The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Nonlinear influence in the frequency domain: alternating series.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/74633/

Monograph:

Jing, X.J., Lang, Z.Q. and Billings, S.A. (2008) Nonlinear influence in the frequency
domain: alternating series. Research Report. ACSE Research Report no. 976 . Automatic
Control and Systems Engineering, University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Nonlinear Influencein the Frequency Domain:
Alternating Series

X.J.Jing, Z. Q. Lang, and S. A. Billings

. »1
. C'Oczvoscn%@ '

Department of Automatic Control and Systems Engineering
The Universityof Sheffield
Mappin Street, Sheffield
S1 3JD, UK

Resear ch Report No. 976
Feb 2008



Nonlinear Influence in the Frequency Domain:
Alternating Series

Xing Jian Jing, Zi Qiang Lang, and Stephen A. Billings
Department of Automatic Control and Systems Engineering, University of Sheffield
Mappin Street, Sheffield, S1 3JD, U.K.
{X.J.Jing, Z.Lang & S.Billings}@sheffield.ac.uk

Abstract: The nonlinear influence on system output spectrum is studied for a class of
nonlinear systems which have Volterra series expansion. It is shown that system output
spectrum can be expressed into an alternating series with respect to some model
nonlinear parameters under certain condgio This alternating series has some
interesting properties by which system autgpectrum can be suppressed easily. The
sufficient (and necessary) conditions in which the output spectrum can be tratsform
into an alternating series are studied. These results reveal a novel characteristic of the
nonlinear influence on a system in the frequency domain, and provide a novel insight into
the analysis and design of a class of nonlinear systems. Examples are given to illustrate
the results.
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1 Introduction

It is known that, the transfer function of a linear system provides a coordinate-free and
equivalent description for system characteristics, by which it is convenient to conduct the
system analysis and design. Thus frequency domain methods are quite usual to engineers
and widely applied in engineering practice. However, although the analysis and design of
linear systems in the frequency domain have been well established, the fredpmiaday
analysis for nonlinear systems is not straightforward. Nonlinear systems usually have
very complicated output frequency characteristics and dynamic behaviourasuch
harmonics, inter-modulation, chaos and bifurcation. Investigation and understanding of
these nonlinear phenomena in the frequency domain are far from full development.
Frequency domain methods for nonlinear systems have also been investigated for many
years. There have already been several different approaches to the analysis and design for
nonlinear systems, such as describing functions (Graham and McRuer 1961, Nuij et al
2006), harmonic balance (Solomou et al 2002), and frequency domain methods
developed from the absolute stability theory (Leonov et al 1996), for example the well-
known Popov circle theorem, and so on.

Investigation of nonlinear systems in the frequency domain can also bebdead on
Volterra functional series expansion theory (Volterra 1959, Rugh 1981). There are a quite
large class of nonlinear systems which have a convergent Volterra series expansion
(Boyd and Chua 1985). For this class mainlinear systems, rafed to as Volterra



systems, the generalized frequency response function (GFRF) was defined in George
(1959), which is similar to the transfer fuion of linear systems. To obtain the GFRFs

for Volterra systems described by nonlinear differential equations, the probing method
can be used (Rugh 1981). Once the GRFRs are obtained for a practical system, system
output spectrum can then be evaluated (Lang 1996). These form a fundamental basis for
the analysis of nonlinear Volterra systems in the frequency domain.

In this study, understanding of nonlinearitythe frequency domain is investigated from

a novel viewpoint for Volterraystems. The system output spectrum is shown to be an
alternating series with respect to sommdel nonlinear parameters under certain
conditions. This property has great significance in that the system output spectrum can
therefore be suppressed easily. This also provides a novel insight into the understanding
of nonlinear influence on a system. The sufficient (and necessary) conditions in which the
output spectrum can be transformed intoaliarnating series are studied. These results
are illustrated by two example studies which investigate a SDOF spring-damgiem sy

with a cubic nonlinear dammn The results established this study reveal a novel
characteristic of the nonlinear influence on a system in the frequency domain, and
provide a novel insight into the analysis and design of nonlinear systems.

The paper is organised as follows. Section 2 provides a detailed background of this study.
The novel nonlinear characteristic and its influence are discussed in Section 3. Section 4
gives a sufficient and necessary condition under which system output spectrura ca
transformed into an alternating series. A conclusion is given in Section 5.

2 Frequency response functions of nonlinear systems

Nonlinear systems can be approximated by a Volterra series up to a nmaxiderN
around the zero equilibrium (Boyd and Chua 1985) as

yO=2[" [ n [ Jut-=)dr (1)

whereh, (z,,---,7,) IS a real valued function of ,---,z, called thenth-order Volterra kernel.

Consider this class of nonlinear systems described by the following nonlinear differential
equation (NDE) model

M

z kz Cpq(klv"r p+q)EL[d y(t)Hd U(t) =0 (2)

m=1 p=0k; k. q i=p+l

whereOl X(t)

=x(t) , p+g=m, Z('):Z(')'“ Z(~), M is the maximum degree of
k=0 ki Kp.q=0 k=0 Kp,q=0
nonlinearity in terms of/(t) andu(t), andK is the maximum order of the derivative. In
this model, the parameters suchcag.) andc; «.) are referred to as linear parameters
d* yk(t) and d" uk(t) for
dt dt
k=0,1,...,L, andc,, () for p+g>1 are referred to as nonlinear parameters corresponding to

corresponding to coefficients of linear terms in the model,




d" (t) P gk u(t) .
nonlinear terms in the model of the forF[ H , 0., yOPu®)®. ptq is

i=p+1
referred to as nonlinear degree of paramg;e)r.

By using the probing method (Rugh 1981), a recursive algorithm for the computation of
the nth-order generalized frequency response function (GFRF) for the NDE model (2) is
provided in Billings and Peyton-Jone (1990). Therefore, the output spectrum of model (2)
can be evaluated as (Lang and Billings 1996)

Y(jo) = Zﬂz = j Hn(jwl,-~-,jwn)l;[uuwi)daw (3)
where,
Holioyjo) = [ h ey m) expeil@g +o+ 0,7,))dr, - dr, 4)

is known as theith-order GFRF defined in George (1959). When the system input is a
multi-tone function described by

u(t) :i|Fi|cos@it+4Fi) (5)

The system output frequenegsponse function can be described as (Lang and Billings
1996):

Y(Jw)=22—1n S Ho (@ ) [, )F (@) F(@,) (6)

O+t O =0

o SOK) £ k e {il“',iK} in stead of

a>0
a<o0’

wherer (o, ) can explicitly be written aS(wK):‘I:‘k“

andwk‘ e {i a)l,m,ia)i}.

the form in Lang and Billings (19963gn@)={{1

In order to explicitly reveal the relationship between these frequency response functions
above and model parameters, the parametric characteristics of the GFRFs and output
spectrum are studied in Jing et al (2006). fitmeorder GFRF can then be expressed into
a more straightforward polynomial form as

Ho(joy, - jo,) = CE(H, (jo,, . j0,)) fo(jo, -, jo,) (7)
where,CE(H,(jo,, -, jw,))is referred to as the parametric characteristic ofntheorder
GFRFH  (jo,,-, jo,) , Wwhich can recursively be determined as

n-1n-q n
CE(H,(joy, - jo,)) = Coﬁ(@@c ®CE(anp+l())) (®2Cp,o®CE(Hn_p+1(-))j (8)
and f (jo,, -, jw,) IS @ complex valued vector with the same dimension as
CE(H,(jo,, - jo,)) . In Jing et al (2008), a mapping (CE(H,());®,, -, »,) from the
parametric characteristicE(H ,(jo,,, jo,)) to its corresponding correlative function
f.(jo,, -, jo,) is established as



Pucs) (Cog, (0Cpq ()-Cpg ()i y -~ D))

= Z{fl(cp,q ().n(s5); o, ) "'a)l(n(g)))' z Z[fza (le Sy (g/cpq ) o ) "'wl(n(§)—q))

allthe2—partitions allthep—partitions  allthedifferent
for s satisfying for §/(:pq ) permutatios
s 6 )=Cyq ¢ )and p>0 Of {8, S, }

' lj(”n(% &om (5% (§/Coq ) 01 5y Dk yants, 5/ )]} (92)
where the terminating condition &&=0 and ¢,(Lw,)=H,(jow,) (which is the transfer
function when all nonlinear parameters are zerfg,,--s;} is a permutation of
{s..'S. } a0 represents the frequency variables involved in the corresponding
functions,|(i) for i=1...n(3) is a positive integer representing the index of the frequency
variables,s=c,, ()c,, ():-:Cpq () n(sx(§)):le(pi+qi)—x+1, X is the number of the
i=1

parameters irs, , Z(pi +¢,) is the summation of the subscripts of all the parametess in
i=1

Moreover, X (i) = . n(sg (S/cpyO)) s Ll jo, +--+ joo, )= —icl,o(kl)(1w1+~-+ jw,)% , and

j k=0
q n(s)
fl(cp,q ().n(s); o0 o '“a)l(n(§))) = (H(ja’un(g)fqn))kp“ /Ln(s) (jza)l(i)) (9b)
i=1 i=1
p
fza (S;l "'SXD (g/cpq ())' D) "'wl(n(ﬁ)—q)) = H(jwl(i(i)u) +oeet jwl()?(i)m(-:fxl (§/cm(-)))))k‘ (90)
i=1

The mapping functiory, (CE(H,());®,, --,®,) enables the complex valued function
f.(jo, -, jo,)to be analytically and directly determined in terms of the first order GFRF
and model nonlinear parameters. Therefore ntheorder GFRF can directly be written
into a more straightforward and meaningful polynomial function in terms of the first
order GFRF and model parameters by wusing the mapping function
?,(CE(H,(); @y, -, @,) @S

Ho(joy, -, jo,) = CE(H, (jo,, . j@,))- ¢, (CE(H, Oy, @,) (10)
Using equation (20), equations (3) can be written as
Y(jo) =Y CEH, (jo,,, jo,)) Fy(jo) (11a)

whereF, (jo) = I gon(CE(Hn(-);a)l,~-~,a)n)-ﬁU(ja)i)dO'w . Similarly, equation

I S
nEo)"™ . 2,
(6) can be written as

Y(jo) =Y CEH, (jo - @, ) Fy (@) (11b)

n=1

wheref, (jo) == > ¢,(CE(H,():o, .0, )- F(0,)-F(@, ).

n
D+t o =0



As discussed in Jing et al (2008), it can be seen from equations (10) and (11) that the
mapping functionp, (CE(H,());®,,--,®,) can facilitate the frequency domain analysis of

nonlinear systems such that the relationship between the frequency response functions
and model parameters, and the relationship between the frequency response fandtions
H,(jo ) can be demonstrated explicitly, and some new properties of the GFRFs and

output spectrum cabe revealed.

In this study, a novel property of the nonlinear influence on system output spectrum is
revealed by using the new mapping functipnCE(H,());,,--,®,) and frequency

response functions defined in Equations (10-11). It is shown that the nonlinear terms in a
system can drive the system output spectrum to be an alternative series at certain
frequencies when the system subjects to a sinusoidal input. This provides a novel insight
into the nonlinear effect on the system output spectrum from a specific nonlinear term.

3  Alternating phenomenon in the output spectrum and its
influence

For any specific nonlinear parametein model (2), the output spectrum (11a,b) can be
expanded with respect to thisrpmeter into a power series as

Y(jo) = Fy(jw) +CcF (jo) + C*Fy(jw) +---+C”F (jo) +-- (12)
Note that whert represents a pure input nonlinearity, (12) may be a finite series; in other
cases, it is definitely an infitg series, and if only the firgt terms in the series (12) are
considered, there is a truncation error denotedb(by. F (jo) for i=0,1,2,... can be
obtained fromF, (jow) or F,(jw)in (11a,b) by using the mapping(CEH,(); e, a,) .
Clearly, F (jo) dominate the property of this power series. Thus the property of this
power series can be revealed by studying the propemy(OE(H ,()); @, @,) . This will

be discussed in detail in the next sectionthiis section, the alternating phenomenon of
this power series and its influence are discussed.

For anyv € C, define an operator as

sgn, (v) = [sgn, (Re@)) sgn, (IM))] (13)
+1 x>0
wheresgn (x) =40 x=0 for xeR.
-1 x<0

Definition 1 (Alternating series). Consider a pawseries of form (12) with ¢>0. If
sgn. (F, (jo)) = -sgn.(F.,,(jw)) for i=0,1,2,3,..., then the series is an alternating series.

The series (12) can be written into two series as
Y(jo) =Re(((jo))+ j(Im(Y(j®)))
=Re(F,(jo)) + cRe[F,(jw)) +c*ReF,(jo)) +--+c” ReF, (jo)) +- (13)
+ j(Im(Fy (jw)) + cIm(Fy(jw)) + ¢ Im(F, (j@)) +---+ ¢’ Im(F,, (jo)) +--)



From definition 1, ifY(jw)is an alternating series, th&a((j»)) and Im(Y(jw)) are both

alternating. When (12) is an alternating series, there are some interesting properties
summarized in Proposition 1. Denote
Y(jo),,, = Fo(jo) +cF(jo) + c*F,(jo) +---+c”F, (jo) (14)

Proposition 1. Suppose (12) is an alternating seriecdl, then:
(1) if there exisiT>0 andR>0 such that for>T

min{_ Ref(j@) _ Im(F (jo) }>R
ReF,,(jw)) Im(F,.(jw))
then (12) has a radius of converge®:¢he truncation error for a finite order>T is
lo(p)| < ¢”|F,,..(iw)|, and for n>0,
|Y(ja))l~>T+2| << |Y(jw)1~)T+2n| < |Y(]50)| < |Y(ja))l~)T+2n+l| << |Y(ja))l~)T| ,
(2) |Y(ja))|2 =Y(jo)Y(-jw) is also an alternating series with respect to parameter

Furthermorer(ja))|2 =Y(jo)Y(-jw)is alternating only ifRer(jw)) is alternating;

. Y (j
(3) there exists @& > osuch that% <0for o<c<c.ld

The proof is omitted. Proposition 1 shows that once the system output spectrum can be
expressed into an alternating sendgh respect to apecific parameteg, it is always

easier to findt such that the output spectrum is convergent, and its magnitude can always
be suppressed by a properly desigoelfloreover, it is also shown that the low limit of

the magnitude of the output spectrunattean be reached is larger tha(j»), .,,| and

the truncation error can be easily evaluated if the output spectrum can be expressed into
an alternating series.

An example is given to illustrate these results.

Example 1. Consider a SDOF spring-damping system with a cubic nonlinear damping
which can be described by the following differential equation,

my = —k,y - By —cy® +u(t) (15)
Note thatky represents the spring characteridi¢che damping characteristic ands the
cubic nonlinear damping characteristic. Thisteyn is a simple case of NDE model (2)
and can be written into the form of NDE model w3, K=2, ¢,,(2) =m, ¢,(1) =B,

C(0) =k, , c(11D =c, c,(0) =-1and all the other parameters are zero.

Note that there is only one output nonlinear term in this casenthherder GFRF for
system (15) can be derived according to the algorithm in Billings and Peyton-Jone (1990),
which can recursively be given as

_ Cgo ADH  s(joy,--, jo,)

Lot e,)

H.(joy, - jo,)

n-2
Hos() =D Hi(joy, - jo)H oo jo)jo ++ jo,)
i=1



Hn,l(jwli"" Ja)n) = Hn(ja)li"" Ja)n)(Ja)l teeet Ja)n)
Proceeding with the recursive computation above, it can be seen hat, -, jo,) is a
polynomial ofc,,(11), and substituting these equations above into (11) gives another

polynomial for the output spectrum. By using the relationship (10) and the mapping
functiong, (CE(H, ());@,,---,®,) , these results can be obtained directly as follows.

For simplicity, letu(t)=F,sin@t) (F, >0). ThenF(e, )=-jkF,, for k =+L 0, =kQ,
andl=1---,n in (11b). By using (8) or Proposition 5 in Jing et al (2006), it can be
obtained that
CE(H a1 (j@r, ) jou,)) = (Cs,o @)" and CE(H,,(jo,,, J,,)) =0for n=0,1,2,3,... (16)

Therefore, fom=0,1,2,3,...

Hona(j@y, -, j@y,,) =C" '¢2n+1(CE(H 2n+1('));w11"'vw2n+1) and Hy (o, jo,,) =0 (17)
Then the output spectrum at frequenzycan be computed as

N-

V(i) = D " Fpa(@) (18)
whereF, ,(jQ) can be computed as

z P21 (CE(H 5.1 ()); Wy vy Oy, ) (—iFy) e KKy - Konp

O+ H O, =Q

z Ponia (CE(H 501 () 00 o 00, ) (D) ") (D" (19)

O+, =0

~ . 1
F2n+1( JQ) = 22n+1

1

= 2 2n+1

- Fy o _
=—IG)" 2 P (CEHaa )i 0, )

O+ H By =

ande,,.,(CE(H ., ()01, 00,1) = Ponia (€0 QL))" 0.+, @,,,,) CAN be obtained according to
equations (9a-c). For example,
H(jw) ,
?3(C3 (A1) 0, @,,03) = ——F—— H(Jw) HHl(Ja))_ = HH (jay)
L(J_Zw) - - L(J_Zw) -

‘/75(C3,0 (11])C3,o 1Y@, 5)

= fi(CooLD By, 05) - D 3 [fanlse -5, (€201 0, - 05)
allthe3—partitions allthedifferent
for ¢z @10 permutatiasof {0,0,1}

3
' H Pts, 5,000 (S (Ca0 LDV @y 71,0y Oy zyans, (5, a0
i=1

f2a(S¢5651(C30(110); @, -+~ w5)p, (L 0, )9y (L @,)95(C36 (11D @5 -+ 05)
= fl(C3,0(111)15;w11"'1("5)' + f2a(soslso(cs,0(11]));wl"'ws)ﬂol(l; w3)¢3(c3y0(11]);a)2 e @,)p, (& ws)
+ 150 (518050(C3(11D); @y -+ 05) 93 (C3o (11D 0y -+~ 03 ) oy (L @, )0y (L w5)

. (JZw)H(Jw) (JZw)H(Jw) (JZw)H(Jw) ;
=— ' ' . JH.li@)
Ls(j_Zwi) L (JZw) L (JZw) L(iD @) |




where o, e{Q,-Q}, and so on. Substituting these results into Equation (18), the output

spectrum is clearly a power series with exgpgo the parameter c. When there are more
nonlinear terms, it is obvious that the computation process above can directly result in a
straightforward multivariate power series wi#hspect to these nonlinear parameters. To
check the alternating phenomenon of the output spectrum, consider the followieg va

for each linear parametem=240, ky=16000,B=296, F;=100, andQ =8165. Then it is
obtained that

Y(jQ) = F,(Q) + ¢, (Q) + C?Fy (Q) + -+
Q%H, () H, (i)

i Fd H Fd 3
=19 +3()

L (9
Py DU HGY) jeo | jao | ja
2 L(i9) LG9 L3 L(-jQ)

=(-0.02068817126756 + 0.00000114704116i)
+(5.982851578532449e-006 -6.634300276113922e-010i)c
+(-5.192417616715994e-009 +3.323565122085705e-6 Li)c (20a)

The series is alternating. In order theck the series further, computation of
Pona (Co L) 0,++, @,,,,) CAN be carried out for higher orders. It can also be verified that
the magnitude square of the output spectrum (20a) is still an alternatingiseyies,

¥(j)|*= (4.280004317115985e-004)-(2.475485177721052e-007)c
+(2.506378395908398e-010)c (20b)

As pointed in Proposition 1, it is easy to findt auch that (20a-b) are convergent and
their limits are decreased. From (20b) and according to Proposition 1, it can be computed
that 0.01671739%/(jQ)| <0.0192276<0.0206882 for=600. This can be verified by

Figure 1. Figure 1 is a result from simulation tests, and shows that the magnitude of the
output spectrum is decreasing wieeis increasing. This propertg of great significance

in practical engineering systems for output suppression through structural characteristic
design or feedback control.
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Figure 1. Magnitude of output spectrum

4 Alternating conditions

In this section, the conditions under whitte output spectrum of Equation (12) can be
expressed into an alternating series wibkpect to a specific nonlinear parameter are
studied. Suppose the system subjects to a harmonic uipaf, sin@t) (F, >0) and

only the output nonlinearities.€., c,o(.) with p>2) are considered. For convenience,
assume that there is only one nonlinear paranwgir) in model (2) and all the other
nonlinear parameters are zero. The results for this case can be extended to the general one.

Under the assumptions above, it can be obtained from the parametric characteristic
analysis in Jing et al (2006) as demonstrated in Example 1 and Equation (11b) that
Y(jQ):Yl(jQ)+Yp(jQ)+"'+Y(p-1)n+1(jQ)+"'

= Fu©@) + €, (OO, () +++ €0 ()" Fipppa (@) +--

= Fi(Q) + €0 OF, (@) +++ €0 ()" Fp (@) +--- (21a)
whereo, < {xQ}, Founa(iQ) can be computed from (11b), amdis positive integer.
Noting thatF (e, )=-jk F,, k =+L 0, =kQ, andi =1.--,n in (11b),
E(p—l)n+1(jQ) = 2(,),—];),”1 Zw(p—l)mrl(cp,o O @, wk(p,nm) (= jFy) Pk K, “Kpmn (21b)

If pis an odd integer, then (p-1)n+1 is also an odd integer. Thus there should be (p-1)n/2

frequency variables beingo and (p-1)n/2+1 frequency variables beingsuch that

o, ++ao,  =Q.Inthis case,
(_de)(p_l)n+l : klkz “.k(p—l)n+l = (_1)' J (J 2)(

p-1n/2

. (p-Dn+l ¢ q\(p-1n/2 — (p-1)n+1
(Fy) -9 j(Fy)

10



If pis an even integer, then (p-1)n+1 is an odd integer for n=2k (k=1,2,3,...) and an even
integer for n=2k-1 (k=1,2,3,...). When n is an odd integgfs+-+w, =Q for

o, {+Q}. This gives thaF ,,,(jQ)=0. When n is an even imer, (p-1)n+1 is an odd
integer. In this case, it is similar to thmis an odd integer. Therefore, for n>0

(p-Dn+1

(F, n - |
- . - J(—] P -1 (Cpo0) @ 0 ) if pisoddor niseven
Fronna (1) = 2 Z p-n+1(Cp 0 -

O+ O 0 =Q

(21c)

0 else

From Equations (2l1a-c) it is obvious that the property of the new mapping
P9 (Coo) i@ 0 ) plays a key role in the series. To develop the alternating

conditions for series (21a), thdltaing results can be obtained.

Lemma 1. That ¢ y,.(c,o()" ;@@ , ) IS symmetric or asymmetric has no
influence onF,_,,.,(jQ) .

This lemma is obvious since Z(-) includes all the possible permutations of

wk1+<--+(uk(p71)"+1:Q
(o, .o, ) . Although there are many choices to obtain the asymmetric
P9 (CooO) 0 o) which may be different at different
permutatiorfe, @, , ), they have no different effect on the analysisof,...(i) .

Lemma 2. Consider parametep (Ki,ko, ..., Kp+q).
(1) If p>2andg=0, then

Pns) (Cpo() "o @ PinE)) = P (Cpo() ) @ D (p-nns))
(p-1)n+1

0™ [[H:(m)

P
— i I I % -
- z { (/’Ep—l)2+l(cp,0(') 1Oy iy D (i(i)+(p-1)x+1)) w

Lpgnali@g ++ 10 oniny)  aiteditterameombinations| i1
of {X;,Xy,...X p} satisfying
Xyt +X,=n-1,0<% <n-1

nx*(y(l,...,yp) P . )
‘ ' Z H(le(i(im)+"'+Ja’l<>?a)+<p—1>z+1))‘

N (KysoooKp)  aunéaiterent i-1
permutatimsof
Kok}

here,

11



Plo-n1(Cpo() "o @ O (p-mns))
-1

p
. ’ )% .o th
i i H(p(p—l)zﬂ(cpvo() ’wl(i(i)u) @, (X ( )+ (p-D)% +1))
L(Pfl)ml( Joyg + o 1O (ppynayy ) allthedifferentcombinatiois| =1

of {X3,X,,....X,} satisfying
Xyt +Xp=n-1,05% <n-1

P
. . k‘
Z H(J”ui(i)ﬂ) ot O 5 6 o)

allthedifferent  i=1

(%)

0 (k. Kp)

permutatimsof
{k1~"'~kp}
. . . . ] .
e termination isp;Lw,)=1. n,(k ,---,kp):% , m+...+n=p, e is the number of
n!n,t-.-n!

distinct differentiald; appearing in the combination,is the number of repetitions &f
and a similar definition holds faf, (x,,---,x,) .

(2) If p=2, g=0 and k=ko=...=ky,=K, then

P11 (Cpo () "o @ D (p-mns1))
(p-Dn+1

)™ [ G Hilia)]

Loyna(J@g ++ 10 (o_pyneyy)

allthe differentcombinatims
of {X1,X,,....X ,} satisfying
Ryt X, =n-1,0<% <n-l

where, ifx =0, p{, 15 4(Cpo ()™ @z -

P
g [ " % .
n, (Xl""’xp)'H(”(pfl)wl(cp.o(') ’wl(i(i)ﬂ)“'a)l(i(i)Jr(p—l)ZJrl))
i-1

O % 0y peney) = 10 Otherwise,
" % . e —
P (p-1% 41 (CP,O () 1 & (X @iy o, (X G+ (p-D% +1))
. . k
_ (le(i(i)ﬂ) Tt o (i(i)+(p-1)i,+1)) )
- L(p—1)2+1(1w|(>7(i)+1) R g )+(p—l)ii+1))

p
* " Xj .
20 %) [ [0 a1 Co00) ™10y @1 Y (o1 +1))
allthedifferentcombinatims j=1

of {X 1,X5,...X ,} satisfying

Xyt +Xp =% —1,0<x; <X -1

The recursive terminal aff, ,; .,(c,,()*: o,

Xy DX )+(p—1)i,+1)) IS X =1.
Proof.

Dn(s) (Cp,o 0" @1y " Oy(n(s)) )= P (p-1n+1 (Cp,o (')Cp,o (ORE Coo () o ® " O( (p-1n+1) )
= Z{fl(cp,o(')l(p_l)n+l;a)l(1) O (p-nen)) Z
allthe2—partitions allthep-partitions allthedifferent
for § satisfying for §/cs0() permutatios
$1(8)=Cp0() Of {Sy; -Sx,}

p
n-1y. n-1y.
[fZa(S*Xl 085, (Coo () ) @1y Oy oge) H‘”n(sx‘ (a0 (85 (Co0 0™ )@ gy O ziyans, (cp‘o(-)“))))]}
i=1
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1 = . K
= Z Z {H(J“’l(xa y T T B K yents, (6007

L(p—l)n+l( Jo, [0} R (2] ((p—l)n+l)) allthep—partitions  allthedifferent | =1
for s/c, o() permutatios
Of {Sy; 1+8x, }

p
n-1y.
T L 0ncs, 00000 5 a0 O™ @100 Dugyoncs 000
i-1

1 e . )
= Z Z {H(Ja’l(xmm ot O 5 6y ooz n)

Lipyna(J@ig ++ 10 (p-ynin)  alitheditierameombinatios  alithadiierent | i-1
of {X;,X,,...X p} satisfying  permutatimsof
Xy X, =N-1L,0cX <n-1 eachcombination

P }
'H(/’(p—l)z +1(Cp,0 (* YO\ Kipy D (Yﬁﬁ(p—l)ZJrl))]
i=1
Note that different permutations in each combination have no difference to
p S -
[126-15:1C000% 1@ g0 @z )+ TSP 0a(Coo() @1+ @ 1.0) CBN DE Written
i=1

as
P (p-pns1 (Cp,O ORHCE w(p—l)n+l)

1

P
% .
: : ’ | | P p-1%, +1(pr0 0 1O K1) DR ) (p-1)% +1))
L(Pfl)ml( o @ R 1] ((p—l)ml)) allthedifferentcombinatiois i=1
of {X1,X,,...X,} satisfying
Xy+--+Xz=n-1,0c%<n-1

P
. . k1
Z H(leo?(i)ﬂ) ot 1O 5 6 (o)

allthedifferent  i=1
permutatimsof
eachcombinatio

1

P
% .
; ; ’ | | P (p-1% +1(Cp,0 0 1D %)) P K ) (p-D% +1))
L(p—l)n+l ( o, @ R 1] ((p—l)n+1)) allthe differentcombinatiois =1
of {X1,X,,....X,} satisfying
X+ +Xp=n-10<)<n-l

nx*(yll""ip) P . . K,
: Z H(Ja’l(imﬂ) o O gy penzan)

nk* (kli"'!kp) allthedifferent =1
permutatimsof
{K 3,3k o}
n (%, X,) andn, (k,,---,k,) are the numbers of the corresponding combinations involved,

which can be obtained from the combination theory and can also be referred to Peyton-
Jones (2007). Inspection of the recursion in the equation above, it can be seen that there
are p-1)n +1H,(je,) with different frequency variable at the end of the recursion. Thus

they can be brought out as a common factor. This gives
(p-Dn+1

¢(p-1)n+1(cp,o O o @ ((p—l)n+l)) =(D" H Hl(ja)l(i)) '¢Ep-1)n+1(cp,o O o oG ((p—l)n+1)) (22&)
i=1

where,

13



(pzp—l)nﬂ (Cp,O O, @ D ((p-Dn+) )

-1

p

. . Yo iy the
: . | | ¢(p_1)z+1(cp,o() ’wuxa )+1) @, (X @1+ (p-DX +1))
Lip-pna(J@ig ++ 19 (p-mni1))  anneditterameombinatioss i1

of {X3,X,,...X,} satisfying

Ryt -+ X =N~ 1,0s% <n-d

n, Xy, %) b . )
N (K, k) Z H(le(i(ml) Tt O Ry pogan) (220)
Ny ( 10777 p) allthedifferent =1

permutatimsof

{kly"'.kp}

termination isg; (@) =1. Note that wherk =0, there is a ternjem,,,.,)" appearing

N (R %) T : ; - .
from =t~ % J](i0x0m++i10xoeas) - It €GN be verified that in
Ny (kll""kp) alithedifferent =1
{kpe.r.rTllgtz;tmnsof

each recursion op}, ,..,(c,,() ;@ o ymy) » there may be some frequency variables
appearing individually in the form dfie,«,.,)", and these variables will not appear
individually in the same form in the subsequesdursion. At the end of the recursion, all

the frequency variables should have appeared in this form. Thus these terms can also be
brought out as common factorkifk,=...=k,. In the case df;=k,=...=k,=k,

N, (R, X,) P _ )
' Z H(J“’I(>?<i)+1)+"'+lwl(i(i>+(p—1>x+1))

N (KyyoooiKp)  annédierent i-1
permutatimsof
{kyoskp}

p
. _ . . K,
=n, &l""’xp)'l I(Ja)lo?(i)u)+"'+le(>?(i)+(p-1)z+1))
i=1

Therefore (22ab) can be writtenkifk,=...=k,, as

? o1 (Cpo() "o @ Dl (p-mne1))
(p-1n+1 (23a)
=(D" H[(me))k Hl(JwI(i))] '¢Ep—l)n+1(cp,0(.)n;wl @@ ((p—l)n+l))
i-1

(/’Ep-l)ml (c p.o O o ® O (p-Dn+1) )

-1

P
' X .
- ; ; ’ Hw(pfl)iﬂ(cp,o () 1D Xy P ()?GH(p—l)ZJrl))
L(p—l)”+1( o, @ Tt o ((p-Dn+1) ) allthedifferentcombinatios i=1
of {X;,Xy,... X, } satisfying
Kyt HXy=n- 105X <nd

P
(% X : : K A-5(5)
0 G %) [ ]G+ % 1900z ) (2%)
i=1

(23b) can be further written as
Pp-mnia(Cpo() "o @ D (p-tynsny)
-1

Lo yna(Joig ++ 0 (o _pynegy)

p
(X e X)) " ARE
ne (X, X,) | |(/’(p71)>’ﬁ+l(cp,0() 1O (% ()4 wl()?ﬂ}»t(p—l)ZJrl)) (249)
allthedifferentcombinatims i=1
of {X;,X5,...X p} satisfying
Xyt +X,=n-10<%<n-1

where, if X =0, ¢f, 1; .1(c,0()*; 0, o ux.y) =1, otherwise,

(X)X )

14



" % . e
P (p-vx +1 (Cp,O () 1 @ (X (i)+1) , (X (i 1+ (p-D)% +1) )

— (i e Ko )% -
_(le(i(i)u)"' +le()?ﬂ}+(p—l)x‘+l)) Plo-x:1(Cpo() 1@y (X i)+ wl()?(i}r(p—l)x+l))

. . K

_ (Ja)l(i(i)u) Tt o, (i(i)+(p-1)ii+1)) *

= L - - . n, (Xlr"'1xp)
T = (p-DX +1(Ja)|(>?(i ey oot o, (X (1 (p-D)%, +1)) allthedifferentcombinatiois

of {X1,X,....X ,} satisfying
Xyt +Xp=%—1,0<x,<% -1

p
' N K50 3%
'H(Jw|(>?(i)+1)+ +le()7('0}+(p—1)xi+1)) Pip-1x1(Cpo() O3 (y4) wl()?’ﬁ}»t(p—l))gﬂ))
i-1

+-+ jo

H k
(1o x gy | & 0)-(p-0%0)

- L(pfl)%l(le(i(i)u) Tt o ()?G)»L(p—l)iﬂ))
p
* " X .
an (Xl"”'xp)' I | (p(pfl)ml(cpyo(') 1Oy P ()?'G}#(p—l))wl)) (24b)
allthedifferentcombinatios i=1

of {X 1,X,,...X ,} satisfying
Xyt X =% —1L0<x <X -1

The recursive terminal of (24b) =1. Replacing (22b) into (22a) and replacing (24ab)

into (23a), the lemma can betalmed. This completes the proaf.

For convenience, define an operator “*” for ggnsatisfying
sgn,(vy) * sgn. (v;) =[sgn, (Rew,))  sgn (IM(v,))]

for any v,,v, € C. It is obvioussgn,(v,) * sgn, (v,) = sgn. (v,0,) -

The following lemma is straightforward.

Lemma 3. For v,v,ve C, supposesgn (v,)=-sgn(v,) . If Re@)Imr)=0 , then
sgn, (v,v) = —sgn, (v,v) . If Re@)Im(v)=0andv =0, thensgn,(v,/v) = -sgn, (v,/v) . [

Proposition 2. The output spectrum in (21a-c) isaternating series with respect to any

specific parameteas, o(K1,ko, . .. ,Kp) satisfyingc, o(.)>0 andp=2r +1 for r=1,2,3,...
(2) if and only if

sgn, Z (—l)n71¢7(p71)n+1(cp,o O o @O ((pl)n+l))] =congt, i.e.,

O+t O g =R

p
I I ! AP e -
{ (o(pfl)%l(cp,o() ’w|(><(i)+1) @, (XGH(p—l)ZJrl))
=Q allthedifferentcombinatims| i=1
of {X,X,,....X,} satisfying
Xy + X, =n—1,0<X <n-l

H,(J%) 3
I-(p—l)n+1 ( JQ) D+t

D (p-1)ns1

sgn.
n, (%, X,) 3
U L L P N K
- 1(X()+D) 1 (X @ 3+ (p-1)% +1)
> Goggy - +ie )
Ne (K Kp)  aitneatferent i-1
permutatimsof
{Kyk )
= const

(25)
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e H,(j%) H,(jQ)
2) if k=ko=...=ky=Kk In ), Re(—+"—""—)I A
( ) kl 2 i Cp‘O() L(p—l)n+1(JQ)) m(L(p—l)n+1(JQ)

E E [nx (yl,...,xp)
wkﬁ"'“"k(p,nnq:Q allthedifferentcombinatios

of {X3,X,,....X ,} satisfying

sgn, Kbt =n—L0sx<nd = congt (26)

y=0, and

p

. " )% -
Hgo(pfl)%l(cp,o() 1O iy TP (i(i)+(p-1)2+1))
i-1

whereconst is a two-dimensional constant vectvhose elements are +1, 0 or[=1.

The proof is completed. Proposition 2 provides a sufficient and necessary cofalitio
the output spectrum series (21a-c) to be an alternating series with respect to a specific
nonlinear parametec,oki,ko,...,Ky) satisfying ¢, o(.)>0 andp=2r+1 for r=1,2,3,....
Similar results can also be established for any other nonlinear parameters. Regarding
nonlinear parametes, o(ki,kz, ...,Ky) satisfyingcyo.)>0 andp=2r for r=1,2,3,...., it can
be obtained from (21a-c) that
Y(jQ) = El(Q) +Cpho (? F~2(p—1)+l(Q) +-+Chp Ok F~2(p—1)n+1(Q) +ee
Fapona (@ for n=1,2,3,... should be alternating so thgfo) is alternating. This yields
that

Sgnc{ Z P ap-n1(Cpo () Mo @ " D1 2(p-Dn+1) )J

[ Ty =Q

— 2(n+1) .
= —sgn{ Z¢2(p—l}(n+1)+l (Cpo() 1O ) D) (2(p-1)(n41)+1) )]
o

+.”+wk2(p—1)(n+1)+1:9
Clearly, this is completely different from tlwenditions in Proposition 2. It may be more
difficult for the output spectrum to be alternating with respecp )>0 withp = 2r than

Co.o(.)>0 withp=2r +1.

Note that Equation (21a) is based on the assumption that there is only nonlinear
parameterc, (.) and all the other nonlinear parameters are zero. If the effects from the
other nonlinear parameters are considered, Equation (21a) can be written as
Y(JQ) = FI(Q) +Co o (YFH(Q) ++++ € ()" iy ya () + -+ (27a)
where
Fio-sna (@) = Fipana (@) + 550a (4 C g \ () (27b)
C,q Includes all the nonlinear parameters in the system. Based on the parametric

characteristic analysis in Jing et al (2006) and the new mapping function
¢, (CE(H,();o,,,0,) defined in Jing et al (2008), (27b) can be determined easily. For

example, supposeis an odd integer larger than 1, thep,,...(jQ)is given in (21c), and
S pma(C g \ Co() Can be computed as
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5(p—1)n+1 (Qv Cp’,q’ \ Cp,o(-)) =

(F, n(Cp.0"s())
2

. ,(
allthemonomailsconsistingof theparameteris C, \c,, o (") |:
satisfyingnp+» @ {q ) isoddandessthanN

n .
> Pui sy 00" SCra \Cpo O 0 )}
W+ Q '

(0] =
1 *n(ep,0"s()

wheres(C, ., \c,,()) denotes a monomial consisting of some parametets jnc,,().

It is obvious that if (21a) is an alternatingiss, then (27a) can still be alternating under a
proper design of the other nonlinear parameters (for example the other parameters are
sufficiently small). Moreover, from the discussions above, it can be seen that whether the
system output spectrum is an alternating sexasot with respect to a specific nonlinear
parameter is greatly dependent on the system linear parameters.

Example 2. To demonstrate the theoretical resalb®ve, consider again model (15) in
Example 1. Leu(t) = F, sin@@t) (F, >0). The output spectrum at frequenyis given in
(18-19). From Lemma 2, it can be derived for this case that

2n+1

(_1)n_1H[(ja)|(i))k Hl(jwl(i))]

P ne (Cs,o(')n;a)l()"'w|(2n+)): - -
! ’ ’ Lona(J@igy +- 4 ] 1)) (28a)

3
Ny (Yl’yz’if’).Hgo&ﬂ(cao('w;wl(i(i)ﬂ)"'wI(XGHZXﬂ))
i=1

allthe differentcombinatims

of {X1,X,,X 5} satisfying
X+ X +X3=n-1,0<x<n-1

where, if X, =0, pf, 5 1(Cp0() "0, xqpy " Oy xq (pany) = 1 OthErwise,

" )% -
Px +1(C3,0 ( ) ey (X (i)+1) @, (X (i +2% +1) )
(Ja)|(>?(i)+1) Tt o

_ )k
_ I (X (i +2%+1) (28b)

- L2>’9+1(Jw|(>?(i)+1) oot ]a’|(>?o)+2x+1))

3
* " Xj .
Z Ny (X1,Xz,X5) - l l P2,:1(Ca00) Oy =1y O e o))
allthedifferentcombinatims j=1

of {x 1,X ,,X 3} satisfying

X+X o+ X=X —10<x;<X -1

Note that the terminal condition for (39) is

(jw|(1)+-'-+ja),(3))k (28¢)
“Li(jog ++ joyg)
Therefore, from (28a-c) it can be easily shown that(c,,()"; @, @,,,) can be written
as

P 21(C30 ()" 0y @5p,1)

" % . " . _
¢2+1(C3,0(') !w|(i(i)+1) "'w| (X ()+2% +1) )| x=1 " (/)3((:3,0 ('),(U| ) o) (3)) =

2n+1
n-1 . :
o HJWiHl(Jwi) Z ( )ﬁ jog ++jo  (29)
= — - . M (X33 X5,000X 4 - -
L2n+1(le teeet Jw2n+l) allthecombinatian (X, ,X,,.- X 1) ’ i-1 L><| (Ja)l ot Tt Ja)l(x))

satisfyingx; e {2j+ 1< j<n-1}
> %> 2 %4 and
"="happensnly if x;+x_,<2n-2

wherer, (x,,x,,...X,,)IS @ positive integer which can leeplicitly determined by (28ab)
and represents the number of all the lmgd combinations which have the same
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. .
n 101+ 1Dy

, , . Therefore, according to Proposition 2, it can be seen from (29)
i~ L (Jog ++ jo)

that the output spectrum (18) is an altermaseries only if the following two conditions
hold:

(alRe U 5,0 Hi(I0)
L2n+1(JQ) L2n+1(JQ)

)=0

joy + o
& 00 | _ const

(@kon| Y )IREN IS §|

O+t oy, =Q allthecombination (x;,X,,... X 1) i= Lx, (J60| @ + + Ja)l(x,))
satisfyingx e {2j+1fI< j<n-1}
X> %> 2 X, and
"="happensenly if x;+x_,<2n-2

Supposen = \/%Which is a natural resonance frequency of model (15). It can be derived

that
Lona () ==Y €10 (k)(IQ)* = ~(M(jQ)* + B(jQ) + k,) = - ]BQ
k=0
. -1 1
H:09=1G0) = Jea

It is obvious that condition (al) is satisfiedif= \/% Considering condition (a2), it can

be derived that

jog +F o __ je(x)Q (30a)
_Lx‘(ja)l(l)+"'+ja)l(x1)) —L&(jg(xi)Q)

wheres(x) e{+(2j +10< j <[n+1}, and[n+1]denotes the odd integer not larger than n+1.
Especially, where(x ) = +1, it yields that
jwl.(l)+...+ja)|'m _ ijQ. _ i.jQ 1 (30b)
—in(ja)l(l) +eeet Jcolm) -L, xjQ) +jBQ B

when|z(x)|>1,

o+t o) je(x)Q je(x)Q
“L(iog ++ o)  —L(1e(x)Q) m(je(%)Q)* + B(j&(x)Q) +k, (30c)
_ je(x)Q B 1
C@-2()7)ky + je(x)QB B+ j(S(Xi)—Ti))J%_m
If B<<,fk,m, then it gives
o+t By 1 (30d)

~L(jog ++ o) i(e(%) =t kem
Note that in all the combinations involved in the summation operator in (29) or canditio

(@2),i.e,
2 2.0

O+t Oy =Q allthecombination (X, ,X5,... X 1)

1 2n+t satisfyingx‘e(ZjJr][]sljgzn—l)nl
X> %> 2 X, and

"="happensnly if x;+x_,<2n-2

There always exists a combination such that
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L jwla)"’"""‘jwl(x,) 1

(31)

a - L(jog ++ jo) - B!
Note that (30b) holds both fai(x ) = +1, thus there is no combination such that

ﬁ joyg +-+ joy, __ 1
-1 _Lx,(jwl(l)+"'+jwl(>g)) B™*

Noting thatB << ,/k,m, these show that

altheimvolved |7 L — L, (Jeoy gy +-++ + ja)l(x))| Bn_l

combinatims 1=

which happens in the combination where (31) holds.

Because there are n+1 frequency variables techand n frequency variables to be
such thatw, +---+ w,,, =Q in (18-19), there are more combinations whepe) > 0that is

(e(%)—&Wkm >0 in  (30c-d). Thus there are more combinations where

jog +-+jog,

Im( ) is negative. Using (30b) and (30d), it can be shown under the

“L(jog ++ joy,)
condition thatB << \/k,m,

S o ot o
(Im(H J @ | L)

1
a3 - Lo+ + jo) ‘ - B"?(e(%) - &5

278" fkom

joyg +--+ ja)l(x‘)
Ly (joyg ++ o))
either -98 or +90. Note that there are more cases in WhICh the arguments 4réf 8@

argument is -180) the absolute value of the copesding imaginary part will be not
more than

max
alltheinvolved
combinatims

km £(%)

This happens in the combinations where the argumeli—[mc is

n-1 ; ;
max (Im(H 1@+t 1O ) ~ 1 | 1
inati i i = 3]e(x)=3 3
wﬁc(%’QPéﬂ?ﬁ'g'ns g - L(jog +o+ jo) B™(5(%) = 5&7) v kom 27°B"* Jk,m
18

which is much less thagl—

7Bn—2\/k0_m '

Therefore, ifB is sufficiently smaller thagk,m, the following two inequalities can hold
for n>1

= .a) R 'a)
Re( Z rX(lexz ----- Xn-l)H ] '@ J |(X.) )>O

allthecombinatian (X, Xp....X 1) Ly (jorg +-+ o))
satisfyingx; e {2j+I<j<n :L}

> %> 2%, and
= happensnly if X;+%,,<2n-2

n-l .C() +"'+.C()
Im( Z rx(Xl,xz,...,xn_l)l_[ J'_<1> J{(x) )<0

allthecombinatian (X, ,X5,....X;,.1) =1 L)g (le @ + + Ja)l(x,))
satisfyingx; e {2j+ 1< j<n 1}

>1> %> 2 %, and

= happensnly if X;+x,,<2n-2

That is, condition (a2) holds for>1 underB << .k,m andQ:\/%. Hence, (18) is an

alternating series if the following two conditions hold:
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(b1) B is sufficiently smaller tha/k,m,

(b2) The input frequency I8 = \/% .

In Example 1, note thauz\/%z&l%, B=296<g/k,m =1959.592. These are consistent

with and verify the theoretical results established Helre.

5 Conclusions

Nonlinear influence on system output spectrum is revealed in this study from a novel
perspective based on Volterra series expansion in the frequency domain. For & class o
system nonlinearities, it is shown for the ffiténe that system output spectrum can be
expanded into an alternating series with eespgo a specific nonlinear coefficient under
certain conditions and this altating series has some int&irg properties which are of
significance to engineering practices. Further study will be focused on detailed design
and analysis based on these results for practical systems.
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