)1(0,0,1 LL +Ω′⋅++Ω′⋅+Ω′=Ω +− np
n

ppp FcFcFjY  

where  
)(.)\;()(

~
)(

~
p,0,1)1(1)1(1)1( cCFF qpnpnpnp ′′+−+−+− Ω+Ω=Ω′ δ                             (27b) 

qpC ′′, includes all the nonlinear parameters in the system. Based on the parametric 

characteristic analysis in Jing et al (2006) and the new mapping function 
),,));((( 1 nnn HCE ωωϕ L⋅  defined in Jing et al (2008), (27b) can be determined easily. For 

example, suppose p is an odd integer larger than 1, then )(
~

1)1( Ω+− jF np is given in (21c), and 

)(.)\;( p,0,1)1( cC qpnp ′′+− Ωδ can be computed as 
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∑
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⋅

⋅
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⋅

⋅
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)(\in  parameters  theof consisting  monomails  theall

))((

p,0,1)1(

sn
pcn
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n
p

pqp

n
p

kkpqp
n

pscn

cC

scn

d
qpnp

cCsc

F
jcC

ωω

ωωϕ

δ

L

L

 

where ))(\( 0,, ⋅′′ pqp cCs denotes a monomial consisting of some parameters in )(\ 0,, ⋅′′ pqp cC .  

       
It is obvious that if (21a) is an alternating series, then (27a) can still be alternating under a 
proper design of the other nonlinear parameters (for example the other parameters are 
sufficiently small). Moreover, from the discussions above, it can be seen that whether the 
system output spectrum is an alternating series or not with respect to a specific nonlinear 
parameter is greatly dependent on the system linear parameters.  
 
Example 2. To demonstrate the theoretical results above, consider again model (15) in 
Example 1. Let )0()sin()( >Ω= dd FtFtu . The output spectrum at frequency Ω  is given in 
(18-19). From Lemma 2, it can be derived for this case that  
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i
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x
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i
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k
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ωω
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      (28a) 

where, if ix =0, 1);)((
)1)1()(()1)((0,1)1( =⋅′′

+−+++−
i

i

i xpiXliXl
x

pxp c ωωϕ L , otherwise,  

∏∑
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Note that the terminal condition for (39) is  

)(

)(
);)(();)((

)3()1(3

)3()1(
)3()1(0,331)12)(()1)((0,312
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Therefore, from (28a-c) it can be easily shown that );)(( 1210,312 ++ ⋅ n
n

n c ωωϕ L can be written 

as 
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(29) 

where )x,...,x,x( 1-n21Xr is a positive integer which can be explicitly determined by (28ab) 
and represents the number of all the involved combinations which have the same 
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L
. Therefore, according to Proposition 2, it can be seen from (29) 

that the output spectrum (18) is an alternating series only if the following two conditions 
hold: 
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Suppose 
m

k0=Ω which is a natural resonance frequency of model (15). It can be derived 

that 
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=

+ jBkjBjmjkcjL
K

k

k
n ))()(())(()( 0

2

0
10,112

1

1  

Ω
=

Ω
−

=Ω
jBjL

jH
1

)(

1
)(

1
1  

It is obvious that condition (a1) is satisfied if 
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k0=Ω . Considering condition (a2), it can 

be derived that 
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where ⎡ ⎤}10)12({)( +≤≤+±∈ njjxiε , and ⎡ ⎤1+n denotes the odd integer not larger than n+1. 
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when 1)( >ixε ,  
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If mkB 0<< , then it gives 
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Note that in all the combinations involved in the summation operator in (29) or condition 
(a2), i.e., 
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There always exists a combination such that 
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Note that (30b) holds both for 1)( ±=ixε , thus there is no combination such that  
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which happens in the combination where (31) holds.  
       
Because there are n+1 frequency variables to be Ω+  and n frequency variables to be Ω−  
such that Ω=++ +121 nωω L  in (18-19), there are more combinations where 0)( >ixε that is 
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This happens in the combinations where the argument of ∏
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either -900 or +900. Note that there are more cases in which the arguments are -900. If the 
argument is -1800, the absolute value of the corresponding imaginary part will be not 
more than  
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which is much less than 
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.  

       
Therefore, if B is sufficiently smaller than mk0 , the following two inequalities can hold 

for n>1 
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That is, condition (a2) holds for n>1 under mkB 0<<  and 
m

k0=Ω . Hence, (18) is an 

alternating series if the following two conditions hold: 
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(b1) B is sufficiently smaller than mk0 ,  

(b2) The input frequency is 
m

k0=Ω .  

       

In Example 1, note that ≈=Ω
m

k0 8.165, B=296<< mk0 =1959.592. These are consistent 

with and verify the theoretical results established here. ƶ  
 

5  Conclusions 
       
Nonlinear influence on system output spectrum is revealed in this study from a novel 
perspective based on Volterra series expansion in the frequency domain. For a class of 
system nonlinearities, it is shown for the first time that system output spectrum can be 
expanded into an alternating series with respect to a specific nonlinear coefficient under 
certain conditions and this alternating series has some interesting properties which are of 
significance to engineering practices. Further study will be focused on detailed design 
and analysis based on these results for practical systems.  
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