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Abstract: The characteristics of the frequency response functions of nonlinear systems 

can be revealed and analyzed through the analysis of the parametric characteristics of 

these functions. To achieve these objectives, a new operator is defined, and several 

fundamental and important results about the parametric characteristics of the frequency 

response functions of nonlinear systems are developed. These theoretical results provide 

a significant and novel insight into the frequency domain characteristics of nonlinear 

systems and circumvent a large amount of complicated integral and symbolic calculations 

which have previously been required to perform nonlinear system frequency domain 

analysis. Several new results for the analysis and synthesis of nonlinear systems are also 

developed. Examples are included to illustrate potential applications of the new results.  

 

1 Introductions 
 

Nonlinear systems are far more complex than linear systems, and can exhibit harmonics, 

complex inter-modulations and even chaos (Pearson 1994). In order to understand and 

unravel these complicated phenomena, many authors have studied the analysis of 

nonlinear systems in both the time domain and the frequency domain (Graham and 

McRuer 1961, Sastry 1999, Chua and Ng 1979, Rugh 1981).  

 

The studies of nonlinear systems in the frequency domain are based on the concept of the 

generalized frequency response functions (GFRFs) (George 1959) which are defined as 

the multidimensional Fourier transformations of the kernel functions in the Volterra 

series. Many non-parametric algorithms have been derived to estimate the GFRFs of 

unknown non-linear systems from input output data (Brilliant 1958, Kim and Powers 

1988, Bendat 1990, Nam and Powers 1994). Peyton-Jones and Billings (1989) derived a 

recursive algorithm to compute the GFRFs of discrete time nonlinear systems described 

by NARX (Nonlinear AutoRegressive model with eXogenous input) models. A similar 

result was developed in Billings and Peyton-Jones (1990) for continuous time nonlinear 

systems described by integro-differential equations. Swain and Billings (2001) extended 

these results to the case of MIMO nonlinear systems. The derivation of the GFRFs of 

nonlinear systems with mean level or DC terms was studied in Zhang et al. (1995). Based 

on these results, some important characteristics of the frequency response functions of 

nonlinear systems were developed (Yue et al. 2005). In Lang, and Billings (1996) and 

Lang, and Billings (1997), the output frequency response function and the corresponding 
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characteristics of nonlinear systems were studied, respectively. The bound characteristics 

of the frequency response functions and energy transfer characteristics have also been 

studied and discussed (Zhang and Billings 1996, Billings and Lang 1996, Lang and 

Billings 2005). 

 

Although significant results have been achieved, many problems remain unsolved 

regarding the characteristics of the GFRFs and the system output frequency response 

function, including how the frequency response functions are influenced by the 

parameters of the underlying system, and the connection to complex non-linear 

behaviours. The GFRFs are actually a sequence of multivariable functions defined in a 

high dimensional frequency space. The evaluation of the values of the GFRFs higher than 

fourth or fifth order can become hard due to the large amount of algebra or symbolic 

manipulations that are involved (Yue et al. 2005). Moreover, existing recursive 

algorithms for the computation of the GFRFs do not explicitly and simply reveal the 

analytical relationship between the time domain system model parameters and the system 

frequency response functions in a clear and straightforward manner. These inhibit the 

practical application of the existing theoretical results to a certain extent. Therefore, the 

development of new methods to circumvent the computational complexity and to more 

clearly reveal the characteristics of the frequency response functions is of great 

importance for the analysis and synthesis of nonlinear systems.  

 

Previous results (Peyton-Jones and Billings 1989) show that for the NARX model the 

recursive computation procedure for the GFRFs involves the contribution of different 

model parameters to the system nonlinear characteristics of different orders. Hence, an 

alternative approach to analyse the characteristics of the frequency response functions 

and the effects of different types of nonlinearities on the system would involve study of 

the characteristics of the system model parameters on the frequency response functions. 

Therefore, a novel and effective coefficient extraction operator is defined in this paper. 

Using this new operator, several fundamental results relating to the parametric 

characteristics of the frequency response functions for nonlinear systems are derived. The 

parametric characteristics of the GFRFs and the system output spectrum can easily be 

achieved using a recursive algorithm which uses the system time domain model 

parameters without the need to determine individual GFRFs. The results reveal the 

explicit relationship between the system time domain model parameters and the system 

frequency response functions, and provide a significant and novel insight into the 

frequency domain characteristics of nonlinear systems. Important characteristics of the 

frequency response functions of nonlinear systems are also revealed and analyzed based 

on the new parametric method. The new results derived in the present study provide a 

new and effective approach which should be very useful for the analysis and synthesis of 

nonlinear systems in the frequency domain. 

 

2 Frequency response functions of nonlinear systems 
 

Considering the class of nonlinear systems which are stable at the zero equilibrium point 

and which can be approximated in the neighbourhood of the equilibrium point by the 

Volterra series 
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where N is the maximum order of the series, and ),,( 1 nnh ττ L is a real valued function of 

nττ ,,1 L  which is referred to as the nth order Volterra kernel. The frequency domain 

input-output description of the system can be obtained as (Lang and Billings 1996) 
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is known as the nth order Generalized Frequency Response Function(GFRF).  

 

When the system input is a multi-tone function described by 
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The system output frequency response function can be described as (Lang and Billings, 

1996): 
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The GFRFs in (3) for specific and simple nonlinear models can be derived by using the 

probing method in Rugh (1981). Consider the nonlinear systems which can be described 

by the Nonlinear AutoRegressive model with eXogenous input (NARX) 
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where, ym(t) is the mth-order output of the system, and p+q=m, ki=1,�, K, 
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Nonlinear system (6) represents a wide class of nonlinear systems and includes several 

well known nonlinear input-output models as special cases (Chen and Billings 1989). In 

this model, the parameters such as c0,1(.) and c1,0(.) represent the linear system parameters 

corresponding to the linear terms in the model such as y(t-1) or u(t-2) etc, and all other 

parameters represent the nonlinear system parameters. p+q is referred to as the nonlinear 

degree of the nonlinear parameter )(⋅pqc . A nonlinear parameter )(⋅pqc corresponds to a 

nonlinear term in the model of the p+qth degree of the form ∏∏
+

+==
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qp tuty )2()1( −− . Obviously, when p+q =1, the corresponding parameters are associated 

with the linear model terms. Let 
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which includes all the parameters of the model (6).  

 

For the NARX model in (6), the following recursive algorithm was derived by Peyton-

Jones and Billings (1989) to compute the GFRFs: 
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There are three types of nonlinearities in model (6): pure input nonlinearities 

corresponding to the nonlinear parameters c0,n(.), which lead to the first term in the 

frequency response functions in equation (8); pure output nonlinearities corresponding to 

the nonlinear parameters cn,0(.), which lead to the last term of equation (8); and input-

output cross nonlinearities corresponding to the nonlinear parameters cp,q(.), which lead 

to the second term in (8).  

 

It should also be noted from the recursive algorithm for the nth-order GFRF given in (8-

11) that the nonlinear parameters are separable from the system complex valued functions, 

thus each term in the nth-order GFRF has the form 
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function and is independent of the nonlinear parameters. This was further shown in Lang 
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et al (2006). The separable property of the frequency response functions for nonlinear 

system (6) provides the basis of the study in this paper. 

 

3 Parametric characteristics 
 

Note that the nonlinear parameters of different nonlinear degrees correspond to different 

degrees of nonlinearities in the system model and the recursive algorithm for the GFRFs. 

Hence, the characteristics of the frequency response functions and the effect of different 

parameters on the system nonlinear behaviour can be studied through the characteristics 

of the corresponding time domain nonlinear parameters in the frequency response 

functions. The focus of this section is to analyse the parametric characteristics of the 

GFRFs and output frequency response functions of nonlinear system (6), and to study 

how these frequency response functions are determined by the nonlinear system time 

domain parameters. For this purpose, a powerful coefficient extraction operator will be 

defined, and then the parametric characteristics of the system GFRFs and the output 

spectrum will be investigated using the new operator to reveal important relationships 

between the frequency response functions and the system nonlinear parameters (cpq(.) for 

p+q>1).  

       

3.1   Coefficient extraction operator 
 

In order to analyze the parametric characteristics of the frequency response functions, a 

useful operator will be defined as follows. 

 

Consider a series which can be written as 

nnCF fcfcfcH +++= L2211  

where the coefficients ci for i=1,�,n are real or complex numbers, and fi for i=1,�,n are 

real or complex valued functions. Let C=[ c1,c2,�,cn], F=[ f1,f2,�,fn]
T
.  

 

Define a Coefficient Extraction operator CE: n
CC → such that for any  

nnCF fcfcfcH +++= L2211 ∈ C  

then ∈== CcccHCE nCF ],,,[)( 21 L n
C , where C denote all the complex numbers, and n

C is 

the n-dimensional complex vector space. This operator has the following properties 

which also act as operator rules: 

 

(1) Reduced vectorized sum �⊕ �. 

     ],[)()()( 212122112211
CCCCHCEHCEHHCE FCFCFCFC ′=⊕=⊕=+ , where each element of 

2C′ belongs to C2 but not to C1, i.e., 2212 ),()(,, CCjCiCji ′⊆′≠′∀ . 

(2) Reduced Kronecker product �⊗�.  

      21)()()(
22112211

CCHCEHCEHHCE FCFCFCFC ⊗=⊗=⋅ , and �reduced� here means that 

there are no repetitive components in 21 CC ⊗ . 

(3) Invariant. (a) )()( HCEHCE =⋅α  ∈∀α  C  but  is not a concerned parameter;  

                       (b) CHCEHHCE FFCCFCF ==+ + )()( )( 2121
 

(4) Unitary. H∀ is not a function of ci for i=1�n, 1)( =HCE .  
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      Obviously, when there is a unitary 1 in CE(H), there is a constant term in the 

corresponding series HCF which has no relation with the coefficients ci (for 

i=1�n).  

(5) Inverse. CE-1
(C)=HCF. 

 

Moreover, notice that 112233332211 fcfcfcfcfcfcfcfcH nnnnCF ++++=++++= LL , that is, 

the order of cifi in the summation has no effect on the value of HCF. Thus the CE operator 

is also commutative and associative in this sense. It should also be noted that the 

coefficient extractor CE is a coefficient oriented operator. That is, not all the coefficients 

involved in a series are extracted after applying the operator, but only the coefficients of 

concern are extracted. 

 

In what follows, the CE operator will be used to study the parametric characteristics of 

the frequency response functions of system (6). For convenience, let )(
(*)
⋅⊗  and )(

(*)
⋅⊕ denote 

multiplication and addition in the sense of the reduced Kronecker product� ⊗ � and 

vectorized sum� ⊕ �, respectively, for the series (.) under the condition (*); without 

confusion, write pqpqpq

k

i
CCC ⊗⊗=⊗

=
L

1
simply as k

pqC , and the operators � ⊗ � and � ⊕ � 

simply as � o � and �+�, respectively. Moreover, define the p+qth degree parameter vector 

)],,(,),2,,1(),1,,1([ ,,,, 43421LLLL
mqp

qpqpqpqp KKcccC
=+

= , which includes all the nonlinear parameters 

of the form cp,q(.) with nonlinearity degree p+q in (7). Note that Cpq can also be regarded 

as a set of the (p+q)th degree nonlinear parameters of the form cp,q(.),  which is a subset 

of (7).  

 

Recalling the separable property of the GFRFs noted at the end of the last section, 

consider the nth order GFRF in (8) as a series, and the nonlinear parameters in (7) as the 

coefficients of the series. Thus the CE operator can be applied to the frequency response 

functions to reveal the dependence of these functions on the nonlinear parameters. In 

order to illustrate the use of the CE operator, the following example is given. 

 

Example 1. Apply the CE operator to the GFRFs in (8) up to the 3
rd

 order. 

For n=1 in (8),  
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For n=2, it is known from (8-11) that 



 8

∑

∑∑

∑

∑∑

=

==

=

==

+−+

−−++−=

+

−++−=

K

kk

K

kk

K

kk

K

kk

K

kk

K

kk

kkjjHjHkkc

kjjHkjkkckkjkkc

jjHkkc

jHkjkkckkjkkc

jjHL

n

1,

22111121210,2

1,

111122211,1

1,

2211212,0

1,

212,2210,2

1,

11,122211,1

1,

2211212,0

212

21

2121

21

211

))(exp()()(),(

))(exp()())(exp(),())(exp(),(

),(),(

)())(exp(),())(exp(),(

),()2(

ωωωω

ωωωωω

ωω

ωωωω

ωω

 

Applying the CE operator to the 2
nd

 order GFRF for the nonlinear model parameters, 

yields  
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For n=3, it can be shown from (8-11) that 
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Applying the CE operator to the 3
rd

 order GFRF for the nonlinear model parameters, 
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From (11),   
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Substituting the above two equations and (13) into (14), yields 
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From equations (13) and (15), it can be readily seen that how the nonlinear parameters of 

nonlinear degree 2 and 3 take a role in the composition of the 2
nd

 and 3
rd

 order GFRFs. In 

equation (13), different types and degrees of nonlinear parameters make independent 

contributions to the 2
nd

 GFRF. However, in equation (15) there are cross multiplication 

terms between different types of nonlinear parameters, thus there may be some special 

nonlinear behaviour corresponding to these terms in the frequency response function. 

Note that the first four terms in equation (15) are nonlinear parameters of nonlinear 

degree 3, and the rest all come from the second nonlinear degree of the model parameters 

with cross multiplications. Thus equation (15) clearly reveals which and how the 

different nonlinear parameters take a role in the generation of the 3
rd

 order GFRF. ͚ 

 

The example above demonstrates that the nonlinear model parameters in a series or a 

polynomial can be effectively extracted by the CE operator, and thus the characteristics 

that different non-repetitive parameters generate in a series or a polynomial can be 

revealed by neglecting the corresponding multiplied functions. Therefore, the CE 

operator provides a useful tool for the analysis of the effects of the nonlinear model 

parameters on the GFRFs and the system output spectrum.  

 

3.2   Parametric characteristics of the GFRFs 
 

In this section, the parametric characteristics of the GFRFs are derived and analyzed. The 

results are summarized by the following propositions. 

 

Proposition 1. The parametric characteristics of the nth-order GFRF can be obtained as 

follows: 
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PROOF OF PROPOSITION 1: The result can be obtained by directly applying the CE 

operator to equations (8) and (11). Applying the CE operator to equation (8), yields 
( ) ( )
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),,()(),,(

1,0,
2

1,,
11

1

,0

2 1,

1,10,

1

1 1 1,

1,111,

1,

111,0

11

1

1

1

ajjHCECjjHCECC

jjHkkc

jjHkkjkkc

kkjkkc

CE

jjHnLCEjjHCE

npnp
p

n

qnpqnqp
p

qn

q

n

n

n

p

K

kk
npnpp

n

q

qn

p

K

kk
qnpqnqpqpqnqnqpqp

K

kk
nnnn

nnnn

p

qp

n

ωωωω

ωω

ωωωω

ωω

ωωωω

LL

LL

LLL

LL

LL

⊗⊕⊕⊗⊕⊕⊕=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

++−+

++−

=

⋅=

=−−=

−

=

−

= =

−

=

−

= =
−−+++−+−+

=

∑ ∑

∑∑ ∑

∑

+

 

Applying the CE operator to equation (11), yields 
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Substituting equation (17b) into equation (17a), the proposition follows immediately. 

This completes the proof. ͚ 

 

Proposition 1 provides an explicit expression for the parametric characteristics of the nth-

order GFRF, which reveals clearly which type of nonlinear model parameters in (7) are 

included in the descriptions of the GFRF ),,( 1 nn jjH ωω L  and how the GFRFs are 

determined by these nonlinear model parameters. The result indicates that the form of the 

separable nonlinear parameters in the GFRF representations can now be described clearly 

based on equation (16). Note that there are many repetitive terms in equation (16), which 

can also be seen from the derivation of (15). In order to make the parametric 

characteristics from Proposition 1 more comprehensible and to provide clear insight, the 

following results can be applied. 

 

Proposition 2. CE( ),,( 1 nn jjH ωω L ) includes the nonlinear parameter C0n and all the non-

repetitive monomial functions of the nonlinear parameters in (7) of the form 

kkqpqpqppq CCCC ⊗⊗⊗⊗ L
2211

, where the subscripts satisfy knqpqp
k

i
ii +=+++ ∑

=1

)( , 

nqp ii ≤+≤2 , 20 −≤≤ nk , nqp ≤+≤2  and np ≤≤1 . That is, the set of all the subscript 
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combinations of the form ),,,,( 11 kk qpqpqp L corresponding to the nonlinear parameter 

monomials of the form
kkqpqpqppq CCCC ⊗⊗⊗⊗ L

2211
 which are included in 

CE( ),,( 1 nn jjH ωω L ), are  

⎪
⎪
⎪

⎭

⎪⎪
⎪
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⎪
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⎪
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=

−− nqp
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i
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nn 2
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2211

11
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M
),0( n∪  

 
PROOF OF PROPOSITION 2: C0,n is the first term in equation (16). Consider the last term 

of equation (16). Note that ( )),,(
1

1 11

1

irXXi

i

p
rrr

i

p

nr
rr

pn

jjHCE
++=

=
=

+−

⊗

∑

⊕ ωω L
L

includes all the combinations of 

(r1,r2,…,rp) satisfying nr
p

i
i =∑

=1

, 11 +−≤≤ pnri , and np ≤≤2 . Also note that 

CE( )(1 xr
jH ω )=1 since there are no nonlinear parameters, and any repetitive combinations 

make no contribution. Hence, it can be seen that ( )),,(
1

1 12

1

irXXi

i

p
rrr

i

p

nr
rr

pn

jjHCE
++=

=
=

+−

⊗

∑

⊕ ωω L
L

should 

include all the possible non-repetitive combinations of (r1,r2,…,rk) satisfying 

kpnr
k

i
i +−=∑

=1

, 12 +−≤≤ pnri  and pk ≤≤1 . Similarly for CE( ),,( 1 nn jjH ωω L ). Each of 

the subscript combinations corresponds to a monomial of the involved nonlinear 

parameters. Thus, including the term Cp,0, CE( ),,( 1 nn jjH ωω L ) includes all the possible 

non-repetitive monomial functions of the nonlinear parameters of the form 

0000 21 krrrp CCCC ⊗⊗⊗⊗ L satisfying knrp
k

i
i +=+∑

=1

, nri ≤≤2 , 20 −≤≤ nk  and np ≤≤2 . 

Regarding the second term of equation (16), the nonlinear parameters appear in the 

form
kkqpqpqppq CCCC ⊗⊗⊗⊗ L

2211
in this case, and the results are similar to the above. 

Hence, the proposition follows. ͚ 

 

It should be noted that repetitive monomials are not considered in Proposition 2. For 

instance, the subscript combinations (1,1,2,0) and (2,0,1,1) correspond to the nonlinear 

parameter monomials C1,1 o C2,0 and C2,0 o C1,1, respectively. Both are the same monomial, 

thus only one is counted. Following Proposition 2 for the special case: when p=n, then 

knqpqnqpqp
k

i
ii

k

i
ii +=+++=+++ ∑∑

== 11

)()( ; note that nqp ii ≤+≤2 , 20 −≤≤ nk , 

nqp ≤+≤2  and np ≤≤1 , thus q=k=pi=qi=0. Therefore, the biggest nonlinear degree of 

nonlinear parameters included in CE( ),,( 1 nn jjH ωω L ) is n corresponding to the nonlinear 

parameters Cpq with p+q=n. This can be verified by Example 1. In order to further 

illustrate the result in Proposition 2, the following example is provided. 

 

Example 2. Consider the 3
rd

 order GFRF. Then kqpqp
k

i
ii +=+++ ∑

=

3)(
1

.  
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When k=0, the involved nonlinear parameters are C0,3, C1,2, C2,1, C3,0; 

When k=1, 41311 =+=+++ qpqp , which has the following non-repetitive combinations 

(p,q,p1,q1 ):(1,1,2,0), (1,1,1,1),(1,1,0,2),(2,0,0,2),(2,0,2,0) 

then the involved nonlinear parameter monomials are: 

C1,1 o C2,0, C1,1 o C1,1, C1,1 o C0,2, C2,0 o C0,2, C2,0 o C2,0 

Note that 120 =−≤≤ nk , thus the calculations stop at k=1. The result is consistent with 

Equation (15).  

 

Proposition 3. ( )),,()),,(( 11, nppnnpn jjHCEjjHCE ωωωω LL +−= . 

 

PROOF OF PROPOSITION 3: According to Proposition 2, ( )),,(1 nppn jjHCE ωω L+−  includes all 

the monomials 
kkqpqpqp CCC ⊗⊗⊗ L

2211
satisfying kpnkpnqp

k

i
ii +−=−++−=+∑

=

11)(
1

, 

12 +−≤+≤ pnqp ii , and 10 −−≤≤ pnk . Equation (17b) can be rewritten as 
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Following the same idea in the proof of Proposition 2, the second term on the right of the 

equality in this equation can be written as 

( ))),,(()),,(()),,((
11211

1 2 irXXqirXXirXX

i

p
rrrrrrrrr

qpnr
rr

pn

jjHCEjjHCEjjHCE
++′++++

⊗⊗⊗

∑

⊕
′+−=

=

−

ωωωωωω LLLL
L

  (A1) 

That is, all the terms in (A1) satisfy qpnqpnr
q

i
i ′+−=−′++−=∑

′

=

11
1

, 12 +−≤≤ pnri  and 

pq ≤′≤0 , i.e., qpnqp
q

i
ii ′+−=+∑

′

=1

)( , 12 +−≤+≤ pnqp ii , and 10 −−≤′≤ pnq  

corresponding to the subscripts of the nonlinear parameter monomials. Hence, the terms 

in (A1) are included in ( )),,(1 nppn jjHCE ωω L+− . The proposition is proved. ͚ 

 

Based on Proposition 3, many repetitive terms in the expression of the parametric 

characteristics of ),,( 1 nn jjH ωω L  in (16) can be cancelled since the parametric 

characteristics of ),,( 1, npn jjH ωω L are the same as those of ),,( 11 npn jjH ωω L+− . The following 

result can be further obtained directly from Propositions 2 and 3. 

 

Proposition 4.  (1) ))(())((
1

⋅⊆⋅⊗
= Zr

i

k

HCEHCE
i

, where 1
1

+−=∑
=

krZ
k

i
i , ri>1; 

(2) ))((
1

⋅⊆⊗
= Zqp

i

k

HCEC
ii

, where 1)(
1

+−+=∑
=

kqpZ
k

i
ii , pi+qi>1, and at least one pi>0 when k>1. 

Note that a ⊆ b denotes all the elements in a are elements in b. 

 

From Proposition 4, it is easy to determine which nonlinear parameters are included in a 

specific GFRF of any order and how a specific nonlinear parameter appears in different 
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orders of the GFRFs. For instance, consider a nonlinear parameter c2,3(.), which 

corresponds to the nonlinear term ∏∏
==

−−
5

3

2

1

)()(
i

i
i

i ktukty . According to Proposition 4(2), it 

follows Z=(2+3)-1+1=5. That is, this nonlinear term has only an independent contribution 

in 5
th

 order GFRF H5(.), and has no effect on the GFRFs less than the 5
th

 order. Note that 

for a convergent Volterra series, the magnitude of H5(.) may be very small. Hence, the 

effect of the nonlinear term ∏∏
==

−−
5

3

2

1

)()(
i

i
i

i ktukty  on the system behaviour is sure to be 

very small unless c2,3(.) is properly designed or the magnitude of the system input is very 

large.  

 

Based on Proposition 3, the expression for the parameter characteristics of ),,( 1 nn jjH ωω L  

in (16) can now be simplified as  
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   (18) 

Considering the symmetry of the last term of equation (18), only half of the sum is 

enough to include all the possible monomial combinations except the new term Cn0. 

Hence, (18) can be further written as 
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(19) 

where ⎣ ⎦⋅ means the integer part of (.). 

 

Equation (19) is more concise than equation (16), and it is easy to recursively determine 

( )),,( 1 nn jjHCE ωω L  using a computer program. Propositions 2-4 and equation (19) 

demonstrate which and how the nonlinear parameters appear in the GFRFs. These results 

provide not only a clear insight into the relationship between the nonlinear parameters of 

the system time domain model and the system GFRFs, but they also provide a useful tool 

for analysing the characteristics of the GFRFs.  Based on the results above, some further 

results can be obtained, especially for some special but frequently encountered cases, part 

of which will be studied in Section 4. 

 

3.3   Parameter characteristics of the output frequency response functions 
 

Based on the definition of the CE operator and the theoretical results achieved above, 

there exists a complex valued function vector with appropriate dimension ),,( 1 nn jjf ωω L , 

which is a complex function of njj ωω ,,1 L , such that 

( ) ),,(),,(),,( 111 nnnnnn jjfjjHCEjjH ωωωωωω LLL ⋅=                          (20) 

where ( )),,( 1 nn jjHCE ωω L is defined in (19).  

 

Substituting (20) into equation (2), yields 
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n
nnn jFjjHCEjY

1

1 )(),,()( ωωωω L                                  (21a) 

 

Equation (21a) provides an explicit expression of the output frequency response function 

of the NARX model in (6) under a general input, which is described as a polynomial 

form in terms of the model nonlinear parameters. A similar result was also obtained in 

Lang et al (2006) using a different method. The present study produces this expression 

with much more detail, and reveals the relationship between the model parameters and 

the output frequency response function more clearly. From equation (21a), the parametric 

characteristics of the output spectrum under a general input is obviously 

( )),,())(( 1
1

nn

N

n
jjHCEjYCE ωωω L

=
⊕=                                         (21b) 

 

Similarly, when the system (6) is subject to a multi-tone input, the output frequency 

response function can be obtained from (5) and (20) as  
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~
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n
nkkn FjjHCEjY
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),,()(
1

ωωωω L                                        (22) 

Obviously, the parametric characteristics of the output spectrum under a multi-tone input 

are the same as equation (21b).  

 

Equations (20)-(22) give the parameter characteristics of the system output frequency 

response functions, which show an analytical relationship between the system model 

parameters and the system frequency response functions, and provide an important 

insight into the frequency domain characteristics of nonlinear systems.  

 

4 Some further results 
 

Some characteristics of the GFRFs and the output spectrum can be revealed and derived 

easily by analyzing the parametric characteristics of the frequency response functions. 

Based on the theoretical results developed in the previous section, some further results 

are provided for a special case of the NARX model (6) in the following to demonstrate 
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potential applications of the theoretical results. More detailed studies on the application 

issues will be presented in other publications.  

 

For the NARX model (6), if there are only pure output nonlinearities in the model, then  

∑ ∑∑ ∏
== == =
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10,

11

)()()1()(),...,()( δ                (23) 

where
⎩
⎨
⎧ =

=
else,0

0,1
)(

m
mδ . For many engineering applications, this model can be used to 

represent a nonlinear feedback control system, and consequently has significance in the 

analysis and synthesis of nonlinear feedback control systems in practice (Jing et al 2006).   

 

4.1   The parameter characteristics of the GFRFs 
       

Noting that only the nonlinear parameters cp,0(.) for p>1 are nonzero in this case, the 

GFRFs of model (23) can be written from (8) as  

∑ ∑
= =

=
n

p

K

kk
npnppnn

p

jjHkkc
nL

jjH
2 1,

1,10,1

1

),,(),,(
)(

1
),,( ωωωω LLL                   (24) 

From equation (19), the parameter characteristics of the nth-order GFRF is 

( )
⎣ ⎦

( )( )),,(),,( 110,
2

2
1

01 npnp
p

n

nnn jjHCECCjjHCE ωωωω LL +−
=

+

⊗⊕⊕=                 (25) 

Equation (25) is just a special case of equation (19). In this case, taking the nonlinear 

parameters cp,0(.) for np ≤≤2 , then Proposition 5 follows. 

 

Proposition 5.  

                (1) i
nC )( 0 appears in Hm(.) from the mth order, where m=1+(n-1)i.  

                (2) If 00 =iC for ni ≤≤2 then 0),...,( 1 =nn jjH ωω for all nωω ,...,1 . The inverse of 

this point does not hold.  

 

PROOF OF PROPOSITION 5:  
 

(1) According to Proposition 2 or Proposition 4, the term i
nC )( 0 should be in the GFRF 

Hm(.), where m is computed as m+k=m+i-1=ni. Hence we have m= ni�i+1 =1+(n-1)i. 
 

(2) From (25), ( )),,( 1 nn jjHCE ωω L includes all the nonlinear parameters in 00 =iC for 

ni ≤≤2 , and no nonlinear parameters in 00 =iC for i>n are included in ( )),,( 1 nn jjHCE ωω L . 

Therefore, if 00 =iC for ni ≤≤2 then ( )),,( 1 nn jjHCE ωω L =0, which further follows from 

(20) that 0),...,( 1 =nn jjH ωω for all nωω ,...,1 . Note that (C30)
i
 appears in H1+2i(.) for 

i=1,2,3,� from Proposition 5 (1), which implies (C30)
i
 only contributes to the odd order 

of the GFRFs. Hence, even if certain even order GFRF is zero, (C30)
i
 can still be nonzero. 

Thus the inverse of the statement above is not true. This completes the proof. ͚ 

 

From Proposition 5, if the 2
nd

 and 3
rd

 degree nonlinear parameters are all zero C20=0 and 

C30=0, then H2(.)=0, and H3(.)=0. However, even if Cn0=0 (for n>3) but there are nonzero 
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terms in C20 or C30, the nth order GFRF Hn(.) may not be zero, because (C20)
i
 appears in 

H1+i(.) for i=1,2,3,�, and (C30)
i
 appears in H1+2i(.) for i=1,2,3,� from Proposition 5 (1). 

This implies that the nonlinear parameters in C20 and C30 take much greater roles in the 

GFRFs than other nonlinear parameters. That is, the higher the nonlinear degree of a 

particular model terms, the smaller the effect of the associated nonlinear parameters on 

the system becomes, since the higher degree (>3) nonlinear parameters only take a role in 

the higher order GFRFs. Therefore, in many cases Cp0 from p=1 to 3 are likely to form 

the basis of the GFRFs and the system output spectrum. Moreover, the results obtained 

above also demonstrate that different types of nonlinearity have different effects on the 

system output spectrum, and nonlinear terms of the same nonlinear degree may have a 

similar effect on the output spectrum. 

 

4.1.1   A special case 
       

In this subsection, another case of the NARX model (23) is considered to demonstrate 

that some characteristics of the GFRFs can be studied by only analysing the parametric 

characteristics of the GFRFs without the need to completely evaluate the GFRFs. This 

special case includes the two different situations of c2k,0(.)=0 or c2k+1,0(.)=0 (for 

k=1,2,3,�). Some significant conclusions regarding the characteristics of the GFRFs in 

these two situations can be reached. 

 

Proposition 6. For the GFRFs of nonlinear system (23), 

(1) If c2k,0(.)=0 and c2k+1,0(.) ≠ 0 for k=1,2,3,� in (23), then H2k(.)=0 and 0(.)12 ≠+kH . 

(2) If c2k,0(.) ≠ 0 and c2k+1,0(.)=0 for k=1,2,3,� in (23), then H2k(.) ≠ 0 and 0(.)12 ≠+kH . 

 
PROOF OF PROPOSITION 6: From the definition of the CE operator and the theoretical 

results above, to prove Hk(.)=0 or ≠ 0, we need only to prove CE(Hk(.))=0 or ≠ 0. 

According to equation (25), we have 

( ) ( )( )
( ) ( ) ( )(.)(.)(.)

),,(),,(

10,220,3120,20,2

21120,
2

0,2212

+−−

+−=

++++=

⊗⊕⊕=

kkkkk

kpkp
p

k

kkk

HCECHCECHCECC

jjHCECCjjHCE

oLoo

LL ωωωω
                (26a) 

( ) ( )( )
( ) ( ) ( )(.)(.)(.)

),,(),,(

10,1120,320,20,12

121220,
2

1

0,1212112

++−+

+−+=

+

+++

⊗++++=

⊗⊕⊕=

kkkkk

kpkp
p

k

kkk

HCECHCECHCECC

jjHCECCjjHCE

Loo

LL ωωωω
           (26b) 

 

(1)  If c2k,0(.)=0 for k=1,2,3,� in (23), then equation (26a) follows 
( ) 0),,( 0,2212 == CjjHCE ωω L  

( ) ( ) ( ) ( )(.)(.)(.)),,( 10,420,5220,3212 +′′−− +++= kkkkkk HCECHCECHCECjjHCE oLooL ωω      (27) 

where k′ is the largest odd number less than or equal to k. Note that 2k-2, 2k-4, �, k′ +1 

are all even numbers. Hence, from the recursive calculations of (27), it can be shown that  

( ) 0),,( 212 =kk jjHCE ωω L  for all k=1,2,3,� Similarly, equation (26b) follows 

( ) ( ) ( )(.)(.)),,( 0,120,30,1212112 kkkkkk HCECHCECCjjHCE ′′−+++ ⊗+++= LoL ωω  

where k′ is the largest odd number less than or equal to k+1. Note that C2k+1,0 ≠ 0, thus 

( ) 0),,( 12112 ≠++ kk jjHCE ωω L . This proves the first conclusion of the proposition.  
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(2)  If c2k+1,0(.)=0 for k=1,2,3,� in (23), then equation (26a) follows 
( ) ( ) ( ) ( )(.)(.)(.)),,( 10,320,4120,20,2212 +′′−− ++++= kkkkkkk HCECHCECHCECCjjHCE oLooL ωω  

where k′ is the largest even number less than or equal to k. Note that C2k,0 ≠ 0, thus 

( ) 0),,( 212 ≠kk jjHCE ωω L . Similarly, equation (26b) follows 

      ( ) 0),,( 0,2212 ≠= CjjHCE ωω L  

( ) ( ) ( ) ( )(.)(.)(.)),,( 0,220,420,212112 kkkkkk HCECHCECHCECjjHCE ′′−++ ⊗+++= LooL ωω   (28) 

where k′ is the largest even number less than or equal to k+1. Hence, from the recursive 

calculations of (28), it can be shown that  ( ) 0),,( 212 ≠kk jjHCE ωω L  for all k=1,2,3,� This 

completes the proof. ͚ 

 

Proposition 6 shows clearly that some characteristics of the GFRFs can be studied easily 

through the parametric characteristics of the corresponding GFRFs, and this provides a 

new and effective approach to the analysis of nonlinear systems in the frequency domain.  

Note that each GFRF defines the output spectrum of nonlinear systems over a 

corresponding output frequency range (Lang and Billings 1996). Thus Hk(.)=0 (for some 

k) implies that there are no output frequency spectra over the frequency range 

corresponding to Hk(.). Therefore, Proposition 6 implies that, if c2k,0(.) ≠ 0 and c2k+1,0(.)=0 

for k=1,2,3,� in (23), then the output frequency response of the system is available over 

a wider frequency range than in the case where c2k,0(.)=0 and c2k+1,0(.) ≠ 0 for k=1,2,3,� 

in (23). This comment can be verified by the following example.  

 

 

Example 3. Consider a simple nonlinear system described as 
32 )1()1()1(3.0)2(5.0)1(3.0)( −+−+−+−+−= tbytaytutytyty  

which can be written in the form (23) with ,3.0)1(,5.0)2(,3.0)1( 1,00,10,1 === ccc  

bcac == )1,1,1(,)1,1( 0,30,2  else 0)(, =⋅qpc , and K=2, M=3. There are only pure output 

nonlinearities in this model. Let u(t)=10sin(50t). Consider two cases: (1) c2k,0(.)=0 and 

c2k+1,0(.) ≠ 0 , i.e., a=0 and b=-0.005; (2) c2k,0(.) ≠ 0 and c2k+1,0(.)=0, i.e., a=-0.005 and b=0. 

In the two cases, the system output spectrum can be obtained by applying the FFT to the 

system time domain output. The results are shown in Figure 1 and 2. It can be seen from 

the two figures that, the output spectrum for the same input is quite different. As expected 

when a=-0.005 and b=0, there are more output frequency components (e.g., at 

frequencies 0, 100, 200, 300,�,) than in the case where a=0 and b=-0.005.  
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Figure 1.  System output spectrum when a=0 and b=-0.005 
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Figure 2.  System output spectrum when a=-0.005 and b=0 
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4.2   Determination of the output frequency response function 
 

From equations (21) and (22), the output spectrum of nonlinear system (23) can 

uniformly be rewritten as 

( ) )(�),,()(

)()(

1

1

ωωωω

ωω

jFjjHCEjY

jYjY

nnnn

N

n
n

⋅=

=∑
=

L

                                   (29) 

In (29), ( )),,( 1 nn jjHCE ωω L  can be computed according to (25), and )(� ωjFn  can be 

determined using an effective data analysis based method proposed in Lang et al. (2006). 

Therefore, the output frequency response function of system (23) can be obtained without 

a large amount of recursive calculations of the GFRFs and the corresponding complicated 

integral terms in (2) or (5). Further studies will investigate employing the detailed 

information about the structure of equation (29) provided by the analysis of the parameter 

characteristics of the system GFRFs to directly determine an accurate description for the 

system output frequency response function.  

 

5 Conclusions 
 

Several fundamental and important results relating to the parametric characteristics of the 

GFRFs and the output frequency response functions of nonlinear systems described by a 

NARX model have been derived in this paper. These results effectively reveal the 

relationship between the system model parameters in the time domain and the system 

frequency response functions, and provide for the first time a significant and novel 

insight into the frequency characteristics of nonlinear systems. Further theoretical results 

and practical algorithms for the analysis and synthesis of nonlinear systems in the 

frequency domain can be developed based on these new results. Further research will 

focus on the application of the parametric characteristics of nonlinear systems derived in 

the present study to investigate the analysis and design of nonlinear systems in the 

frequency domain. The analysis will investigate the effects of the system model 

parameters on the GFRFs and the output spectrum to reveal how the model parameters 

affect the system behavior in the frequency domain. Designs of optimal values for some 

of the model parameters to achieve a desired system output frequency response will also 

be studied in later publications.  

 

Acknowledgement 
 

The authors gratefully acknowledge the support of the Engineering and Physical Science 

Research Council, UK and the EPSRC-Hutchison Whampoa Dorothy Hodgkin 

Postgraduate Award, for this work. 

 

References 
 

J.S. Bendat, Nonlinear System Analysis and Identification from Random Data, New York: 

Wiley, 1990.  



 20

S.A. Billings and Z.Q. Lang, A bound of the magnitude characteristics of nonlinear 

output frequency response functions, International Journal of Control, Part 1 Vol 65, 

No. 2, 309-328 and Part 2, Vol 65, No. 3, 365-384, 1996 

S.A. Billings and J.C. Peyton-Jones, �Mapping nonlinear integro-differential equation 

into the frequency domain�, International Journal of Control, Vol 54, 863-879, 1990 

M.B. Brilliant, �Theory of the analysis of non-linear systems�, Technical Report 345, 

MIT, Research Laboratory of Electronics, Cambridge, Mass, Mar. 3, 1958. 

S. Chen, and S. A. Billings. �Representation of non-linear systems: the NARMAX 

model�. International Journal of Control 49, 1012-1032. 1989 

L.O. Chua and C.Y. Ng, �Frequency domain analysis of nonlinear systems: general 

theory�, IEE Journal of Electronic Circuits and Systems, 3(4), pp. 165̢185, 1979. 

D.A. George, �Continuous nonlinear systems�, Technical Report 355, MIT Research 

Laboratory of Electronics, Cambridge, Mass. Jul. 24, 1959. 

D. Graham and D. McRuer,  Analysis of nonlinear control systems. New York; London : 

Wiley, 1961.  

X.J. Jing, Z.Q. Lang and S.A. Billings. �Frequency Domain Analysis Based Nonlinear 

Feedback Control for Suppressing Periodic Disturbance�. The 6th World Congress 

on Intelligent Control and Automation, June 21-23, China, 2006 

K.I. Kim and E.J. Powers, �A digital method of modelling quadratically nonlinear 

systems with a general random input�, IEEE Transactions on Acoustic, Speech and 

Signal Processing, 36, pp. 1758̢1769, 1988. 

Z.Q. Lang, and S. A. Billings. �Output frequency characteristics of nonlinear systems�. 

International Journal of Control, Vol. 64, 1049-1067, 1996  

Z.Q. Lang, and S. A. Billings. �Output frequencies of nonlinear systems�. International 

Journal of Control, Vol. 67, No. 5, 713-730, 1997  

Z.Q. Lang, and S.A. Billings, �Energy transfer properties of nonlinear systems in the 

frequency domain�, International Journal of Control, Vol 78, 345-362, 2005 

Z.Q. Lang, S.A. Billings, R. Yue and J. Li, �Output frequency response functions of 

nonlinear Volterra systems�, Research Report No 902, Department of ACSE, 

University of Sheffield, 2006. (A full version has been provisionally accepted by 

Automatica)  

S.W. Nam and E.J. Powers, �Application of higher-order spectral analysis to cubically 

nonlinear-system identification�, IEEE Transactions on Signal Processing, 42(7), pp. 

1746̢1765, Jul. 1994. 

R.K. Pearson, Discrete time dynamic models, Oxford University Press,1994. 

J.C. Peyton Jones and S.A. Billings. �Recursive algorithm for computing the frequency 

response of a class of nonlinear difference equation models�. International Journal 

of Control, Vol. 50, No. 5, 1925-1940. 1989 

W.J. Rugh, Nonlinear System Theory: the Volterra/Wiener Approach, Baltimore, 

Maryland, U.S.A.: Johns Hopkins University Press, 1981.  

S. Sastry, Nonlinear system : analysis, stability, and control. New York : Springer, 1999 

A.K. Swain and S.A. Billings. �Generalized frequency response function matrix for 

MIMO nonlinear systems�. International Journal of Control. Vol. 74. No. 8, 829-

844, 2001 

R. Yue, S. A. Billings and Z.-Q. Lang, �An investigation into the characteristics of non-

linear frequency response functions. Part 1: Understanding the higher dimensional 



 21

frequency spaces�. International Journal of Control, Vol. 78, No. 13, 1031̢1044, 

2005; and �Part 2 New analysis methods based on symbolic expansions and 

graphical techniques�, International Journal of Control, Vol 78, 1130-1149, 2005 

H. Zhang and S.A. Billings, �Gain bounds of higher order nonlinear transfer functions�, 

International Journal of Control, Vol 64, No 4, 767-773, 1996 

H. Zhang, S.A. Billings, and Q.M. Zhu, �Frequency response functions for nonlinear 

rational models�. International Journal of Control, 61, 1073-1097, 1995 

 
 


