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Abstract—A comparative study of wavelet and polynomial models for nonlinear regime-switching 

(RS) systems is carried out. Regime-switching systems, considered in this study, are a class of 

severely nonlinear systems, which exhibit abrupt changes or dramatic breaks in behavior, due to 

regime switching caused by associated events. Both wavelet and polynomial models are used to 

describe discontinuous dynamical systems, where it is assumed that no a priori information about the 

inherent model structure and the relative regime switches of the underlying dynamics is known, but 

only observed input-output data are available. An orthogonal least squares (OLS) algorithm interfered 

with by an error reduction ratio (ERR) index and regularised by an approximate minimum description 

length (AMDL) criterion, is used to construct parsimonious wavelet and polynomial models. The 

performance of the resultant wavelet models is compared with that of the relative polynomial models, 

by inspecting the predictive capability of the associated representations. It is shown from numerical 

results that wavelet models are superior to polynomial models, in respect of generalization properties, 

for describing severely nonlinear regime-switching systems. 

Keywords—NARX models; Nonlinear system identification; Regime-switching systems; Wavelets. 

1.   Introduction 

Nonlinear regime-switching (RS) systems, considered in this study, are a class of severely 

nonlinear dynamical systems, which exhibit abrupt changes or jumps in behavior, due to 

regime switching driven by associated events. Nonlinear regime-switching behaviour exists widely 

in both engineering and non-engineering processes. More often, both the inherent model structure and 

the relative regime switches of the underlying processes are totally unknown or very little is known 

about them, but observations for the system inputs and outputs are available. System identification 

techniques can thus be applied to obtain an equivalent input-output representation for the underlying 

systems. General modelling frameworks including the ARX and ARMAX models (Ljung 1987, 

Söderström and Stoica 1989), the NARMAX model (Leontaritis and Billings 1985a, 1985b, Chen and 

Billings 1989, Pearson 1999), neural networks (Billings and Chen 1998, Liu 2001) and neurofuzzy 
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networks (Harris et al. 2002), and other techniques (Cherkassky and Mulier 1998), can be used to 

construct such an equivalent input-output representation. In cases where the main objective of system 

modelling is focused on stability analysis and controller design, some specific model types, for 

example multiple models or multimode models (Sontag 1981, Billings and Voon 1987, Murry-Smith 

and Johansen 1997, Bemporad et al. 2000) may be more appropriate for regime-switching dynamical 

systems, but to obtain such a specific model some a priori information on the inherent model structure 

and the relative individual regime switches of the underlying systems may be required. These specific 

model types will not be the pivot of this study; on the contrary, global model types will be used to 

describe the input-output behaviour of given regime-switching systems, under an  assumption that 

either the inherent model structure or the relative regime switches for the underlying processes are 

totally unknown.  

One of the most commonly used approaches for modelling a structure-unknown nonlinear system 

is to construct a nonlinear model using some specific types of functions including polynomials, kernel 

functions, wavelets and other candidate basis functions. In practice, most types of functions can only 

be used to approximate certain nonlinear relationships effectively. In some cases, however, the 

nonlinear dynamics can not sufficiently be represented by a given class of functions because of the 

lack of good approximation properties. It is generally recognized that the basis functions used for 

representing general nonlinear functions should offer some flexibility in adapting to the complexity of 

the model structure so that the model can match, as closely as possible, the underlying dynamics. 

Wavelet techniques are one of the most popular and powerful tools for complex nonlinear signal 

processing. Compared with other basis functions, wavelets with localization in both the time and the 

frequency domains, possess several uniquely attractive properties and offer a flexible capability for 

approximating arbitrary functions. 

This study introduces a new wavelet based modelling framework for nonlinear regime-switching 

systems, where polynomial models may lack good approximation properties. Wavelet models are 

constructed using wavelet basis functions selected from a prescribed dictionary. The dictionary may 

consist of a large number of candidate bases, but in many cases only a small number of significant 

bases need to be included in the wavelet model for a given nonlinear identification problem. An 

orthogonal least squares (OLS) algorithm interfered with by an error reduction ratio (ERR) index 

(Billings et al. 1989, Chen et al. 1989) and regularised by an approximate minimum description length 

(AMDL) criterion (Saito 1994, Antoniadis et al. 1997) , is used to select significant bases (model 

regressors). The performance of the resultant sparse wavelet models is compared with that of 

polynomial models, by inspecting the predictive capability of the associated representations. As will 

be seen, wavelet models are superior to polynomial models, in respect of generalization properties, for 

describing nonlinear regime-switching systems. 
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2.   Regime-switching systems and the NARX model 

Regime-switching systems, considered in this study, are a class of complex nonlinear dynamic 

systems, where possibly there exist discontinuities. Assume that the problem is defined in the space S, 

referring to as the problem space. Let pSSS ,,, 21  be a partition of S, with 
p

i
i SS

1=
=  and  ∅=ji SS  

if ji ≠ . Due to the effects of changes in either the internal state variables or exogenous input 

variables, the underlying system may present different local dynamics at each subspace SSi ∈ , and 

often needs to be described using different local models. Such a system can be represented using the 

multiple model form below 
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where )(⋅if (i=1,2, ..., p) are different linear or nonlinear functions, which are often unknown and 

which need to be identified from given observations of the input )(tu and the output )(ty , un and yn  

are the maximum input and output lags, )(te  is the noise sequence, ȟ is a vector formed by part or all 

of the lagged input and output variables )}(,),1(),(),1({ uy ntutuntyty −−−−  , iș is the associated 

parameter vector of the ith local model. 

If a priori information on the inherent local model structure and the individual regime switches of 

the underlying systems are available, the multiple model (1), may be identified directly from given 

input-output data. If, however, the underlying processes are totally structure-unknown in either the 

local model structure or the regime switches, global model types then need to be considered to 

describe the input-output behaviour of given regime-switching systems.  

A wide class of input-output nonlinear dynamical systems can be represented by the NARX 

(Nonlinear AutoRegressive with eXogenous inputs) model of the form (Leontaritis and Billings 

1985a, 1985b, Pearson 1999) 

 )())(,),1(),(,),1(()( tentutuntytyfty uy +−−−−=                                                            (2) 

where the nonlinear mappingf is often unknown and needs to be identified from given observational 

data of the input )(tu and the output )(ty , un , yn and )(te  are defined as in (1). The nonlinear 

mappingf can be constructed using a variety of local or global basis functions including polynomials, 

kernel functions, splines, radial basis functions, neural networks and wavelets. One of the most 

popular representations is the well-known Kolmogorov-Gabor polynomial model (Leontaritis and 
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Billings 1985a, 1985b), which takes the form below 
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The nonlinear degree of the polynomial model (3) is referred to be  , which is determined by the 

highest order of all the candidate model terms. A more general representation for the multivariate 

nonlinear function f in the NARX model (1) is to decompose f  into a number of functional 

components via the well-known functional analysis of variance (ANOVA) expansions (Friedman 

1991, Chen 1993, Li et al. 2001, Wei and Billings 2004) 
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where dm ≤ , },,2,1{ dim ∈  and the function 
miif ,,1 

 (j=1,2, …,d ) does not contain terms that are 

included in functional components with an order smaller than m. Detailed discussions on the 

functional ANOVA expansion (5) can be found in Billings and Wei (2005).  

Many types of functions can be employed to express the functional components 
miif ,,1 

 in model 

(5). In this study, however, wavelet decompositions will be used to approximate each of these 

functional components. Experience shows that the representation of up to second order of functional 

components in model (5), using wavelet decompositions, can often provide a satisfactory 

approximation for many high dimensional problems providing that the input variables are properly 

selected (Wei and Billings 2004, Wei et al. 2004a, Billings and Wei 2005).The presence of only low 

order functional components does not necessarily imply that the high order variable interactions are 

not significant, nor does it mean the nature of the nonlinearity of the system is less severe.  

It is known that wavelet decompositions are based on a mother wavelet prototype function, and 

temporal analysis is performed using some contracted, high-frequency versions of the same function. 

Data analysis can thus be implemented using the corresponding wavelet coefficients. The ANOVA 

expansion (5), where each functional component is approximated using wavelet decompositions, can 

thus be easily converted into a linear-in-the-parameters form 

)()()(
1

tetty
M

m
mm += ∑

=
φθ                                                                                                 (6) 
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where T
d txtxtxt )](,),(),([)( 21 =x is the ‘input’ (predictor) vector, ))(()( tt mm xφφ =  are the model 

regressors, mθ are the model parameters, and M is the total number of candidate regressors.  

The initial wavelet model (6) often involves a large number of candidate model terms. Experience 

suggests that most of the candidate model terms can be removed from the model, and that only a small 

number of significant model terms are needed to provide a satisfactory representation for most 

nonlinear dynamical systems. The orthogonal least square type algorithms (Billings et al. 1989, Chen 

et al. 1989) can be used to select significant model terms. The initial OLS-ERR type algorithms, 

however, cannot automatically determine the model size. To ameliorate the agility and enhance the 

capability of the OLS-ERR algorithm, an approximate minimum description length (AMDL) criterion 

(Saito 1994, Antoniadis et al. 1997), will be introduced to aid the determination of the associated 

model size, and this is described below.  

3.   The OLS-ERR algorithm  

Consider the term selection problem for the linear-in-the-parameters model (6). Let 

N
t

d ytyt 1},:))(),({( =∈∈ RRxx  be a given training data set and TNyy )](,),1([ =y be the vector of the 

output. Let },,2,1{ MI = , and denote by }:{ Imm ∈=Ω φ  the dictionary of candidate model terms in 

an initially chosen candidate regression model similar to (6). The dictionary Ω  can be used to form a 

variant vector dictionary }:{ Imm ∈= ĳD , where the mth candidate basis vector mĳ  is formed by the 

mth candidate model term Ω∈mφ , in the sense that T
mmm N ))]((,)),1(([ xxĳ φφ = . The model term 

selection problem is equivalent to finding, from I, a subset of indices, },,,2,1:{ IinmiI mmn ∈==   

where Mn ≤ , so that so that y can be approximated using a linear combination of 
niii ĮĮĮ ,,,

21
 .  

3.1  The forward orthogonal search procedure 

A non-centralised squared correlation coefficient will be used to measure the dependency between 

two associated random vectors. The non-centralised squared correlation coefficient between two 

vectors x and y of size N is defined as 
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It has been shown in Wei et al. (2004b) that the above squared correlation coefficient is closely related 

to the error reduction ratio (ERR) criterion (a very useful index in respect to the significance of model 

terms),  defined in the standard orthogonal least squares (OLS) algorithm for model structure selection 

(Billings et al.1989, Chen et al. 1989).  

The model structure selection procedure starts from equation (6). Let yr =0 , and 
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where the function ),( ⋅⋅C is the correlation coefficient defined by (7). The first significant basis can thus 

be selected as 
11 ĳĮ = , and the first associated orthogonal basis can be chosen as 

11 ĳq = . The model 

residual, related to the first step search, is given as 
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In general, the mth significant model term can be chosen as follows. Assume that at the (m-1)th 

step, a subset 1−mD , consisting of (m-1) significant bases, 121 ,,, −mĮĮĮ  , has been determined, and the 

(m-1) selected bases have been transformed into a new group of orthogonal bases 121 ,,, −mqqq  via 

some orthogonal transformation. Let  
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where 1−−∈ mj DDĳ , and 1−mr  is the residual vector obtained in the (m-1)th step. The mth significant 

basis can then be chosen as
mm ĳĮ =  and the mth associated orthogonal basis can be chosen as 

)(m
m m

qq = . The residual vector mr  at the mth step is given by 

m
m

T
m

m
T

mm q
qq
qy

rr −= −1                                                                                                            (12) 

Subsequent significant bases can be selected in the same way step by step. From (12), the vectors 

mr and mq  are orthogonal, thus  

m
T
m

m
T

mm qq
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By respectively summing (12) and (13) for m from 1 to n, yields 
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The model residual nr  will be used to form a criterion for model selection, and the search procedure 

will be terminated when the norm 2|||| nr satisfies some specified conditions. Note that the quantity 

),(ERR mm C qy=  is just equal to the mth error reduction ratio (Billings et al. 1989, Chen et al. 1989), 
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brought by including the mth basis vector 
mm ĳĮ = into the model, and that ∑ =

n
m mC1 ),( qy  is the 

increment or total percentage that the desired output variance can be explained by nĮĮĮ ,,, 21  .  

Note that some tricks can be used to avoid selecting strongly correlated model terms. Assume that 

at the (m-1)th step, a subset 1−mD ,consisting of m-1 significant bases, 11 ,, −mĮĮ  , has been determined. 

Also assume that 1−−∈ mj DDĳ is strongly correlated with some bases in1−mD , that is, jĳ  is a linear 

combination of 11 ,, −mĮĮ  . Thus, 0)( )()( =m
j

Tm
j qq . In the implementation of the algorithm, the 

candidate basis jĳ will be automatically discarded if δ<)()( )( m
j

Tm
j qq , where δ is a positive number 

that is sufficiently small. In this way, any severe mullticolinearity or ill-conditioning can be avoided. 

3.2  Model size determination 

The determination of model size is critical in dynamical modelling because neither an over-fitting 

nor an under-fitting model is desirable. For problems in the real world, however, the true model size is 

generally unknown and needs to be estimated from the data. Model selection criteria are often 

established on the basis of estimates of prediction errors, by inspecting how the identified model 

performs on future (never used) data sets.  

In the present study, an approximate minimum description length (AMDL) criterion developed by 

Saito (1994) and Antoniadis et al. (1997), on the basis of the Rissanen’s MDL criterion (Rissanen 

1983), will be used to determine the model size. For the case of single regression model, AMDL is 

defined as 

N

Nn
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)][MSE(log5.0)AMDL( +=
N

Nn

N
n 2

2

2
log5.1||||
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=

r
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where MSE is the mean-square-error from the associated model, N is the length of the associated 

training data set, n is the number of model terms, and nr is the associated model residual. A similar 

strategy has been employed in Wei et al. (2006), where a Bayesian information criterion (BIC) 

criterion was used. 

3.3   Parameter estimation 

It is easy to verify that the relationship between the selected original bases nĮĮĮ ,,, 21  , and the 

associated orthogonal bases nqqq ,,, 21  , is given by 

nnn RQA =                                                                                                                               (17) 

where ],,[ 1 nn ĮĮA = , nQ  is an nN × matrix with orthogonal columns nqqq ,,, 21  , and nR  is an 

nn× unit upper triangular matrix whose entries )1( njiuij ≤≤≤  are calculated during the 

orthogonalization procedure. The unknown parameter vector, denoted by T
nn ],,,[ 21 θθθ =ș ,  for the 
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model with respect to the original bases, can be calculated from the triangular equation nnn gșR =  

with T
nn ggg ],,,[ 21 =g  , where )/()( k

T
kk

T
kg qqqy=  for k=1,2, …, n. 

4.   Numerical examples 

This section presents three examples to demonstrate that wavelet models, produced by the forward 

orthogonal regression (OLS-ERR) algorithm, can be used to effectively describe severely nonlinear 

regime-switching systems where possibly there exist discontinuities. As will be seen, resultant wavelet 

models are superior to polynomial models, in respect of generalization properties, for nonlinear 

regime-switching systems considered in the examples.  

Note that in the polynomial model identification procedure the original observational data were 

directly used to construct the model. In the wavelet modelling procedure, however, the original 

observed data, if not in [0,1], were initially normalized to [0,1] via a transform 

)/())(~()( abatxtx −−= , where )(~ tx indicate the initial observations, anda and b represent the 

prescribed boundary for the associated observations. The identification procedure was therefore 

performed using normalized values x(t). The outputs of an identified model were then recovered to the 

original measurement space by taking the associated inverse transform.  

The model predicted output (MPO) were used to measure the model performance of the identified 

models. For an identified model ))((ˆ)( tfty x= , the model predicted output is defined as 

))(ˆ(ˆ)(ˆ tfty x= , implying that )(ˆ ty is produced from the identified model iteratively, where 

T
d txtxtxt )](,),(),([)( 21 =x is defined by (3) and (5), and T

dnn txtxtxtxt
yy

)](,)(),(ˆ,),(ˆ[)(ˆ 11  +=x is 

the predicted value of )(tx . 

4.1  Example 1.  

Consider a two-input piecewise finite impulse response (FIR) model below   
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where )1()( 11 −= tutx , )1()( 22 −= tutx , and the three regimes (subspaces) 21,SS and 3S are defined as 

below:  

}5.0,10:),{( 221211 ≤≤≤≤= xxxxxS , 

}1,5.0,10:),{( 2121212 xxxxxxS +≤<≤≤= , 

}1,,5.0:),{( 21211213 <+<≤= xxxxxxxS ,  
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Clearly, ]1,0[]1,0[321 ×=SSS  , see Figure 1 for a clearer visualisation. One thousand data points 

were generated from (18) by setting exxfty += ),()( 21 , where the two input variables )(1 tu  and 

)(2 tu were uniformly distributed in [0,1], and e was a Gaussian noise with zero mean and standard 

derivation 0.1. The distribution of the 1000 input data points in the three subspaces 21,SS and 3S  is 

shown in Figure 1, and the first return map formed by the 1000 data points is shown in Figure 2. The 

predictor vector (the ‘input’ vector) was chosen to be Ttxtxt )](),([)( 21=x , and the initial polynomial 

and wavelet model was respectively chosen to be 
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where }223:{ j
j kkB +≤≤−= ,

21,; kkjc are coefficients, ),( 21,; 21
xxkkjψ )2,2(2 2211 kxkx jjj −−= ψ  are 

the dilated and translated versions of the 2-D truncated Mexican hat wavelet, ),( 21 xxψ , that has been 

proposed in Billings and Wei (2005) and is defined as below: 
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The total number of candidate model terms (basis functions) involved in the initial polynomial model 

(19) and the initial wavelet model (20) was 21 and 893, respectively. Based on the 1000 data points, 

the OLS-ERR algorithm was applied to select significant model terms for both the polynomial and the 

wavelet model identification. The AMDL criterion, shown in Figure 3, suggested that the number of 

model terms for the polynomial and wavelet models was 17 and 36 respectively.   

To inspect and compare the performance of the identified 17-term polynomial model and 36-term 

wavelet model, both models were simulated by choosing the two input variables )(1 tu  and )(2 tu as 

below: 

•   Both )(1 tu  and )(2 tu  were uncorrelated random sequences, with 500 data points, uniformly 

distributed in [0,1], but note that the test data was different from the data used for model 

estimation. 

•   )50/sin(4.05.0)(1 ttu π+=  and )3/20/sin(4.05.0)(2 ππ ++= ttu  for t=1,2,…,500. The 500 

input data points in the three subspaces 21,SS and 3S  is shown in Figure 4. 

Model predicted outputs, from both the identified polynomial and wavelet models, were compared 

with that produced from the true noise-free model (18). The predicted results, corresponding to the 
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above two test cases, are shown in Figures 5 and 6, respectively, where only a fraction of the data 

points is displayed for a closer visualisation. For the first test case, the mean-square-error (MSE), for 

the model predicted outputs from the identified polynomial and wavelet models, was calculated to be 

0.2768 and 0.0923, respectively, over all the 500 test data points. For the second test case, the MSE 

was calculated to be 0.3719 and 0.1073, respectively, over the test data set. Clearly, the identified 

wavelet model is significantly superior to the polynomial model for the regime-switching system 

described by (18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  The three subspaces 21,SS and 3S , and the distribution of the 1000 input data points used for model 

estimation described in Example 1. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  The first return map formed by the 1000 training data points used for model estimation described in 

Example 1. 
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Figure 3.  AMDL index versus the number of model terms for the polynomial models (the plot at the top) and the 

wavelet models (the plot at the bottom) identification described in Example 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  The distribution of the 500 input data points (in the sine wave input case) used for model test in 

Example 1. 
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Figure 5.  A comparison of the model predicted outputs produced by the identified polynomial and wavelet 
models, with the true values produced by the noise-free model (18), driven by the input in the first test case 
described in Example 1. Circles present the true values, dots present the model predicted output from the wavelet 
model, and crosses present the model predicted output from the polynomial model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  A comparison of the model predicted outputs produced by the identified polynomial and wavelet 
models, with the true values produced by the noise-free model (18), driven by the input in the second test case 
described in Example 1. The thin solid line presents the true values, the thick solid line resents the model 
predicted output from the wavelet model, and thick dashed line represents the model predicted output from the 
polynomial model. 
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4.2  Example 2 

A nonlinear system was described by the following model    
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)()()( ttxty η+=                                                                                                                      (22b) 

where )(tξ and )(tη were Gaussian white noise with zero mean and standard deviationξσ =0.1 and 

ησ =0.5, respectively. By choosing the input u(t) as a random sequence that was uniformly distributed 

in [-10,10], model (22) was simulated and 500 input-output data points were collected after the system 

has settled down.  

The predictor vector was chosen to be Ttxtxtxt )](),(),([)( 321=x Ttutyty )]1(),2(),1([ −−−= . The 

initial polynomial model was chosen to be 
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A total of 35 candidate model terms was involved in this polynomial model. The initial wavelet model 

was chosen to be 
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where the univariate functionspf were of the form below   
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where }234:{ j
j kkA +≤≤−= , kjc ; are coefficients, )2(2)( 2/

; kxx jj
kj −= φφ  are the dilated and 

translated versions of the 1-D truncated Mexican hat wavelet, )(xφ , defined as below (Billings and 

Wei 2005): 
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The bivariate functionspqf  were approximated using the 2-D truncated Mexican hat wavelets similar 

to (20). A total of 3012 candidate wavelet basis functions were involved in the initial wavelet model 

(24). Note that original observed data were initially normalized to [0,1], via the transform 
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)/())(~()( iiiii abatxtx −−= , where )(~ txi indicates the initial observations, and 15−=ia , 15=ib for 

i=1,2 (corresponding to the output variables), and 10−=ia , 10=ib for i=3 (corresponding to the input 

variable). The identification procedure was performed using the normalized values of )(txi . The 

outputs of an identified model were then recovered to the original measurement space by taking the 

associated inverse transform. 

Based on the 500 estimation data points, the OLS-ERR algorithm was applied to select significant 

model terms for both the polynomial and the wavelet model identification. The AMDL criterion, 

shown in Figure 7, suggested that the number of model terms for the polynomial and wavelet models 

was 8 and 18 respectively.  

To inspect and compare the performance of the identified 8-term polynomial model and the 18-

term wavelet model, both models were simulated by choosing the input as a random sequence, with 

500 data points, that was uniformly distributed in [-10,10]. Model predicted outputs, from both the 

polynomial and wavelet modes, were compared with that produced by the true model (22), and these 

are shown in Figure 8, where again only part data points were displayed.  The MSE was calculated to 

be 0.7588 and 0.6870, respectively, with respect to the model predicted outputs from the identified 

polynomial and wavelet models, over the all 500 test data points. Clearly, the identified wavelet model 

is apparently superior to the polynomial model for the regime-switching system described by (22). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  AMDL index versus the number of model terms for polynomial model (the plot at the top) and 
wavelet model (the plot at the bottom) identification described in Example 2. The AMDL criterion for the 
wavelet model was calculated in the normalised space. 
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Figure 8.  A comparison of the model predicted outputs produced by the identified polynomial and wavelet 
models, with the true values produced by model (22), described in Example 2. Circles present the true values, 
dots present the model predicted output from the wavelet model, and stars present the model predicted output 
from the polynomial model. 

4.3  Example 3 

A nonlinear system model was given by 
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)()()( tetxty +=                                                                                                                      (27b) 

where 100 =a , 25.01 =a , 75.02 =a , 200 =b , 6.01 =b , 8.02 =b , e(t) was a noise signal, 

)]2(),1([ −−= txtxȗ , and the three subspaces 21,SS and 3S are defined as below:  

}25.0:),{( 2
12211 xxxxS ≥= , }0,25.0:),{( 1

2
12212 ≤<= xxxxxS , }0,25.0:),{( 1

2
12213 ><= xxxxxS , 

Clearly the union of 21,SS and 3S is the whole plane in the 2-D space. By setting e(t) to be Gaussian 

white noise with zero mean and standard deviationeσ =5, and by choosing the input u(t) as a random 

sequence that was uniformly distributed in [-5,5], model (27) was simulated and 2500 input-output 

data points were collected after the system has settled down. The first 500 data points was used for 

model estimation and the remaining 2000 data points were used for model validation. The first return 

maps produced by the 2000 noisy test data and the associated noisy-free data are shown in Figures 9 

and 10, respectively. 
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Figure 9.  The first return map formed by the 2000 noisy training data points generated by model (27) in 

Example 3. 
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Figure 10.  The first return map form by the associated noisy-free data (2000 points) generated by model (27) in 

Example 3. 
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Note that the output of the model (27a) was sensitive to the model parameters. For example, a 

small disturbance in the parameter 2b  may lead to a dramatic difference in the model response under 

the same input. Figure 11 presents this phenomenon, where the difference );();()( 22 btybtyt −+= δε , 

with 2b =0.8 and 410−=δ , was displayed. Clearly, with the process going on, a small discrepancy in 

the parameter 2b  produces significant difference in the model response. This means that it might be 

difficult to identify a model that can produce accurate long term predictions. 

The predictor vector, the initial polynomial model, and the initial wavelet model were chosen 

exactly the same as in Example 2. The original observed data were initially normalized to [0,1], by 

setting 80−=ia and 80=ib for i=1,2 (corresponding to the output), and 5−=ia and 5−=ib for i=3 

(corresponding to the input). The identification procedure was performed using normalized values of 

)(txi . The outputs of an identified model were then recovered to the original measurement space by 

taking the associated inverse transform. Based on the 500 data points, the OLS-ERR algorithm was 

applied to select significant model terms for both the polynomial and the wavelet model identification. 

The AMDL criterion suggested that the number of model terms for the polynomial and wavelet 

models was 12 and 21 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  The difference );();()( 22 btybtyt −+= δε produced by the noise-free model (27a), described in 

Example 3, where 410−=δ . 
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It was known that the original model given by (27) is sensitive to the associated model parameters, 

it was thus difficult to obtain accurate long term predictions. This means that a simple comparison of 

long term predictions may not be a good measurement of model quality. As an alternative, the 

performance of the identified 12-term polynomial model and the 21-term wavelet model was inspected 

by calculating the associated first return maps. The first return maps, produced by the model predicted 

outputs, with respect to the identified polynomial and wavelet models, are presented in Figures 12 and 

13, respectively. Clearly, the first return map produced by the identified wavelet model, compared 

with that produced by the polynomial model, provides a much closer representation for the first return 

map formed by the original measurements. This means that the identified wavelet model is superior to 

the associated polynomial model for the nonlinear regime-switching system described by (27). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12.  The first return map produced by the model predicted output of 2000 data points from the identified 
polynomial model, driven by a random sequence that was uniformly distributed in [-5,5]. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.  The first return map produced by the model predicted output of 2000 data points from the identified 
wavelet model, driven by a random sequence that was uniformly distributed in [-5,5]. 
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5.   Conclusions 

A new wavelet based modelling approach has been introduced for nonlinear regime-switching 

system identification, where it was assumed that the inherent model structure and relative regime 

switches of the underlying systems are totally unknown. For this type of severely nonlinear systems, 

where a priori knowledge on the model structure is unavailable, identifying a global input-output 

model, from available data, may be a good initial step towards further understanding of the underlying 

dynamics. It has been demonstrated that wavelets, with local properties in both the time and the 

frequency domains, are powerful for constructing global nonlinear models for regime-switching 

systems. The performance of the resultant wavelet models, as has been shown, is much superior to that 

of the associated polynomial models for dealing with the identification problems described in the 

examples. 

At first sight, a wavelet model may involve a large number of candidate model terms for high 

dimensional problems. In most cases, however, most of the candidate model terms are redundant and 

only a small number of significant model terms are necessary to include in the final model to describe 

the nonlinear dynamics with a good accuracy.  More fortunately, an efficient model structure and term 

selection algorithms including the forward orthogonal regression (OLS-ERR) algorithm, coupled with 

the AMDL criterion (or other efficient criteria), can be employed to determine which model terms and 

how many model terms should be included in the model and finally a parsimonious model can be 

obtained.  

Wavelet bases, in dynamical wavelet modelling, involve two key parameters: the scales (the 

dilation parameter) and the positions (the translation parameter). While it is believed that the higher 

the scales the more accurate the wavelet model is, experience from numerous case studies has shown 

that the dilation parameter need not to be chosen very high. As a rule of thumb, setting the scale 

parameter to values up to 2 or 3 can often work well.  
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