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Abstract: In part 1 of this paper some fundamental theoretical results for the design of a 

nonlinear feedback controller to suppress periodic exogenous disturbances were 

developed based on the frequency domain theory of nonlinear systems, and a general 

procedure for the controller design was proposed. In this study, Part 2 of the paper, the 

new approach and the theoretical results in Part 1 are demonstrated using a case study 

based on the design of an active vibration control system. Simulation results are given to 

illustrate the effectiveness of the new method and the advantage of the nonlinear 

feedback controller. 

 

1.  Introduction 
 
In Part 1 (Jing et. al., 2006) of this paper, a new nonlinear feedback control approach to 

suppression of periodic disturbances was proposed. The problem was divided into several 

fundamental issues and a series of fundamental theoretical results and techniques for 

addressing these basic issues were established and developed, based on the frequency 

domain theory of nonlinear systems. In Part 2 of this paper, a case study is provided to 

demonstrate how to apply the new approach and the theoretical results established in Part 

1 to design a nonlinear feedback controller. A simple nonlinear feedback controller for a 

vibration control system is designed and analysed in detail according to the design 

procedure of the new approach proposed in Part 1. Simulation results verify the 

theoretical results and illustrate the effectiveness of the new approach.  

 

2.  Preliminaries 
         

In Part 1 (Jing et. al., 2006), a novel frequency domain analysis based nonlinear feedback 

control approach was proposed for SISO linear systems to suppress period exogenous 

disturbances. The considered systems can be described by the differential equation: 
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where, x, y, u, η 1ℜ∈  represent the system state, output, control input, and an exogenous 

disturbance input respectively;  η  is a known, bounded and periodical vibration which 

can be described by a multi-tone function ∑
=

∠+=
K

i
iii FtFt

1

)cos()( ωη ; L is a positive integer; 

lD  is an operator defined by lll dtxdxD = . The control problem is: 

         

Given a frequency 0ω  and a desired magnitude level of the output frequency response Y*
 

at this frequency, find a nonlinear state feedback control law  

)( x, Dx, x, Du L-11 …−= ϕ                                                      (3) 

such that  
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)()( ujYjY ωωω *Y                                                      (4) 
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Substituting (3) into (1), the closed loop system can be written  
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where,  

),()()( 1101110 lbClClC x −= )()()(
~

1101110 ldClClC y −=  

),,,(),,( 1010 qpppp llbCllC +−= LL ),,,(),,(
~

1010 pppp lldCllC LL −=   

for ,0,2 LlMp i LL ==  and qpi += L1 . 

 

         

The nonlinear feedback control problem can be divided into several basic problems in 

Part 1 of the paper. These are: (a) Determination of the analytical relationship between 

the system output spectrum and the nonlinear controller parameters. (b) Determination of 

an appropriate structure for the nonlinear feedback controller. (c) Derivation of a range 

for the values of the controller parameters over which the stability of the closed loop 

nonlinear system is guaranteed. (d) Numerical implementation of the nonlinear feedback 

controller design. Some theoretical results and effective techniques to solve the basic 
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problems for the controller design have been developed in Part 1 of this paper. Based on 

these results, a general procedure for the design and analysis of the nonlinear feedback 

controller has also been proposed, which includes five steps as follows: 

 

(A) Determination of the structure of the nonlinear feedback controller in (3), including 

the largest nonlinearity order M, and which of the nonlinear controller parameters 

Cp0(.) (p=2,�,M) are used for the design.  

(B) Derivation of a region for the nonlinear controller parameters, which can ensure the 

stability of the nonlinear closed loop system.  

(C) Derivation of the polynomial expression for the system output spectrum in terms of 

the controller parameters.  

(D) Examination of the effectiveness of the involved nonlinear controller parameters.  

(E) Determination of the desired values for the nonlinear controller parameters to achieve 

a control objective. 

 

Following this general procedure, a case study is presented in the following sections, 

which involves designing a simple nonlinear feedback controller for an active vibration 

control system. 

 

3.  Active control of a vibration system 
         

Consider a simple case of the model in (1) and (2), which can be written as 

⎩
⎨
⎧

−+=
++−−=

uxaKxy

uxaKxxM

&

&&&

1

1 )(η
                                                        (7) 

This is the model of a vibration system studied in Daley et.al.(2006). Following the 

procedure in Section 2, a nonlinear feedback controller is designed as follows to suppress 

the effect of vibrations due to the external disturbance )(tη to the system.  

 

3.1  Determination of the structure of the nonlinear feedback controller 
         

For this simple system, M is directly chosen to be 3, and all other nonlinear controller 

parameters are chosen to be zero except C30(111)=a3. Later analysis will show that this is 

a good choice.  

         

The nonlinear feedback control law (3) now is 
3

3 xau &−=                                                                            (8) 

Substituting (8) into (7), the closed loop system is obtained as 
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Note that system (9) is a very simple case of system (6), that is, L=2, MC =)2(10 , 

110 )1( aC = , KC =)0(10 , 330 )111( aC = , 1)0(01 −=C  and 110 )1(
~

aC = , KC =)0(
~

10 , 330 )111(
~

aC = ; All 

other parameters in model (6) are zero.  Now the task for the nonlinear feedback 

controller design is to determine a3 such that system (9) satisfies the control objective (4).  
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3.2  Derivation of the stability region for the parameter a3 

 

The stability of the closed loop system (9) implies not only the existence of a convergent 

Volterra series to approximate the system input output relationship but also defines a 

region for the nonlinear controller parameter a3 over which the design of a3 can be 

conducted. According to Theorem 1 in Part 1 of the paper, the following result can be 

obtained.  

 

Theorem 1. Consider the closed loop system (9), and suppose the exogenous disturbance 

input satisfies dFt ≤)(η . The system is asymptotically stable to a ball )(
1
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Proof. The state-space equation of system (9a) can be written as 
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Note that, in the inequality above, the following inequality is used 

ηεηεη TTTT ZTTZTZ +≤ −12 , for any 0>ε . 

If inequality (10) holds, then Q=Q
T
>0, therefore Z

T
QZ

2

min )( XQλ≥  is a K-function of ||X 

||. Hence, according to Theorem 1 in Part 1 of the paper (Jing et.al. 2006), the system is 

asymptotically stable to a ball )(XBρ with εληελρ 1

min

21

min )()sup()( −− == QFQ d . 

Additionally, when there is no exogenous disturbance input, and if (10) holds with E=0, 
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then it is obvious that the system without a disturbance input is globally asymptotically 

stable.  This completes the proof. ͛ 

         

With the guaranteed stability around zero equilibrium, the input output relationship of 

system (9) can be approximated by a convergent Volterra series. Thus the frequency 

domain theory of nonlinear systems based on Volterra series can be applied, provided 

that the system parameters satisfy the conditions of Theorem 1. However, it is noted that 

inequality (10) has no relation with a3 and is determined by the linear part of system (9) 

which can be checked by using the LMI technique (Boyd et al. 1994). This implies that 

the value of a3 has no effect on the stability of the system if the inequality (10) is satisfied. 

Hence, the nonlinear controller parameter a3 is now only restricted to the region [0,∞ ).  

 

3.3  Derivation of the polynomial representation of the system output 
spectrum 
 

Note that only C30(111)=a3 and all other nonlinear parameters Cp0 for p>2 are zero. 

According to Proposition 2 in Part 1 of this paper, the following parametric 

characteristics of the GFRFs can be obtained 
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It is easy to check from Propositions 2 and 3 in Part 1 of this paper that  
n

n aHCE 3

1

12 ))(( =⋅+  for n>0 and all other 0))(( 1 =⋅iHCE .                              (14) 

This follows that only )(1

12 ⋅+nH  for n>0 are nonzero and all others are zero. It should be 

noted that, if there are some other nonzero nonlinear controller parameters in C30, then 

the conclusion still holds. The terms of the same order of nonlinearity order in C30 can be 

chosen properly in the feedback controller in order to increase the freedom of design and 

therefore improve the performance of the system output frequency response. This will be 

further discussed in other publications. In the present study, only the case where the 

control law u=- 3

3 xa & is considered for simplicity.  

         

Using the parameter characteristics of the GFRFs, i.e., n
n aHCE 3

1

12 ))(( =⋅+  for n>0, the 

parametric characteristics of the output spectrum of nonlinear system (9) can be obtained 

as 

[ ]Z
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33
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where, Z= ⎣ ⎦2
1−N . Therefore, the system output spectrum can be written as a polynomial 

expression as  

)()()()()( 32

2

3130 ωωωωω jPajPajPajPjY Z
Z++++= L                                (16) 
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In order to check the validity of equation (16), the following the recursive computations 

are carried out according to Proposition 1 in Part 1 of this paper. It is easy to compute the 

GFRFs for (2n+1)th orders as follows:  
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and so on. The system output spectrum can then be expressed as 
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These analytical expressions for )( ωjPi  i=0,1,2� will be used in Section 4 to evaluate 

the values of the corresponding terms obtained by the numerical method in Step E of the 

design procedure to confirm the effectiveness of the design.  

 

3.4  Examination of the effectiveness of the nonlinear parameter 3a  
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The effectiveness of the nonlinear term 3

3 xa &  can be checked according to Proposition 4(2). 

That is, inequality 0))(),(( 0100 <><ℜ ωω jPjP  can be used to check whether the simple 

nonlinear controller (11) is effective with respect to the control objective (4). From the 

results in Table 1, it is easy to show that  ))(),(( 0100 ><ℜ ωω jPjP = 

0.5( )()()()( 01000100 ωωωω jPjPjPjP −+− )= -31.132<0 when a3>0, 0ω =8.1 rad/s and other 

system parameters as given in the simulation studies. Hence, the nonlinear control 

parameter a3 is absolutely effective. If there are other nonlinear controller parameters, the 

same method can be used to check the effectiveness. Only the effective nonlinear terms 

are used in the controller. In fact, it can be further verified from Table 1 that 

nP = 0))(),((

,
10

<><ℜ ∑
=+≤≤

−≤≤
njinji

ni
ji jPjP ωω for all n=2k-1, k=1,2,3,�, and | nP |<| 1−nP |. This implies 

that a3 is effective for the whole stability region [0,∞ ) obtained in Section 2.2. 

 

3.5  Determination of the desired value of the nonlinear parameter a3 

         

It follows from equation (16) that 
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Clearly, )( ωjY 2
 is also a polynomial function of a3. Given the magnitude of a desired 

output frequency response Y*
 at any frequency 0ω , a3 can be solved from (18) provided 

that )( ωjY  can be approximated by a polynomial expression of a finite order. However, 

in this case (18) with a lower order can not give a correct answer due to truncation errors. 

In order to solve this problem and to determine a desired value for a3 to achieve the 

control objective (4), the numerical method proposed in Section 3.4 of Part 1 of this 

paper is used. Since (18) is a polynomial function of a3, 
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Consequently, equation (19) is obtained. Using this method, a polynomial expression of 
2

)( ωjY in any order and of any accuracy can be achieved. Given a desired output 

frequency response Y*
 at a frequency 0ω , a3 can readily be solved from (19) to implement 

the design.  Note that roots of equation (19) are multiple. According to Theorem 1, the 

solution a3 should be a nonnegative real number. 

 

4.  Simulation Results 
 

In this simulation study, the parameters of system (7) are: K=16000 N/m, a1=296 N.S/m, 

M=240 Kg. The resonant frequency of the system is 0ω =8.1 rad/s. The disturbance input 

is )1.8sin()( tFt d=η . In order to show the effectiveness and advantage of the nonlinear 

feedback controller (8), a substitutive linear controller xau &
2−=  will be used for 

comparison.  

         

Firstly, let Fd=100 N.  We need to obtain the polynomial function (19). In order to have a 

larger working region of a3, let Z=6 in (19), and a3= 500, 1000, 2000, 4000, 6000, 8000, 

10000, 12000, 14000, 16000, 18000, 20000. Under these different values of a3, the output 

frequency response of the system was obtained and the corresponding output spectrum 

was determined via FFT operations. Then )( ωjpn  for n=1�12 were obtained according 

to (20), which are summarized partly in Table 1. For comparisons, the corresponding 

theoretical results were also computed from equation (17) and are given partly in Table 1. 

From Table 1, it can be seen that there is a good match between the data analysis results 

and the theoretical computations although there are some errors. This result shows that 

the theoretical computation results are basically consistent with the results from the data 

analyses. It can also be seen from the data analysis results in Table 1 that equation (19) is 

in fact an alternative series in this case.   

         

Figure 1 shows the results of the system output spectrum under different values of the 

nonlinear control parameter a3 and provides a comparison between theoretical 

computations using polynomial expression (18) up to the 3
rd

 order and the data analysis 

based results using the polynomial expression (19) up to the 12
th

 order. This result 

demonstrates the analytical relationship between the nonlinear control parameter and the 

system output spectrum, and shows that the theoretical results have a good match with 

the data analysis results when a3 is small since only up to the 3
rd

 order GFRF are used in 

the theoretical computations. Hence, with an increase of a3, the data analysis based 

method has to be used in order to give correct results. Moreover, it should be noted that 

the magnitude of the system output spectrum decreases with the increase of a3. This 

verifies that the nonlinear control parameter a3 is effective for the control problem. 
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Without a control input, the system output frequency spectrum is as shown in Fig 2, 

where 71.335)(
0

=
ω

ωjY . Note that the output response spectrum shown in the figures of 

this paper is 2|Y| not |Y|, which is also applied on the plot of the output spectrum using 

the theoretical computation. This is because 2|Y| represents the physical magnitude of the 

system output at the frequency 0ω . If the desired output frequency spectrum is set to be 

Y
*
=180, then the calculation according to (19) and Theorem 2 yields a3=11869. The 

output frequency spectrum under the nonlinear feedback control is as shown in Fig 3, 

where 08.180)(
0

=
ω

ωjY , and hence the result matches the desired result quite well. The 

system outputs in the time domain before and after nonlinear feedback control are given 

in Fig 4. It can be seen that the system steady state performance is considerably improved 

when the nonlinear controller is used. This verifies that the nonlinear feedback control 

law (8) is very effective, which is consistent with the theoretical analysis in Section 2.4.  

         

In order to further demonstrate the advantage of the nonlinear feedback controller, 

consider a linear damping controller xu &275−= . Under this linear control input, the 

system output frequency response as shown in Fig 5 is similar to that achieved with the 

nonlinear controller. However, when Fd is increased to 200 N, the output frequency 

response is quite different under the two controllers. The nonlinear feedback controller 

results in a much smaller magnitude of output frequency response at frequency 0ω , 

referring to Fig 6 and Fig 7. Fig 8 shows the results of the system outputs in the time 

domain under the two different control inputs, indicating the nonlinear controller has a 

much better result than the linear controller. When the input frequency 0ω is increased to 

be 15 rad/s, the same conclusions can be reached for the two controllers, referring to Fig 

9 and Fig 10. When the input frequency is decreased to be 5 rad/s, the output spectrums 

under the two controllers are similar (see Fig 11 and Fig 12). The results demonstrate the 

advantage of the nonlinear feedback controller, and indicate that nonlinear feedback 

control can achieve better and more robust performances than a simple linear damping 

control for vibration suppression. 

 

5.  Conclusions 
         

Through the design and analysis of a nonlinear feedback controller for a vibration control 

system, a new approach for the design of nonlinear feedback controllers for periodic 

disturbance suppression developed in Part 1 of this paper has been demonstrated. This 

study verifies the effectiveness of the new approach and shows that a simple nonlinear 

feedback controller can achieve an improved and more robust performance than a linear 

controller. Future studies will focus on more systematic investigations of the five 

important issues associated with the design of a nonlinear feedback controller and the 

applications of the new approach in the control of more complicated systems.    
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Fig. 1. Analytical relationship between the system output spectrum and the control 

parameter a3 
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Fig. 2  Output spectrum without a feedback control 
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Fig. 3  Output spectrum with the designed nonlinear feedback control 
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Fig. 4. System output in time domain: before and after control 
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Fig. 5 Output spectrum with the linear feedback control 
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Fig. 6 Output spectrum with the linear feedback control when Fd is increased to Fd=200 
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Fig. 7 Output spectrum with the designed nonlinear feedback control when Fd is 

increased to Fd=200 
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Fig. 8. The system outputs in time domain under different control inputs (Fd=200) 
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Fig. 9 Output spectrum with the designed nonlinear feedback control when 150 =ω rad/s, 

Fd=100 
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Fig. 10 Output spectrum with the linear feedback control when 150 =ω rad/s, Fd=100 
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Fig. 11 Output spectrum with the designed nonlinear feedback control when 50 =ω rad/s, 

Fd=100 
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Fig. 12 Output spectrum with the linear feedback control when 50 =ω rad/s, Fd=100 


