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Abstract—A comparative study of wavelet and polynomial models for nonlinear esgiiching

(RS) systems is carried out. Regiswitching systems, considered in this study, are a class of
severely nonlinear systems, whielthibit abrupt changes aramatic breaks in behaviodue to
regime switching caused by associated events. Both wavelet and polynomial models are used to
describe discontinuous dynamical systemisere it is assumed that no a priori information aoeit
inherent model structure and the relative regime switohéise underlying dynamics is known, but
only observed inpubutput data are available. An orthogonal least squares (OLS) algorithm interfered
with by an error reduction ratio (ERR) index and regularised by an approxmrateum description
length (AMDL) criterion, is used to construct parsimonious wavelet anghgalial models. The
performance of the resultant wavelet models is compared with that of dtigerglolynomial models,

by inspecting the predictive capability thife associated representations. It is shown from numerical
results that wavelet models are superior to polynomial moaetespect of generalization properties,

for describing severely nonlinear regiswitchingsystems

Keywords—NARX models; Nonlinear system identification; Regiswitching systems; Wavelets.

1. Introduction

Nonlinear regimeswitching (RS) systems, considered in this study, are a clasverfely
nonlinear dynamical systems, whiexhibit abrupt changes or jumps in behaviduge to
regime switching driven by associdtevents. Nonlinear regirmvitching behaviouexists widely
in both engineering and nangineering processes. More often, both the inherent model structure and
the relative regime switches of the underlying processesotally unknown or very little is known
about them, but observations for the system inputs and outputs are avaijabden lentification
techniques can thus be applied to obtain an equivalentdoppiit representation for the underlying
systems. Geral modelling frameworks including the ARX and ARMAX models (Ljung 1987,
Soderstrom and Stoica 1989), the NARMAX model (Leontaritis and Billings 1985a, 19&&h aGd
Billings 1989, Pearson 1999), neural networks (Billings and Chen 1998, Liu 2001) enoduney
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networks (Harris et al. 2002), and other techniques (Cherkassky aner NI988), can be used to
construct such an equivalent inuttput representation. In cases where the main objective of system
modelling is focused on stability analysis amahtcoller design, some specific model types, for
example multiple models or multimode models (Sontag 1981, Billings and Voon 1987 -Snitty
and Johansen 1997, Bemporad et al. 2000) may be more appropriate forswgohmg dynamical
systems, but to obtain such a specific model some a priori information on thentrmhed| structure
and the relative individual regime switches of the underlying systems may be requiredspgéasc
model types will not be the pivot of this study; on the contrary, global moges tyill be used to
describe the inpuutput behaviour of given reginsvitching systems, under an assumption that
either the inherent model structure or the relative regime switches for the underyoegses are
totally unknown.

One of the most commonly used approaches for modelling a structkmewn nonlinear system
is to construct a nonlinear model using some specific types of functions includimgmpays, kernel
functions, wavelets and other candidate basis functions. In practice, pestafyfunctions can only
be used to approximate certain nonlinear relationships effectively. In some caseserhdthev
nonlinear dynamics can not sufficiently be represented by a given class of functions because of the
lack of good approximation properties. It is generally recognized that the fbastfons used for
representing general nonlinear functions should offer some flexibilagapting to the complexity of
the model structure so that the model can match, as closely as possihiedehging dynamics.
Wavelet techniques are one of the most popular and powerful tools for compléxeaosignal
processingCompared with other basis functions, wavelets with localization in bottintieeand the
frequency domaingyossess several uniquely attractive properties and offer a flexible capability for
approximating arbitrary functions.

This study introduces a new wavelet based modelling framework for nonlinear 1®gittieing
systems, where polynomial models may lack good approximatiorepieg Wavelet models are
constructed using wavelet basis functions selected from a prescribed dictionary. The dictnary m
consist of a large number of candidate bases, but in many cases only a small number of significant
bases need to be included in the wavelet model for a given nonlinear cdeiotifi problem.An
orthogonal least squares (OLS) algorithm interfered with by an error reductionE&R) index
(Billings et al. 1989, Chert al. 1989)and regularised by an approximate minimum descnggéagth
(AMDL) criterion (Saito 1994, Antoniadis et al. 1997)s used to select significant bases (model
regressors). The performance of the resultant sparse wavelet models is compared with that of
polynomial models, by inspecting the predictive cajigbdf the associated representations. As will
be seen, wavelet models are superior to polynomial models, in respect of gatienafiroperties, for

describing nonlinear regirr@vitching systems.



2. Regimeswitching systems and the NARX model

Regimeswitching systems, considered in this study, are a class of complex nonlinear dynamic

systems, where possibly there exist discontinuities. Assume that the problem is defined icetBe spa
p

referring to as the problem space. I%1S,,---, S, be apartition ofS, with [ J§ =S and§(S; =T
i=1

if i=j. Due to the effects of changes in either the internal state variables or exogenous input
variables, the underlying system may present different local dgsaaieach subspa&e S, and

often needs to be described using different local models. Such a system can be represented using the

multiple model form below

P yt=2),, yt-n),ut-1),--,ut-n).8,), &eS

fZ(y(t_l)v"'!y(t_ny)vu(t_1)1“'1u(t_nu)’92)’ &G SZ

y(t) = (1)

fP(y(t-1),---, y(t-n,),ut-1),--,ut-n,).0,), &S,

wheref'(-) (i=1,2, ...,p) are differentlinear or nonlineafunctions,which are often unknown and
which need to be identified from given observations of the iofjtand the outpuy(t), n,andn,
are the maximum input and output lagg) is the noise sequencgjs a vector formed by part or all
of the lagged input and output variabfegt —1),--- y(t —n,),u(t-1),---,u(t—n,)} , 6, is the associated
parameter vector of thigh local model.

If a priori information on the inherent local model structure and the individumheegwitches of
the underlying systems are available, the multiple model (1), may be identifiedydirentl given
input-output data. If, however, the underlying processes are totally structkin@wn in either the
local model structure or the regime switches, global model types then mdml donsidered to
describe the inpeutput behaviour of given reginssvitching systems.

A wide class of inpubutput nonlinear dynamical systems can be represented by the NARX

(Nonlinear AutoRegressive with eXogenous inputs) model of thdorm (Leontaritis and Billings
1985a, 1985b, Pearson 1999)

y(®) = f(y(t=D,--, y(t—ny),u(t-1),--,u(t—n,)) +et) (2)

where the nonlinear mappirfgis often unknown and needs to be identified from given observational
data of the input(t) and the outpuy(t), n,,n, ande(t) are defined as in (1). The nonlinear

mappingf can be constructed using a variety of local or global basis functiolsling polynomials,

kernel functions, splinegadial basis functions, neural networks and wavel@ise of the most

popular representations is the wellown Kolmogorov-Gabopolynomial model(Leontaritis and



Billings 1985a, 1985h)which takes the form below

VO=0y+ 20,5, 0+3 30, % 0%, 0+ + X 30, %, O%,0-%, O+el) @

ip= ip=li,=i; =1 i,=i,4

where

Xk(t):{y(t—k), 1<k<n, @

ut-k+ny), n +1<k<d=n, +n,

The nonlinear degree of the polynomial model (3) is referred to6, behich is determined by the
highest order ofall the candidate model terms. A more general representation for thiganate

nonlinear functionf in the NARX model (1) is to decomposk into a number of functional

components via the welnown functionalanalysis of variance (ANOVA) expansions (Friedman
1991, Chen 1993, lat al. 2001, Wei and Billings 2004)
d
yt) =2 i)+ 2 fi ;6@ @)+ D fi i 0% (1), X; (), % (©) +-+-
i=1

I<i<j<d I<i<j<k<d

+ 2 i 06 0,%, (), % (1) + et) (5)

1< < - < <d

wherem<d, i, € {12,--, d} and the functionfi“_'im (=1,2, ...d ) does not contain terms that are

included in functional components with an order smaller thanDetailed dscussions on the
functional ANOVA expansion (5) can be found in Billings and Wei (2005).

Many types of functions can be employed to express the functional compdpentsin model

(5). In this study, however, wavelet decompositiond Wwé used to approximate each of these
functional components. Experience shows that the representation of up to setmnof dunctional
components in model (5), usingavelet decompositions, can often provide a satisfactory
approximation for many high dimensional problems providing that the input variabdeproperly
selectedWei and Billings 2004, Wei et al. 2004illings and Wei 2005).The presence of only low
order functional components does not necessarily imply that the high orddilevamtaactions are
not significant, nor does it mean the nature of the nonlinearity of the system is less severe.

It is known that wavelet decompositions are based on a mother wavelet pedtatgtion, and
temporal analysis is performed using some contratigtkfrequency versions of the same function.
Data analysis can thus be implemented using the corresponding wavelet coefficients. The ANOVA
expansion (5), where each functional component is approximated using wavelepaisitions, can

thus be easily comrted into a lineam-theparameters form

ORDANORED ©



where x(t) =[x (t), X, (t),---, %4 (t)]" is the ‘input’ (predictor) vectorg, (t) =4, (X(t)) are the model
regressorsg,,are the model parameters, avids the total number of candidate regressors.

The initial wavelet model (6) ofteinvolves a large number of candidate model terms. Experience
suggests that most of the cand@atodel terms can be removed from the model, and that only a small
number of significant model terms are needed to provide a satisfactorgematen for most
nonlinear dynamical systems. The orthogonal least square type algq(tiimgs et al. 1989 Chen
et al. 1989) can be used to select significant model terms. The initiatERES type algorithms,
however, cannot automatically determine the model size. To ameliorate the agility and ehbance t
capability of the OLERR algorithm, ampproximate rmimum description length (AMDL) criterion
(Saito 1994, Antoniadis et al. 1997), will troduced to aid the determination of the associated

model size, and this is described below.

3. The OLS-ERR algorithm

Consider the term selection problem for tH@earin-theparameters model (6). Let
{(x(1),y(t)):xeR?, ye R}, be a given training data set apd-[y(l),---, y(N)]" be the vector of the
output.Letl = {12,---,M}, and denote by2={¢,,:me I} the dictionary of candidate model terms i
an initially chosen candidate regression model similar to (6. dictionaryQ can be used to form a
variant vector dictionar® ={¢,,: me 1}, where themnth candidate basis vectgr, is formed by the
mth candidate model tergp, € Q, in the sense thap,, =[¢, (XD), -4, (X(N))]" . The model term
selection problem is equivalent to findirfgom I, a subset of indices, ={i,,:m=12,---,n,i, €1}
wheren< M, so that so thay can be approximated using a linear combination;Qf; ,---,a; .

In

3.1 The forward orthogonal search procedure

A nontcentralised squared correlation coefficient will be used to measure the dependency between
two associated random aters. The nottentralised squared correlation coefficient between two

vectorsx andy of sizeN is defined as

T T N
x'y)? Ky L)’ -

C(x,y) = = =
Y =RV 00Ty~ Sl 2

It has been shown in Wei et al. (2004b) that the abquared correlation coefficient is closely related
to the error reduction ratio (ERR) criterion (a very useful index in respeut wignificance of model
terms), defined in the standard orthogonal least squares (OLS) algorithm férsimactere selectio
(Billings et al.1989, Chen et al. 1989).

The model structure selection procedure starts from equation (6}, £&t, and



fy=argmax{C(y.¢;)} (8)

where the functio(-,) is the correlation coefficient defined by (The first significant basis can thus
be selected a8, =¢, , and the first associated orthogohasiscan be chosen ap = ¢, . The model
residua) related to the first step search, is given as

T

i =ro— ;/Tgl ax ©)
101

In general, thenth significant nodel term can be chosen as follows. Assume that an#igti

step, a subsey_ ,, consisting of if+-1) significantbasesa,,a,,-- has been determined, and the

ml'

(m1) selectedbaseshave been transformed into a new grofiprhogonalbasesq,,q,,--,q,, ; via

some orthogonal transformatidret

Teiq
A" =0 -2 (10)
k=1
(m)
In=arg max 1{C(y ai™)} (11)
wherep; e D-9,, ;, andr,, , is the residual vector obtained in the-T)th step. Thenth significant

basis can then be chosenogs=¢, and themth associated orthogonahsiscan be chosen as
dm q(m) The residual vector,, at themth step is given by

§
r Y Omg (12)

" grdm

r

m

Subsequent significariasescan be selected in the same way step by &epm (12), the vectors
r,andq,, areorthogonal, thus

16 [Pl o | O Gm) (13)

m-im

By respectively summing (12) and (13) farfrom 1 ton, yields

n T
y:mz_lzl'ng:qm—i_rn (14)
Ir, 1E=Ily IP Z(y In)” (15)

The model residual, will be used to form a criterion for model selection, and the bganacedure

will be terminated when the norfjr, |} satisfies some specified conditions. Note that the quantity

ERR,, =C(y,q,,) is just equal to thetth error reduction ratio (Billings et al. 1989, Chen et al. 1989),



brought by indiding themth basis vectom,, =¢, into the model, and thaZ;:lC(y,qm) is the

increment or total percentage that the desired output variance can be explaiped,by,a,,.

Note that some tricks can be used to awai@cting strongly correlated model terms. Assume that

at the (n-1)th stepa subsed,,_, ,consisting oin-1 significantbasesa,,---,a,, ,, has been determined.

Also assume thap; € D —D,,,is strongly correlated with some basegjn,, that is,¢; is a linear
combination ofay,-,a, . Thus, (@™)"q{" =0. In the implementation of the algorithm, the

candidate basig, will be automaically discarded if(@™)"q!™ <&, wheresis a positive number

that is sufficiently small. In this way, any severe mullticolinearity ecolhditioning can be avoided.

3.2 Model size determination

The determination of modisize is critical in dynamical modelling because neither an-teg
nor an undefitting model is desirable. For problems in the real world, however, the true model size is
generally unknown and needs to be estimated from the Mitdel selection cteria are often
established on the basis of estimates of prediction errors, by inspectindhéadentified model
performs on future (never used) data sets.

In the present study, an approximate minimum description lengfb(4 criterion developed by
Sdto (1994) andAntoniadis et al. (1997), on the basis of Rissanen’s MDL criterion (Rissanen
1983), will be used to determine the model size. For the case of single regressignAli@ie is

defined as

N 15nlog, N
N

2
AMDL(n) = 05log,[MSE(n)] +1'5”'%2N = O.5logz(”rl’l|” J (16)

where MSE is the measquareerror from the associated modél,is the length of the associated

training data sety is the number of model terms, angs the associated model residual similar

strategy has den employed in Wei et al. (2006), whexeBayesian information criterion (BIC)

criterion was used.

3.3 Parameter estimation

It is easy to verify that the relationship between the selected original dgegs--,a,, and the
associated orthamal bases,,q,,::-,q,, IS given by

A, =Q,R, (17)

whereA , =[a,,---,a,], Q, is anNxnmatrix with orthogonal columre,q,,--,q,, andR,, is an

nxn unit upper triangular matrix whosentries u; 1<i<j<n) are calculated during the

orthogonalization prockire. The unknown parameter vector, denoteddpy:[4,,6,,---,6,]", for the



model with respect to the original bases, can be calculated from the triangular egu@tion,

withg, =[0,9,,++-,9,]" , Whereg, = (y'q,)/(azq,) for k=1,2, ...,n.

4. Numerical examples

This section presents three examples to demonstrate that wavelet models, produced by the forward
orthogonal regression (OLBRR) algorithm, can be used to effectively describe severely nonlinear
regimeswitching systems where possibly there exist discontinuities. As will be seen, resultant wavelet
models are superior to polynomial models, in respect of generalization prepéstienonlinear
regimeswitching systems considered in the examples.

Note that in the polynoral model identification procedure the original observational data were
directly used to construct the model. In the wavelet modelling procedure, howseoriginal
observed data, if not in [0,1], were initially normalized to [0,1] via a foans
X(t)=(X(t)—a)/(b—a) , where X(t) indicate the initial observations, aadand b represent the
prescribed boundary for the associated observations. The ideittifigarocedure was therefore
performed using normalized wadsx(t). The outputs of an identified model were then recovered to the
original measurement space by taking the associated inverse transform.

The model predicted output (MPO) were used to measure the model performance of the identified

models. For an iddified model y(t):f(x(t)), the model predicted output is defined as
y(t) = f (X(t)) , implying that §(t) is produced from the identified model iteratively, where
X(t) =[x (1), %, (1), %, ()]" is defined by (3) and (5), ark{t) =[% (1), -, %, (), %, 1(t)+, % (DI is

the predicted value of(t) .

4.1 Example 1.

Consider a twanput piecewise finite impulse response (FIR) model below

Wt-D+u(t-1), (%)eS
FOuM %) = wut-D-2u,(t-1), (x.%)eS;, (18)
Bu(t—1) +2u,(t-1), (%,%)eS;
wherex (t) =u,(t-1) , x,(t) =u,(t —-1), and the three regimes (subspacgsp, andS,are defined as
below:
S ={(X%,%):0<x <x <1x,<05},
S ={(X,%):0<x <105< X, 1< X + X},
S;={(%,%) 1% < 05,% <X, % + X, <1},



Clearly,S US,US,=[01]x[0]1], see Figure 1 for a clearer visualisation. One thousand data points
were generated from (18) by settip@) = f (x,x,) +e, where the two input variablag(t) and

u,(t) were uniformly distributed in [0,1]and e was a Gaussian noise with zero mean and standard
derivation 0.1. The distribution of the 1000 input data points in the threpamdssS , S, andS; is
shown in Figure 1, and the first return map formed by the 1000 dats postiown in Figure 2. The
predictor vector (the ‘input’ vector) was chosen toxigg =[x, (t),x,(t)]" , and the initial polynomial

and wavelet model was respectively chosen to be

VO~ F(xO) =65+ 20,0, 0+3 30,4, 0%, 0+ + 3 36, %, 0%, (19

ip=li,=i; i1=1 ig=iy

and

y(t) = f(x(t)) = 24:{ 2 ch;kl,kzl//j;kl,kz(Xl(t)’xz(t))} (20)

j=0| k;eBj k,€B;
whereB, ={k:-3<k<2+2'} ¢, , are coefficientsy, , (%.,%) =2y (2'x -k 2'x,—k,) are

the dilated and traresled versions of the-R2 truncated Mexican hat wavelet,(x;,X,), that has been

proposed in Billings and Wei (2005) and is defined as below:

v = {(2 Ixipre ", xe[-331x-33 1)

o} otherwise

The total number of candidate model terms (basis functions) irdravie initial polynomial model
(19) and the initial wavelet model (20) was 21 and 893, respectively. Based on the tH0p0ints,
the OLSERR algorithm was applied to select significamidel terms for both the polynomial and the
wavelet model identification. The AMDL criterion, shown in Figure 3, suggethat the number of
model terms for the polynomial and wavelet models was 17 and 36 respectively.

To inspect and compare the penfance of the identified 2rm polynomial model and 3@rm
wavelet model, both models were simulated by choosing the two input vangftleandu,(t) as
below:

e Bothu,(t) and u,(t) were uncorrelated random sequences, with 500 data points, uniformly

distributed in [0,1], but note that the test data was different from tlae udstd for model
estimation.

e Uy (t)=05+ 04sin(zt /50) andu,(t) = 05+ 04sin(zt /20+~ /3) for t=1,2,...,500. The 500
input data points in the three subspaggs, andS; is shown in Figure 4.

Model predicted outputs, from both the identified polynomial and wavelet mjodete compared

with that produced from the true noiBee model (18). The predicted results, corresponding to the



above two test cases, are shown in Figures 5 and 6, respectively, wherefraclyoa of the data
points is displayed for a closer visualisation. For the fest case, the meaquareerror (MSE), for
the model predicted outputs from the identified polynomial and wavelet models, wasted|toilbe
0.2768 and 0.0923, respectively, over all the 500 test data points. For the secoadetethe MSE
was calalated to be 0.3719 and 0.1073, respectively, over the test data sety,Gleaillentified
wavelet model is significantly superior to the polynomial model for the eegwitching system
described by (18).

Figure 1. The three subspac8sS, andS;, and the distribution of the 1000 input data points used for model
estimation described in Example 1.

y(t)

OI.S )
yt1)

Figure 2. The first return map formed by the 1000 training data points usewd®l estimtion described in

Example 1.
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Figure 5. A comparison of the model predicted outputs produced by the i@kemtiflynomial and wavelet
models, with e true values produced by the nefi®e model (18), driven by the input in the first test case
described in Example 1. Circles present the true values, dots preseotdilgnedicted output from the wavelet
model, and crosses present the model predicted output from the polynmuéll
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Figure 6. A comparison of the model predicted outputs produced by the i@kmtiflynomial and wavelet
models, with the true values produced by the niise model (18), driven by the input in the setoest case
described in Example 1. The thin solid line presents the true values, tkesdfiid line resents the model

predicted output from the wavelet model, and thick dashed line remdkentodel predicted output from the
polynomial model.
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4.2 Example?2

A nonlinear system was described by the following model

XE-D[xA-)-05x(t-2)] . o
10+[X2(t—1)+X2(t—2)]1/2 +u(t-1)+£&(t), if x(t-)x(t-2)>0,

X(t) = (22a)

X(t = 2)[x(t —1) + 05x(t — 2)] ~ ) ~ ~
10+ DAt —1) + X2 (t— 2|2 +u(t-D)+&(t), if xt-Yx(t-2)<0,

y(t) = x(t) +7(t) (22Db)
wheres(t) and ;(t) were Gaussian white noise with zero mean and standard deviatiOnl and

o, =0.5, respectively. By choosing the inpiif) as a random sequence thaswiniformly distributed

in [-10,10], model (22) was simulated and $@0ut-output data points were collected after the system
has settled down.
The predictor vector was chosen to X&) =[x (t), X, (), X;(1)]" =[y(t -1), y(t —2),ut-1)]" . The
initial polynomialmodel was chosen to be
3

V0= FXO) =0+ T0,%,0+3 T0,%,0%, 0+ + X 30, X, 0-%,0 (2

1= ip=1i,=i; 1=l iy=

A total of 35 candidate model terms was involved in this polynomial modeliritral wavelet model

was chosen to be

Yt = FX) = 3 F060)+ 33 (%, (). %, (1) (24)
p-1

p=1q=2

where the univariate functiori§ were of the form below

EOO)= 3 30 (%, (D) (25)

j=0 keA;

where A ={k:-4<k<3+2'} , ¢, are coefficientsg,,(x)=2'"?¢(2'x—k) are the dilated and
translated versions of thell truncated Mexican hat wavelef(x), defined as below (Billings and

Wei 2005):

400 z{a— x2)e 1?2 xe[-44] (26)

0 otherwise

The bivariate functions,, were approximated using thel2truncated Mexican hat wavelets similar

to (20). A total of 3012 candidateavelet basis functions were involved in the initial wavelet model

(24). Note that original observed data were initially normalized to ,[Ovld the transform
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x({t)=(X(t)-a)/(b —a), whereX (t) indicates the initial observations, agd=-15, b =15 for
1=1,2 (corresponding to the output variables), &re-10, b =10for i=3 (corresponding to the input
variable). The identification procedure was performed using the normaleédeds ofx (t) . The
outputs of an identified model were then recovered to the original messrepace by taking the
associated inverse transform.

Based on the 500 estimation data points, the-BRR algorithm was applied to seleagrsficant
model terms for both the polynomial and the wavelet model identification.AMiBL criterion,
shown in Figure 7, suggested that the number of model terms for the polynomishaidtwnodels
was 8 and 18 respectively.

To inspect and compare tiperformance of the identifiedt®rm polynomial model and the -18
term wavelet model, both models were simulated by choosing the inputaasiom sequence, with
500 data points, that was uniformly distributed ib0[10]. Model predicted outputs, from both the
polynomial and wavelet modes, were compared with that produced by the true(B®&)deind these
are shown in Figure 8, where again only part data points were displayed. The MSE was calculated to
be 0.7588 and 0.6870, respectively, with respect to the model predicted outputs froenttied
polynomial and wavelet models, over the all 500 test data points. Clearly, the identifeddtwiandel
is apparently superior to the polynomial model for the regimiéching system described by (22).

AMDL (Polynomial)
o
wn

0 10 20 30 40 50

42[q

44} 8

46-

438 _
&l = ""‘5“'-.g:__c-,._-.'_'.'-’:—'e_—‘_--:"’-:".':'?;:!": - | I

0 10 20 30 40 50
Model size

AMDL (Wavelets)

Figure 7. AMDL index versus the number of model terms for polynomial maldelplot at the top) and
wavelet model (the plot at the bottom) identification described in Examplén@.AMDL criterion for the
wavelet model was calculated in the normalised space.
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y(t)

125 10 20 30 40 50
Sample index

Figure 8. A comparison of the model predicted outputs produced by the iamkemtiflynomial and wavelet
models, with the true values produced by model (22), describedaimite 2. Circles present the true values,
dots present the model predicted output from the wavelet model, asdpsésent the model predicted output
from the polynomial model.

4.3 Example 3

A nonlinear system model was given by

—ag+aXxt-)-axt-2)-ut-1, S
X(t)=| by+bx(t-D-bxt-2)+u(t-1), CeS,, (27a)
by —bx(t-D)-bxt-2)+u(t-1, CeS;

y(©) = x(t) + et) (27b)

where a,=10, 3 =025, a,=075, b,=20, b =06, b,=08, et) was a noise signal,
£ =[x(t—1),x(t-2)], andthe three subspace}, S, andS,;are defined as below:

S ={(x, %)% 2 025)(12} y S ={(x,%) 1%, < 025)(121)(1 <0}, S={(x,%):x< 025)(121)(1>0} ,

Clearly the union ofS, S, andS;is the whole plane in the-R2 space. By setting(t) to be Gaussian
white noise with zero mean and standard deviatietd, and by choosing the input) as a random

sequence that was uniformly distributed i8,%], model (27) was simulated and 25@Qut-output
data points were collected after the system has settled. ddwenfirst 500 data points was used for
model estimation and the remaining 2@&@a points were used for model validation. The first return
maps produced by the 2000 noisy test data and the associatefremidgita are shown in Figures 9

and 10, respectively.

15



Figure 9. The first return map formed by the 2000 noisy training dataspgémerated by model (27) in

Example 3.

y(®)

Figure 10. The first return map form by the associated +fmgydata (2000 points) generated by model (27) in

Example 3.
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Note that the output of the model (27a) was sesmsiibo the model parameters. For example, a

small disturbance in the parametgrmay lead to a dramatic difference in the model response under

the same input. Figure 11 presents this phenomenon, where the diftgt@rcgt; b, + ) - y(t;b,) ,

with b,=0.8 ands =10, was displayed. Clearly, with the process going on, a small discrepancy in
the parameteb, produces significant difference in the model response. This means that titb@igh

difficult to identify a model that can produce accurate long term prexict

The predictor vector, the initial polynomial model, and the initial waveletlel were chosen
exactly the same as in Example 2. The original observed data were initiadiglized to [0,1], by
settinga, =—-80andh, =80for i=1,2 (corresponding to the output), amé-5andb =-5for i=3
(corresponding to the input). The identification procedure was performeg msimalized values of
x (t) . The outputs of an identified model were then recovered to the original neveasi space by
taking the associated inverse transform. Based on the 500 data points, HiRRL&gorithm was
applied to seledignificant model terms for both the polynomial and the wavelet model idetitifica
The AMDL criterion suggested that the number of model terms for the polynomial and wavelet

models was 12 and 21 respectively.

1501 : i -
100 |

50+

-T-

-150

0 2000 4000 6000 8000 10000
Sample index

Figure 10. The differencg(t) = y(t;b, + 6) — y(t;b,) produced by the noisieee model (27a), described in
Example 3, wherg =10™*.
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It was known that the original model given by (27) is sensitive to the associated model parameter
it was thus difficult to obtain accate long term predictions. This means that a simple comparison of
long term predictions may not be a good measurement of model quality. As an iaéerifnat
performance of the identified 12-term polynomial model and thie2itwavelet model was inspedte
by calculating the associated first return maps. The first return maps, produtednbydel predicted
outputs, with respect to the identified polynomial and wavelet modelpresented in Figures 12 and
13, respectively. Clearly, the first return mpgduced by the identified wavelet model, compared
with that produced by the polynomial model, provides a much closer representationfiitst tieéurn
map formed by the original measurements. This means that the identified wavelet model is superior to

the associated polynomial model for the nonlinear regiwigching system described by (27).

80

60+

40|

20+ L "'r -
i

204

yit
(=]

40}

60|

80 . . . . . . .

B0 60 40 20 0 20 40 60 80
y(t-1)

Figure 12. The first return map produced by the model predicted output ofia@dfoints from the identified
polynomial model, driven b random squence that was uniformly distributed i8,p].

yit-1)

Figure 13. The first return map produced by the model predicted output ofla@0points from the identified
wavelet model, driven bg random sequence that was uniformly distributedsb].
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5. Conclusions

A new wavelet based modelling approach has been introduced for nonlinear-segfioméng
system identification, where it was assumed that the inherent model structure and relatiee reg
switches of the underlying systems are totalknown. For this type of severely nonlinear systems,
where a priori knowledge on the model structure is unavailable, identifyigighal inputoutput
model, from available data, may be a good initial step towards furtherstenai#ing of the underlying
dynamics. It has been demonstrated that wavelets, with local properties irhédime and the
frequency domains, are powerful for constructing global nonlinear modelse@imeswitching
systems. The performance of the resultant wavelet models, Bedrashown, is much superior to that
of the associated polynomial models for dealing with the identificationlggnsbdescribed in the
examples.

At first sight, a wavelet model may involve a large number of candidate model terms for high
dimensional problms. In most cases, however, most of the candidate model terms are redundant and
only a small number of significant model terms are necessary to include in the finaltenddstribe
the nonlinear dynamics with a good accuracy. More fortunately, areeffiziodel structure and term
selection algorithms including the forward orthogonal regression {€R) algorithm, coupled with
the AMDL criterion (or other efficient criteria), can be employed tewmine which model terms and
how many model terms shoulk included in the model and finally a parsimonious model can be
obtained.

Wavelet bases, in dynamical wavelet modelling, involve two key parameters: the scales (the
dilation parameter) and the positions (the translation parameter). Wislbelievedthat the higher
the scales the more accurate the wavelet model is, experience from numerous case studies has shown
that the dilation parameter need not to be chosen very high.rAle af thumb,setting the scale
parameter to values up to 2 or 3 can oftenk well.
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