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Abstract 

 
The energy entering the resonant region of a system can be significantly reduced by introducing 

designed nonlinearities into the system. The basic choice of the nonlinearity can be either a 
nonlinear spring element or a nonlinear damping element. A numerical algorithm to compute and 

compare the energy reduction produced by these two types of designed elements is proposed in this 
study. Analytical results are used to demonstrate the procedure. The numerical results indicate that 

the designed nonlinear damping element produces low levels of energy at the higher order 
harmonics and no bifurcations in the system output response. In contrast the nonlinear spring based 

designs induce significant energy at the harmonics and can produce bifurcation behaviour. The 
conclusions provide an important basis for the design of nonlinear materials and nonlinear 

engineering systems. 

 

Keywords: energy transfer; damping; harmonic balance method; vibration transmissibility;  

                    numerical analysis; dynamical systems 

 

 

1. Introduction 

 

Suppressing resonant vibration is very important to ensure appropriate running conditions and 

desired behaviour in many engineering systems. The standard approach for suppressing resonant 

vibrations is to either introduce damping or a vibration absorber which can be passive, active or a 

combination of both.  

 

Recently, based on a new filtering concept known as energy transfer filtering (Billings and Lang 

2002), an entirely different approach to avoiding resonant vibration was proposed (Tomlinson et al. 

2006). The concept is to transfer or distribute the incoming energy in such a way that the energy 

entering the resonant region of the system of interest is reduced to an appropriate level by 

introducing a nonlinearity between the input and the system. The basic choice of the nonlinearity 

can be either a nonlinear spring element or a nonlinear damping element. What has not been 

examined in previous studies is which nonlinear element is the best choice to suppress resonant 

vibrations.  

 
In this paper, a case study is investigated based on a nonlinear damping element and a nonlinear 

spring element. A numerical algorithm is proposed to analyse the reduction of energy at the 
resonance and in the overall of the system output response produced by these two types of 

nonlinear elements. The numerical results, which are verified by analytical methods, indicate that 
the nonlinear damping element produces much lower levels of energy at the higher order harmonics 
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and no bifurcation effects in the system output response compared with designs based on the 
nonlinear spring elements. The results provide an important basis for the design of nonlinear 

materials and nonlinear engineering systems. 
 

2. System description 

 

The effects of introducing a nonlinear damping element or a nonlinear spring element at the 

interface between the input and the output of a single degree of freedom (SDOF) system will be 

studied. 

 

Consider the SDOF system shown in Figure 1. This represents a mass supported on a nonlinear 

spring ( )kf ⋅  in parallel with a nonlinear damper ( )cf ⋅ . The mass is subjected to a harmonic 

excitation force of amplitude
dF , and frequency Ω , and the output of interest is the force ( )sF t  

transmitted to the support via the nonlinear damping element or the nonlinear spring element.  

 

( ) cos( )
d

u t F t= Ω

( )
s

F t ( )x t

( )
c

f ⋅( )
k

f ⋅

 
 

Figure 1. The SDOF mass-spring-damper system considered in the study 

 

The equilibrium equation for the system in Figure 1 and corresponding force at the support can be 

expressed as   
                                     [ ] [ ]( ) ( ) ( ) cos( )k c dmx t f x t f x t F t+ + = Ω&& &                                                        (1)                       

                                     [ ] [ ]( ) ( ) ( )s k cF t f x t f x t= + &                                                                              (2)   

                                                                            
For convenience, denote  

                                     ( ) ( )
d

y t x t=                                                                                                     (3) 

                                     ( ) ( )F sy t F t=                                                                                                   (4)                      

and   

                                     ( ) cos( )du t F t= Ω                                                                                            (5)       

                                                                                            

The system can then be described by a single input two output system  

                             [ ] [ ]( ) ( ) ( ) ( )d k d c dmy t f y t f y t u t+ + =&& &                                                                      (6)        

                             [ ] [ ]( ) ( ) ( )F k d c dy t f y t f y t= + &                                                                                  (7)    

 

It will be assumed that the nonlinear damping element can be described by a linear stiffness and a 
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polynomial damping nonlinear system such that 

                                      ( ) ( )1kf k⋅ = ⋅                                                                                                   (8)     

                                      ( ) ( ) ( )3

1 3cf c c⋅ = ⋅ + ⋅                                                                                       (9) 

where 
1

k  is the parameter of the stiffness characteristic, while 
1

c , 
3

c  are the parameters of the 

damping characteristic and 
3c  represents the system nonlinearity. 

 

Substituting Eqs. (8) and (9) into Eqs. (6) and (7) yields the model of the nonlinear damping system 

                                3

1 1 3( ) ( ) ( ) ( ) ( )d d d dmy t k y t c y t c y t u t+ + + =&& & &                                                         (10)        

                                3

1 1 3
( ) ( ) ( ) ( )

F d d d
y t k y t c y t c y t= + +& &                                                                     (11)       

 

Similarly, it will be assumed that the nonlinear spring can be described by a polynomial stiffness 

and a linear damping nonlinear system such that 

                                      ( ) ( ) ( )3

1 3k
f k k⋅ = ⋅ + ⋅                                                                                     (12)                       

                                      ( ) ( )1cf c⋅ = ⋅                                                                                                 (13) 

where 
1c  is the parameter of the damping characteristic, and 

1k , 
3k  are the parameters of the 

stiffness characteristic, and 
3

k  represents the system nonlinearity. 

 

Substituting Eqs. (12) and (13) into Eqs. (6) and (7) gives the model of the nonlinear spring system 

                                3

1 3 1( ) ( ) ( ) ( ) ( )d d d dmy t k y t k y t c y t u t+ + + =&& &                                                         (14)        

                                3

1 3 1( ) ( ) ( ) ( )F d d dy t k y t k y t c y t= + + &                                                                     (15)       

 

3. Analytical methods   

 

In the analysis of a nonlinear spring with cubic stiffness described by Eqs. (5) and (14), many 

authors (Stoker 1950, Tamura et al. 1981, 1986, Liu et al. 2006) have used the method of harmonic 

balance. This approach assumes that the response may be written as a truncated Fourier series and a 

series solution is obtained as follows 

                                                 

( ) ( ) ( ) ( ) ( )

( )

0 2 1 2
1

0

1

cos sin

cos

d

d

N

d d n nd i d i
i

N

d di n i

i

y t Y Y i t Y i t

Y Y i t ϕ

−
=

=

 = + Ω + Ω 

= + Ω +

∑

∑
                      (16) 

where 
nΩ  is the natural frequency of the response and N  is the number of overall harmonics used 

in the truncated Fourier series expansion. 

 

Urabe and Reiter (1965, 1966) have discussed properties such as existence and convergence of the 

series solution. Should the response have the same period as the excitation force, then the series 

contains only odd harmonics of the excitation frequency and there is no constant term
0d

Y . In this 

case, setting 1dN = , substituting Eq. (16) into Eq. (14) and equating coefficients of the cosines and 

sines at the natural frequency leads to the following algebraic equations for the two-term series: 

                                           
2 3

1 1 1 3 1 1 1 1 1

3
sin cos 0

4
d d d dm Y k Y k Y c Yϕ ϕ Ω − − − Ω =  

                            (17) 
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                                        2 3

1 1 1 3 1 1 1 1 1

3
cos sin

4
d d d d dm Y k Y k Y c Y Fϕ ϕ − Ω − − − Ω =  

                           (18) 

 

Squaring and adding Eqs. (17) and (18) yields 

                                              

2

2 2 2 2 2 2

1 1 3 1 1

3

4
d d dY m k k Y c F

  − Ω + + + Ω =     
                                     (19) 

 

That is 

                       ( ) ( ) ( )222 6 2 4 2 2 2

3 1 3 1 1 1 1 1

9 3
0

16 2
d d d dk Y k k m Y c k m Y F + − Ω + Ω + − Ω − =  

                   (20) 

 

For a given amplitude of excitation
d

F , this is a third degree polynomial in 2

1d
Y . Real valued 

amplitudes of
1dY  are the only solutions which are physically meaningful. Depending on the value 

of Ω , this equation can have either one or three real roots, among which only two are stable and 

realizable. This leads to jump phenomena in the response as Ω  passes through the bifurcation 
points and the amplitude switches between these two stable branches of solutions (Friswell and 

Penny 1994, Worden and Tomlinson 2001). The bifurcation points can be obtained by solving the 
equation 

                                3 2 2 3 2 2

2 4 2 3 1 3 1 2 3 4 1 44 4 18 27 0a a a a a a a a a a a a∆ = − + − + =                                   (21) 

where 

                                                          2

3 3

9

16
a k=  

                                                          ( )2

2 3 1

3

2
a k k m= − Ω                                                               (22) 

                                                          ( ) ( )22 2

1 1 1a c k m= Ω + − Ω  

                                                          2

0 da F= −  

 

Similarly, the transmitted force ( )Fy t  can also be written as 

                                                 ( ) ( )0

1

cos
FN

F F Fi n i

i

y t Y Y i t θ
=

= + Ω +∑                                                   (23) 

 

If the response has the same period as the excitation force then  

                                                          
0

0
F

Y =                                                                                     (24) 

 

In this case, setting 1
F

N =  and 1
d

N = , substituting Eqs. (16) and (23) into Eq. (15) and equating 

coefficients of the cosines and sines at the natural frequency leads to the following algebraic 
equations for the two-term series: 

                                           
3

1 1 3 1 1 1 1 1 1 1

3
cos sin cos

4
d d d Fk Y k Y c Y Yϕ ϕ θ + − Ω =  

                                (25) 

                                        3

1 1 3 1 1 1 1 1 1 1

3
sin cos sin

4
d d d Fk Y k Y c Y Yϕ ϕ θ − + − Ω = −  

                              (26) 
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Squaring and adding Eqs. (25) and (26) yields 

                                                       

1
2 2

2 2 2

1 1 1 3 1 1

3

4
F d d

Y Y k k Y c
  = + + Ω     

                                         (27) 

 

Solving Eq. (20) and then substituting 
1d

Y  into Eq. (27) yields the magnitude of the transmitted 

force. Eq. (27) indicates that 
1FY  is a single-valued function of 

1dY . That is, to each value of 
1dY  

there is a unique value of 
1F

Y . Therefore, bifurcations also occur in the response of transmitted 

force ( )Fy t , and the bifurcation points in the response of ( )Fy t  are the same as those in the 

response of ( )dy t . 

 

It should be pointed out that the dynamical jumps occur at different locations when increasing and 

decreasing the frequency of the excitation force, but this study is focused on the situation when the 

frequency is decreasing. The analysis for the case when the frequency is increasing can be 

performed in a similar manner. 

 

Following the analysis for the nonlinear spring, the amplitude-frequency relationship of the 

nonlinear damper described by Eqs. (5), (10) and (11) can be obtained as 

                                            ( )
2

2
2 2 3 2 2

1 1 1 3 1

3

4
d d dY k m c c Y F

  − Ω + Ω + Ω =     
                                     (28) 

                                                    

1
2 2

2 3 2

1 1 1 1 3 1

3

4
F d d

Y Y k c c Y
  = + Ω + Ω     

                                          (29) 

 

Eq. (28) can also be written as 

                      ( ) ( )222 6 6 4 4 2 2 2

3 1 1 3 1 1 1 1

9 3
0

16 2
d d d dc Y c c Y c k m Y F Ω + Ω + Ω + − Ω − =  

                           (30) 

 

Solving Eqs. (20), (27) and Eqs. (30), (29) gives the magnitude of the response for the nonlinear 

spring and the nonlinear damper respectively. But since these results are based on the two-term 

series, which includes just the terms at the excitation frequency in the Fourier series, the value 

calculated is only an estimation of the real magnitude. The computation of this is discussed in 

section 4.  

 

4. Numerical methods   

 

The real magnitude of the system response can be obtained using numerical methods. At first, 
solving Eqs. (10), (11) or Eqs. (14), (15) gives the nonlinear damping/spring element time domain 

output ( )Fy t  at a given excitation. Then performing a FFT operation on the system output and the 

peak magnitude of the spectrum, denoted by ( ){ }max 2 FY jΩ , yields the value predicting by the 

harmonic balance method.  

 

Notice that ( )2
F

Y jΩ  not ( )F
Y jΩ  is used because ( )2

F
Y jΩ  represents the physical magnitude 

of the system output ( )Fy t  at the frequency Ω . 
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In order to contrast the reduction effects of the nonlinear damping element and nonlinear spring 
element, an algorithm to obtain the nonlinearity and jump frequency of the nonlinear spring 

element under a given maximum peak magnitude is proposed as follows: 

(i) Set 1i = , 
3

0k = , jump

i nΩ = Ω , and obtain the maximum peak magnitude (denoted 

by
FMY ) for the nonlinear damper element of a given nonlinearity (that is 

3c c= , where 

c  is a given constant) at a number of excitation frequencies using the numerical method; 

(ii) Increase the nonlinearity 
3k  and compute the peak magnitude ( ){ }max 2 jump

F iY jΩ  

until ( ){ }max 2 jump

F i FMY j YΩ =  when 
3 3k k= ; 

(iii) Find the jump frequency 
1

jump

i+Ω by computing the spectrum ( ){ }max 2 FY jΩ  at a 

number of excitation frequencies when 
3 3k k= ; 

(iv) If 1

jump jump

i i

jump

i

ε+Ω − Ω ≥
Ω

 then 1i i= + , jump jump

i iΩ = Ω and go to (ii); 

(v) Output 
3 3k k=  and the jump frequency

1

jump jump

i+Ω = Ω . 

 

The flow diagram of this algorithm is shown in Figure 2. 

 

Yes

No

( ){ }
3

max 2
jump

F i FM

find k to make

Y j YΩ =

1 3 3

jump

i

find the jump frequency

when k k+Ω =

1

jump jump

i i

jump

i

ε+Ω − Ω <
Ω

1

jump jump

i i

i i= +
Ω = Ω

31, 0,
jump

i ni k= = Ω = Ω

3 3 1,
jump jump

i
output k k += Ω = Ω

 
 

Figure 2. The flow diagram of the algorithm in Section 4 

 

5. Simulation studies 

 

Consider the nonlinear damping element (10), (11) and nonlinear spring element (14), (15) subject 

to the harmonic input (5). Take the system linear characteristic and input parameters as follows: 

m =240kg,         
1k =16000N/m,         

1c =29.6sN/m,         
dF =100N 
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The natural frequency of the system can be given as 

                                                       1
n

k

m
Ω = =8.165 rad/s. 

 

Figure 3 shows the computed peak magnitude of ( )Fy t  of the nonlinear damping element for the 

case of 3

3
1 10c = × sN/m using the numerical and analytical methods respectively. It can be seen that 

the results for the two different methods match very well, which indicates that the two–term series 

harmonic methods work very well in this case and also confirms that the numerical method is 
correct. 
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Ω /Ωn
 

M
a
x
(2

|Y
F
(j
ω

)|
) 

(N
)

 

 

Numerical Results

Analytical Results

 
Figure 3. The peak magnitude of ( )Fy t  for the nonlinear damping element when 

3

3 1 10c = ×  sN/m. Solid lines: 

analytical results; circles: numerical results. 

 

The maximum peak magnitude of ( )Fy t  can be obtained as 959.0752N from Figure 3. Set 

959.0752FMY = N and then using the algorithm proposed in section 4 gives 7

3 2.3970945 10k = ×  

N/m and jump frequency 1.34471 10.9796jump

n
Ω = Ω = rad/s. Figure 4 shows the computed peak 

magnitude of ( )Fy t  of the nonlinear spring element for the case of 7

3 2.3970945 10k = × N/m using 

the numerical and analytical methods respectively. The numerical and analytical results are in close 
agreement, which demonstrates that the numerical algorithm is correct. The jump frequency 

computed by the analytical methods is slightly different from that obtained by the numerical 
methods because the analytical methods are based on the two-term series. Increasing the number of 

terms would make the difference smaller. 
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Figure 4. The peak magnitude of ( )Fy t  for the nonlinear spring element when 

7

3 2.3970945 10k = × N/m. Solid 

lines: analytical results; circles: numerical results. 
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Figure 5. The spectrum and Bode response of output ( )Fy t  for the linear system when nΩ = Ω .  
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Figure 6. The spectrum and Bode response of output ( )Fy t  for the nonlinear damping element when 

0.99204 nΩ = Ω  and 
3

3 1 10c = × sN/m.  
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Figure 7. The spectrum and Bode response of output ( )Fy t  for the nonlinear spring when 
jumpΩ = Ω and 

7

3 2.3970945 10k = × N/m.  
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Figure 5 shows the spectrum and Bode response of the output ( )Fy t  for the linear system when 

nΩ = Ω . The magnitude of ( )Fy t  at the resonant frequency can be obtained as 6620.9085N from 

Figure 5, which indicates that the nonlinear damping element and the nonlinear spring have 
achieved a significant magnitude reduction percentage (MRP) given as 

                            [ ] 6620.9085 959.0752
100% 85.5144%

6620.9085
MRP

−= × = . 

  

Figure 6 shows the spectrum and Bode response of the output ( )Fy t  for the nonlinear damping 

element when 
nΩ = Ω and 3

3 1 10c = × N/m. Figure 7 shows the spectrum and Bode response of the 

output ( )Fy t  for the nonlinear spring element when jumpΩ = Ω and 7

3 2.3970945 10k = ×  N/m.  The 

details of the harmonic magnitude are given in Table 1, where n is the harmonic order number and 

[ ]
n

HMRP (Harmonic Magnitude Relative Percentage) is defined as the percentage of the nth order 

harmonic magnitude relative to the dominant fundamental. 

 

Nonlinear Damper Nonlinear Spring 

( )3

1 3( ) ( )cf c x c x= +& &  ( )3

1 3( ) ( )kf k x k x= +  

1 16000k =  N/m, 1 29.6c =  sN/m 

3

3
1 10c = ×  sN/m 

n0.99204 8.1Ω = Ω =  rad/s 

1 29.6c =  sN/m, 1 16000k =  N/m 

7

3
2.3970945 10k = ×  N/m 

n1.34471 10.9796Ω = Ω =  rad/s 

n 

( n × Ω ) 

Magnitude (N) [ ]
n

HMRP  Magnitude (N) [ ]
n

HMRP  

1   959.0752   100.0000%   959.0752   100.0000% 

2     0.0127     0.0013%     0.0579     0.0060% 

3    31.7316     3.3086%   192.7520    20.0977% 

4     0.0029     0.0003%     0.0306     0.0032% 

5     0.9936     0.1036%    12.9116     1.3463% 

6     0.0010     0.0001%     0.0110     0.0011% 

7     0.0294     0.0031%     0.6071     0.0633% 

8     0.0006     0.0001%     0.0088     0.0009% 

9     0.0004     0.0000%     0.0196     0.0020% 

10     0.0004     0.0000%     0.0070     0.0007% 

11     0.0003     0.0000%     0.0072     0.0008% 

12     0.0003     0.0000%     0.0058     0.0006% 

Table 1. The harmonic magnitudes of output ( )Fy t  for the nonlinear damper element under the dominant frequency  

excitation and the nonlinear spring element under the jump frequency excitation.  

 
Inspection of Figure 3, 4 and 5 indicates that the nonlinear spring element can achieve the same 
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reduction in the output response as the nonlinear damping element but a bifurcation might occur in 
the nonlinear spring designed system. The bifurcation can cause a jump in the system response, 

which will usually not be acceptable in the engineering design. Comparing Figure 6 and 7 also 
shows that energy at the harmonics produced by the nonlinear spring is much higher than for the 

nonlinear damping element to achieve the same reduction in the resonant vibration. This can also 

be observed clearly from Table 1, which shows that the third order harmonic magnitude is up to 

20.0977% of the dominant frequency magnitude for the nonlinear spring. This is also the reason 

why the two–term series harmonic method works very well in the nonlinear damping element case 

but not in the nonlinear spring case. 

 

6. Conclusions 

 

A numerical algorithm to contrast the reduction of energy in the system output response produced 

by designing in either a nonlinear damping element or a nonlinear spring element has been 

described in this study. Results from an analytical study have been used to verify the numerical 

method and to demonstrate the results obtained using the proposed algorithm. The numerical results 

indicate that the nonlinear damping element produces low levels of energy at the higher order 
harmonics and no bifurcations in the system output response. In contrast designs using a nonlinear 

spring element can produce significant energy at the harmonics and jump effects. 
 

This study has focused on a relatively simple SDOF system to demonstrate the concepts, but the 
results can be extended to more general cases. The work provides an important basis for the design 

of nonlinear materials and nonlinear engineering systems. 
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