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Abstract: Nonlinear Output Frequency Response Functions (NOFRFs) are a new
concept proposed by the authors for the analysis of nonlinear systems in the frequency
domain. The present study is concerned with investigating inherent relationships between
the NOFRFs of two masses in nonlinear MDOF systems. The results reveal very
important properties of a class of nonlinear systems, and have considerable significance

for the application of the NOFRF concept in engineering practices.

1 Introduction

Linear systems, which have been widely studied by practitioners in many different fields,
have provided a basis for the development of the majority of control system synthesis,
mechanical system analysis and design, and signal processing methods. However, there
are many qualitative behaviors in engineering, such as the generation of harmonics and
inter-modulations, which cannot be produced by linear models [1]. In these cases,
nonlinear models are needed to describe the system, and nonlinear system analysis

methods have to be applied to investigate the system dynamics.

The Volterra series approach [2] is a powerful tool for the analysis of nonlinear systems,
which extends the familiar concept of the convolution integral for linear systems to a
series of multi-dimensional convolution integrals. The Fourier transforms of the Volterra
kernels are called Generalised Frequency Response Functions (GFRFs) [3], and can be
considered as extensions of the linear Frequency Response Function (FRF) to the
nonlinear case. If a differential equation or discrete-time model is available for a
nonlinear system, the GFRFs can be determined using the algorithm in [4]~[6]. However,
the GFRFs are much more complicated than the FRF. GFRFs are multidimensional

functions [7][8], and can be difficult to measure, display and interpret in practice.



Recently, the novel concept known as Nonlinear Output Frequency Response Functions
(NOFRFs) was proposed by the authors [9]. The concept can be considered to be an
alternative extension of the FRF to the nonlinear case. NOFRFs are one dimensional
functions of frequency, which allow the analysis of nonlinear systems in the frequency
domain to be implemented in a manner similar to the analysis of linear systems and
which provide great insight into the mechanisms which dominate important nonlinear

behaviours.

Based on the GFRFs for MIMO system achieved in [2][10], most recently, the authors
also extended the concept of NOFRFs for the MIMO Volterra nonlinear systems [11].
Although great efforts have been made to analyze nonlinear systems in the frequency
domain, most studies, including both numerical and experimental studies, have tended to

focus on nonlinear systems with a single degree of freedom.

In engineering practice, many mechanical and structural systems require more than one
coordinates to describe the system behaviours. This implies a MDOF model is often
needed to describe such systems. In addition, these systems may also behave nonlinearly
due to nonlinear characteristics of some components within the systems. For example, a
beam with breathing cracks behaves nonlinearly only because of the cracked elements
inside the beam [12]. These nonlinear MDOF systems can be regarded as locally
nonlinear MDOF systems. The present study is concerned with derivation of the inherent
relationships between the NOFRFs of any two masses in locally nonlinear MDOF
systems. The results reveal the important properties of nonlinear MDOF systems and
have considerable significance for the application of the NOFRF concept in engineering
practices.

2. Nonlinear Output Frequency Response Function

2.1 Nonlinear Output Frequency Response Functions under General Input

The definition of NOFRFs is based on the Volterra series theory of nonlinear systems.
The Volterra series extends the well-known convolution integral description for linear
systems to a series of multi-dimensional convolution integrals, which can be used to

represent a wide class of nonlinear systems [3].

Consider the class of nonlinear systems which are stable at zero equilibrium and which

can be described in the neighbourhood of the equilibrium by the Volterra series

y(t):Zf;mj: hn(rl,...,rn)f[u(t—ri)dz'i (1)



where y(t) and u(t) are the output and input of the system, h.(z,,...,7,) is the nth order
Volterra kernel, and N denotes the maximum order of the system nonlinearity. Lang and
Billings [3] derived an expression for the output frequency response of this class of

nonlinear systems to a general input. The result is

Y(ja))zzN:Yn(ja)) for Vo

n=1
n (2)
= (;{z\)/nﬁ_l j H“(ja’l""’ja’n)HU(jwi)danw

..... +0,=0 i=1

Yo(jo)

This expression reveals how nonlinear mechanisms operate on the input spectra to
produce the system output frequency response. In (2), Y(jw) is the spectrum of the

system output, Y,(j®) represents the nth order output frequency response of the system,
H,.(jo,,.., jo,) = ff h,(z,,..,7, )€ @t remidr dr, 3)
is the nth order Generalised Frequency Response Function (GFRF) [3], and
j Ho(j @) jo)[ [U (j 0 )do,
i=1

denotes the integration of H,(ja,,..., j®, )HU (jw,) over the n-dimensional hyper-plane
i=l

w, +---+ o, =w . Equation (2) is a natural extension of the well-known linear relationship

Y(jo)=H(jo)U(jw) , where H(jw) is the frequency response function, to the

nonlinear case.

For linear systems, the possible output frequencies are the same as the frequencies in the
input. For nonlinear systems described by equation (1), however, the relationship between
the input and output frequencies is more complicated. Given the frequency range of an
input, the output frequencies of system (1) can be determined using the explicit expression

derived by Lang and Billings in [3].

Based on the above results for the output frequency response of nonlinear systems, a new
concept known as the Nonlinear Output Frequency Response Function (NOFRF) was
recently introduced by Lang and Billings [9]. The NOFREF is defined as

[ Hilon o[ JU(i@)do,,
i=1

Gn(J(O) — O+, t O =0 - i (4)
[ TIvGexs,,

O+t Oq=0 1=1

under the condition that

Uio= [ T[UGie)de,, =0 (5)

@+t o= 1=1



Notice that G (jw) is valid over the frequency range of U (jw), which can be

determined using the algorithm in [3].

By introducing the NOFRFs G, (jw), n=1,---N, equation (2) can be written as
N N
Y(jo)=Y Y (jo) =Y .G,(jo)U,(jo) (6)
n=1 n=1

which is similar to the description of the output frequency response for linear systems.
The NOFRFs reflect a combined contribution of the system and the input to the system
output frequency response behaviour. It can be seen from equation (4) that G,(j®)

depends not only on H, (n=1,...,N) but also on the input U (jw) . For a nonlinear system,
the dynamical properties are determined by the GFRFs H (n= 1,...,N). However, from
equation (3) it can be seen that the GFRF is multidimensional [7][8], which can make the
GFRFs difficult to measure, display and interpret in practice. According to equation (4),
the NOFRF G, (jw) is a weighted sum of H (j®,,..., j®,) over @, +:--+ o, =® with
the weights depending on the test input. Therefore G,(j®) can be used as an alternative
representation of the dynamical properties described by H,. The most important
property of the NOFRF G, () is that it is one dimensional, and thus allows the analysis
of nonlinear systems to be implemented in a convenient manner similar to the analysis of
linear systems. Moreover, there is an effective algorithm [9] available which allows the

estimation of the NOFRFs to be implemented directly using system input output data.

2.2 Nonlinear Output Frequency Response Functions under Harmonic Inputs

When system (1) is subject to a harmonic input
u(t) = Acos(wet + f) (7)

Lang and Billings [3] showed that equation (1) can be expressed as

O+ F Oy =0

Y(Jw)ZiYn(ia)FiLn 2 H o jo )N o) Aja,) | (8
- = 2

where
| Aleisign(k)ﬂ if N E{ka),:,k=i1},i =1,---,n

0 otherwise

A(jwkg:{ ©)

Define the frequency components of the nth order output of the system as Q,, then
according to equation (8), the frequency components in the system output can be

expressed as

Q=|]Q, (10)

N
n=



where Q) is determined by the set of frequencies
0=0 ++o |0, =toi=1-n| (11)
From equation (11), it is known that if all @, ,---,®, are taken as — @, then @ =-nw; .
If k of these are taken as @, then @ =(—n+2K)®. . The maximal K is n. Therefore the
possible frequency components of Y,(jw) are
Q. ={(-n+2k)@.,k=0,1,---,n} (12)
Moreover, it is easy to deduce that
Q=LNJQn={ka)F,k=—N,---,—1,0,1,---,N} (13)
n=1
Equation (13) explains why superharmonic components are generated when a nonlinear
system is subjected to a harmonic excitation. In the following, only those components

with positive frequencies will be considered.

The NOFRFs defined in equation (4) can be extended to the case of harmonic inputs as

1 : : : ,
o 2Ha(e s jo Ao Alje)

[Uk] +-- '+(,()kn =W

G, (jo)=

n=1,.,N (14)

1 . .
o ZA(Ja)kl)"'A(Ja)kn)
under the condition that
. 1 . .
A.(Jw)zz_n D Ao ) Ajo, ) #0 (15)

Obviously, G (jw) is only valid over Q defined by equation (12). Consequently, the
output spectrum Y( j®) of nonlinear systems under a harmonic input can be expressed as

N N
Y(jo)= Y, (jo) =3 G, (jo) A(jw) (16)
n=l1 n=1
When k of the n frequencies of @, ,---,@, are taken as @; and the remainders are as
— ¢ , substituting equation (9) into equation (15) yields,
AN+ 2K )= | AP €729 (1)

Thus G;' (jw) becomes
K n-k
1 : , , . .
i Hn(0p jor = jop o) | Al @7
G (j(-n+2k)w,) =

L| A|n el'(*n'*'Zk)ﬂ
2n
k n-k
:Hn(ja)Fv"'aja)Fv_ja)Fv"'a_ja)F) (18)



where H_(j,,..., j®,) is assumed to be a symmetric function. Therefore, in this case,
G!'(jw) over the nth order output frequency range QnZ{(—n+2k)a)F,k =O,1,-~-,n} is
equal to the GFRFH (ja@,,..., j®,) evaluated atm, =---= o, = o, @,
k=0,---,n.

:---:a)n:—wF,

3. Analysis of Nonlinear MDOF Systems Using the NOFRFs

3.1 Locally Nonlinear MDOF System

e T A

Figure 1, a multi-degree freedom oscillator

The considered multi-degree-of-freedom oscillator is shown as Figure 1, the input force
is added on the Jth mass.

If all springs and damping are linear, then the governing motion equation of the MDOF

oscillator in Figure 1 can be written as

MX+Cx+ Kx = F(t) (19)
where
m 0
0
uo| 0 ™
0O o0 m,
is the system mass matrix, and
[c,+c, -c, 0 0 | 'k +k, -k, 0 0 |
-C, C,+C, -C, : -k, k,+k; -k :
C= 0 ' ’ K= 0 K ’ 0
: -C., C,t+C —C - kn—l kn—l + kn - kn
0 0 -C, C, | 0 0 -k, K.,

are the system damping and stiffness matrix respectively.

displacement vector, and

J-1

n-J

/_/H /_/H B
F(t) = (05"'505 f (t),O,,O)
is the external force vector acting on the oscillator.




Equation (19) is the basis of the modal analysis method, which is a well-established
approach for determining dynamic characteristics of engineering structures. In the linear

case, the displacements X (t) (i =1,---,n) can be expressed as
X ®=["h,t-7)f(r)dr (20)

where h;,(t) (i=1,---,n) are the impulse response functions that are determined by

equation (19), and the Fourier transform of h,, (t) is the well-known FRF.

()
Assuming the component between the Lth and (L-1)th masses has a nonlinear stiffness
and damping, and the restoring forces S ¢(A) and S, (A) are the polynomial functions

of the deformation A and its derivative A respectively, i.e.,
P - . P ..
SLS(A):ZriAI ) SLD(A)zz\NiAI (21
= =

where P is the degree of the polynomial. Without loss of generality, assume L #1,n and
L<J, k_=r, and ¢, =w,. Then the motion of the oscillator in Figure 1 is determined
by equations (22)~(28) in the following.

For the masses that are not connected to the Lth spring, the governing motion equations
are
mX, +(C, +C,)X —C, X, + (K, +k,)x —Kk,x, =0 (22)
M +(C +C, )% —C X —Cy X, +(K + k)X —kix_ =K%, =0
(i=L-1,L,J)(23)
m, XJ + (CJ + CJ+1)XJ —C, XJ—I - CJ+1XJ+1 + (kJ + kJ+1)XJ - kJ X5~ kJ+1XJ+1 = f ® (@4

rnnxn + Can - Can—l + ann - knxn—l =0 (25)
For the mass that is connected to the left of the Lth spring, the governing motion equation
is
m_, XL—I + (kL—l + kL )XL—I - kL—l X2~ kL X+ (CL—I +C, )XL—I
. .~ e N (26)
—C X, —C X+ Zri (XL—l - XL)I + Z\Ni (XL—l - Xl_)I =0
=) i=2
For the mass that is connected to the right of the Lth spring, the governing motion
equation is
my X|_ + (kL + kL+1)XL - kL X1~ kL+1 Xoat (CL + CL+1)XL

v v C i > . N (27)
—C X —C X — zri (XL—I - XL) - Z\Ni (XL—l - XL) =0
i—2 =)
Denote
NonF :ZVVi(XL—l _XL)I +Zri(XL—1 _XL)I (28)
i=2 i=2

NF=(0 --- 0 NonF —NonF 0 --- 0) (29)

Then, equation (22)~(27) can be rewritten in a matrix form as
MX+ Cx+ Kx=—-NF + F(t) (30)



The system described by equations (28)~(30) is a typical locally nonlinear MDOF system.
The Lth nonlinear component can lead the whole system to behave nonlinearly. In this
case, the Volterra series can be used to describe the relationships between the

displacements X, (t) (i =1,---,n) and the input force f(t) as below
N w j
x®O=>[ [ h @[] ft-7)dr, (31)
j=1 i=1

under quite general conditions [3]. In equation (31), h,;(7,...,7;), (i=1--,n,
j =L---,N), represents the jth order Volterra kernel for the relationship between f(t) and
the displacement of m. The Fourier Transform of h, ; (7,,...,7;) is the corresponding
GFRF H ; (j®,,..., jo;) (i=L---,n, j=1--,N).

3.2 GFRFs of the Locally Nonlinear MDOF System

From equations (22)~(27), the GFRFs H ;,(j@,,..., jo;), (i=1,---,n, j=1,---,N) can
be determined using the harmonic probing method [5][6].

First consider the input f (1) is of a single harmonic
f(t)=e" (32)
Substituting (30) and
x () =H,(jo)e" (i=1--,n)(33)
into equations (22)~(27) and extracting the coefficients of €/ yields, for the first and nth
masses,
(-mae? + i +c)o+(k +k)H, (i0) - (ico+k H o, (j@) =0 (34)
(Mm@ + jca@+k H o, (10) = (jc,@+ K H oy (J0) =0 (35)
for other masses excluding the Jth mass
(_ ma)z + (¢ +¢, o+ k +k,, )H(i,l)(ja))_(jcia)+ k; )H(i—l,l)(ja))
~(ic,@+k, H, (jo) =0 (i#1,3,n) (36)
for the Jth mass
(_ mja)z +](c; +¢,, o+ kK, +k;, )H(J,l)(ja)) _(jCJa)+ K, )H(J—l,l)(ja))

_(jCJ+la)+kJ+1)H(J+1,1)(ja)):1 (37)
Equations (34)~(37) can be written in a matrix form as

J-1 n-J
(-M? + jCo+K)H,(jo)=(0--0 1 0--0) (38)
where
H(jo)=(Hoy(jo) - He, (i) (39)
From equation (39), it is known that
H,(jo)=(-Mo® + jCo+K) " (0--0 1 0--0) (40)



Denote
O(jow)=-Ma’ + jCo+K (41)
and
Q(1,1) (jo) - Q(l,n) (jo)
O (jow) = : : (42)
Q(n,l) (jo) - Q(n,n) (jo)
It is obtained from equations (40)~(42) that
H(i,l)(ja)):Q(i,J)(ja)) (i=1---,n) (43)
Thus, for any two consecutive masses, the relationship between the first order GFRFs can
be expressed as

H(i,l)(ja)) _ Q(i,J)(ja)) _

H(i+1,1)(j60) Q(i+l,.])(ja))
The above procedure used to analyze the relationships between the first order GFRFs can
be extended to investigate the relationship between the N th order GFRFs with N >2.

To achieve this, consider the input

A (w) (i=1---,n=1) (44)

f(t)= ZN:e"“k‘ (45)

Substituting (45) and

X (1) = H(i,l)(jwl)ejwlt Tt H(i,1)(ja’ﬁ)ejwNI +ee _
j(@+ o)t (I :1:"':n) (46)

+NIH o (Jop. jog)e oo

i(o+-+oy)t

into equations (22)~(27) and extracting the coefficients of e yield
—M (@, o)+ (6 +C) (@, ++ o)+ (K +K)H 5 (f0,, Jog)

. . . (47)
_(ch(a)l +"'+a)ﬁ)+kz)H(zﬁ)(Ja’p“'aJa)ﬁ):o
Mm@+ + ) + jey (@ ++ o) + K H 5 (0,0, jog)
. . . ’ (48)
—(an(C!)l +“'+a)ﬁ)+kn)H(n_LN)(Ja)I:"': JQ)N):O
(—m(w1 +"'+a’ﬁ)2 +J(G +C, )@+ +o5)+k +ki+1)H(i’N)(ja)1a"'a jog)
_(Jcl(a)l +“.+a)ﬁ)+ki )H(i_ljﬁ)(ja)l’.“7 Ja)ﬁ)
~(jc (e +--~+a)ﬂ)+kM)H(MN)(ja)I,--',ja)ﬁ):O (i#1,L—1,L,n) (49)

(M@ + -+ o) + (e, +e )@+ ag) vk vk H (@ jag)

—(j(:L_l(a)1 +~-~+a)ﬁ)+kL_l)H(L_ZN)(jcol,---, jog)

~(jcc (@, +-+ o) +k H 5 (J@ - jog) + A (joy, -, jog) =0 (50)
(—mL(a)l + 4 o5)’ + e+ )0+ + o )+ K +kL+1)H jo,, -, joo)

(L,N)( N

_(JCL(COI +.”+a)ﬁ)+kL)H(L_l’N)(ja)la'”5 Ja)ﬁ)

10



~(jepn(@ + -+ o)tk H g (o jog) - A (o, jog) =0 (51)

In equations (50) and (51), A"N"l"‘(ja)1 ,~+, o) represents the extra terms introduced by

P _ P _ _
NonF = ZWi (X, —X) + Zri (X, —X_)' for the N th order GFRFs, for example, for

the seconzzorder GFRFs, -
A (o, jo,) = (~Wom, +1, Y H oy (10)H oy (j05)
+H(L,l)(J'wl)H(L,l)(J'wz)—H(L_l,l)(le)H(L,l)(jwz)—H(L_l,l)(jwz)H(L,U(J'a)l)) G2
Denote
Hi(ion . jop) =H g (jon o) - Hog (oo  (53)
and

!

N

L-2 n-L
AN(Ja)l’a.]wﬁ): 0---0 Al_ﬁ_l,L(Ja)laajaF) _ALN_I’L(JQ)D’JCUN) OO:| (54)

then equations (47)~(51) can be written in a matrix form as

so that
HN(JCOIJJ J%)ZG)_I(J(G)I ++wﬁ))Aﬁ(Ja)la’ Ja)ﬁ) (56)

Therefore, for each mass, the N th order GFRF can be calculated as
H(i,ﬁ)(ja)la'”’ja)ﬁ)

A (o, joy)

_ - . TN .Q . Tt N 12 ) N

Qi@ +++09).Q (i@, wp{_ AL G

(izlv"'an) (57)

Consequently, for two consecutive masses, the N th order GFRFs have the following
relationships

H(iN)(ja)l"":ja)N) _ Quili(o++wy)-Q  (J(& ++wy))
HopUon s jog)  Qu (i@ +-+0g)-Qu  (J(o +-+oy))

=Q"(j(o + o)) =A@+ +og)  (=1--,n=-1) (58)

Equations (44) and (58) give a comprehensive description for the relationships between

the GFRFs of any two consecutive masses for the nonlinear MDOF system (30).

In addition, denote A3 (jo, +--+ joog ) =0, (N =1,---,N), then for the first two masses,
from equations (34) and (47), it can be known that

11



A2 (0 ++ o)
~ H(m)(ja)l,---,ja)ﬁ)_ ic) (@, +-+wg) +K,
H(m)(ja)l,---,ja)ﬁ)_ j((l—/l%l(a)l+-~~+a)ﬁ))cl+cz)(a)l+~-+a)ﬁ)
+(1—/1%1(a)1 +~--+coﬁ))kl+k2—ml(a)1 +otog)
(N=1---,N) (59
Starting with equation (59), and iteratively using equations (36) and (49) from the 1%

mass until i=(L-2), it can be deduce that, for the masses on the left of the nonlinear spring
excluding the (L-1)th mass, the following relationships exist for the system GFRFs
/1%”((01 +et og)

H(i,N)(ja)l""’ja)N) _ jCi+1(a)l+"'+a)ﬁ)+ki+1
H., xUos s joy) - j((l—/liﬁ’l’i (@, +-+ coﬁ))ci Jrcm)(co1 +ot @)

Jr(l—/iiﬁ‘l’i (o, +---+a)ﬁ))ki +k, —m(@ +-+og)’

(1<i<L-2, N=1,---,N) (60)

Denote A% (@, +---+wy) =1, (N=1---,N), ¢, =0 and k_,, =0. Then, for the last
two masses, from equations (35) and (48) it is can be deduced that
H(nﬂﬁ)(ja)la“"ja)ﬁ) 3 1

H(m,ﬁ)(ja)la"'a Ja)N) - /1nN—1,n(601 +...+a)ﬁ)

Nl _
A+t og) =

jCy(@ +-+ o)k,

[j((l_ﬂ’;:rl,n(wl+"'+wN)kn+1+Canl+"'+a)ﬁ) ]

+(1—/1”N“’"(a)1 +---+a)N))kn+1 +k, —m (@ +--+ )’

(N=1--,N) (61)

Starting with equation (61), and iteratively using equations (36) and (49) from nth mass
until i=(J+1), it can be deduced that, for the masses on the right of the Jth mass, the
following relationships can be established for the system GFRFs

H(iﬂﬁ)(ja)l""’jwﬁ) _ 1

Ho (o jog) A (o ++og)

- )
A @ 4t o) =

jc (o +-+wg)+k

[j((l_/mlji(a’l+"'+C"N))C|+1+C|)(a’1+"'+CUN) :l

+(1—/1iﬁ“°i(a)1 +~-~+a)ﬁ))k. +k —m (o, +-+ay)’

i+1

(J+1<i<n, N=1,--,N)(62)
For the masses between the (L-1)th and Jth masses, (L <i < J), the relationships between

the GFRFs can also be described as equation (62), but a little modifications are required
for )77 (@) and 25" (@ +-+ @), (N =1+, N).

Denote

12



ZJ,J—I(Q)) jCJa)+ kJ
1 = . + +

I__ m, o’ + J((l - /11J b (a)))CJ+1 +C, )(0 + (1 - //Li] b (a)))k.m + kJ J
Then, from equation (37), it can be known that, when N=landi=J , the relationship

(63)

given in (62) needs to be modified as

H i —3-
//Li],Jfl(a)): (J,l)(Ja)) _ Jilﬁ :ﬂ,i]’\] 1(0)) 1+ : 1 1 : (64)
Hoap(lo) 477 (o) je,o+k; Hiyy(jo)

Denote
jc (o, +-+og)+k,

[j((l—/lk‘*“(a)l+---+a)N))cL+1+CL)(a)1+---+a)N) }

L+1,L
+(1—/1N+1 (o, +--~+a)ﬁ))kL+1 +k, —m (@, +-+ o)’

—LL-1
Ay (@ ++og)= (65)

Then, for the Lth mass, using equation (51), it can be known that, when N=>2, the
relationships given in (62) need to be modified as
H(L,N)(ja)l’“.’ja)ﬁ) 1

H(L_l,ﬂ)(jwl,..., ja)ﬁ) - ﬂ’Lﬁ—l,L(m1 +...+wﬁ)

SLL- A (o,
:ﬂ%’Ll(a)l_F..._{_wN) 1+ - 1 N (Ja)l Ja)ﬂ)
jc (@ + -+ o) +k, H(L—I,N)(Ja)lﬂ"'ﬂjwﬁ)

L,L-1 _
ZN (a)1+"+a)ﬁ)—

(N>2)(66)

Under other occasions, if i=J, N = 1, and if i=L, N=1 , for the masses (L<i<J), the
relationships between the GFRFs can be expressed as

H(i’ﬁ)(jwla“"ja)ﬁ) B 1

Ho (o jog) A5 (o ++ og)

" -
Ao+t og) =

jic(o +-+wg)+k

!j((lz‘N*“(wl+---+wN>)ci+1+cin1+--~+wN) }

+(l—ﬁfﬁ“’i(a)1 +~--+a)ﬁ))k. +k —m (o, ++ag)’

i+1

(L<i<J, N=1--,N,andifi=J, N#1,and ifi=L, N =1) (67)
From a different respective, equations (59)~(67) give a comprehensive description for the
relationships between the GFRFs of any two consecutive masses for the nonlinear MDOF
system (30).

3.3 NOFRFs of the Locally Nonlinear MDOF System

According to the definition of NOFRF in equation (4), the N th order NOFRF of the ith

mass can be expressed as

13



(1<N<N, 1<i<n) (68)
where F(j®) is the Fourier transform of f (t).

According to equation (58), for any N22, equation (68) can be rewritten as

- . H H . i
J‘ Q|,|+1(J(a)l +...+%))H(i+lﬂ)(10)l,..., JQ)N)H F(qu)ddﬁw

. O+, FOG=0 g=1
jo) = _
[ TIFGie)doy,

=Qi’i+l(ja’)G(i+1,ﬁ)(jC‘)) (2 <N< N, 1<i<n-1) (69)

Then for two consecutive masses, the NOFRFs have the following relationships

G (jw ., . —
u,N>(J. ) :Q"'”(ja)):l%”(a)) (2<N<N, I<i<n-1) (70)
G(i+1,ﬂ)(Ja))

Similarly, according to equation (44), for N=1, equation (68) can be rewritten as

Gy (i0) = 4" (@), (j@) (I<i<n-1) (71)

G

(i,N) (

therefore
G(i,l)(ja)) _ Q(i,J)(ja)) _
G(i+1,1)(j0)) Q(i+1,3)(j0))
Equations (70) and (72) give a comprehensive description for the relationships between
the NOFRFs of two consecutive masses of the nonlinear MDOF system (30).

A (w) (1<i<n-1) (72)

The relationships between the NOFRFs of two consecutive masses can also be derived
from equations (59)~(67).
From equation (59), it can be known that

G(I’N)(Ja)) _ JCza)+ k2

G, (j®)  (-ma’+(1-22 @)k + jco)+k, + jc,0)

=42 (@) (1<N<N) (73)

Starting with equation (73), and iteratively using equations (60) and (70) from the 1%

mass until i=(L-2), it can be deduced that, for the masses on the left of the nonlinear

spring excluding the (L-1)th mass, the following relationships exists for the NOFRFs.

G(iﬁ)(ja)) _ je,o+k,

Gum (i@ |-mae’ +(1-27" (jo)[jco+k )+ jc.0+k,,|
(1<i<L-2, N=1---,N) (74)

A ()=

14



Similarly, for the masses on at the right of the Jth mass, the following relationship about
the NOFRFs can be established using equations (62) and (68).
1 GnUo) jco+k,
i (jo) G (i@ [Fmae’ +(- 2" (jo))jc, o+ k., )+ jco+k]
(J+1<i<n, N=1,---,N) (75)
Starting from the Jth mass, it is easily deduced that the NOFRFs of two consecutive

Ay () =

masses, which locate between the (L-1)th and Jth masses, have the similar relationships
given in equation (75), but a little modifications are required for 4]~ (») and A= (),
(N=1---,N)..

From equation (64), it can be known that, when N=1land i=J, the relationship given in

equation (75) needs to be modified as

,13’“(@)=—G“’”(j@ -7 ’“(a))(n ! ! J ! (76)

Gy (j@) B jco+k, Gy (jo) A ()
Denote
Pl jco+k,
fi @7 o) - (77)
N l— mLa)2 -|-(1—}&N 1’L(a))XJCL+1a)+ kL+l)+ jc o+ kLJ
and

N
[ Ao jo)] [F(jodoy,
g=1

Ot t O =0

T s (io)= (2<N<N) (78)

j [TF(io,do,

Ot O =0 g=1
Then, for the Lth mass, from equations (65) and (66), it can be known that, when N>2 ,
the relationship given in (75) needs to be modified as

G(Lﬂﬁ) ( J a)) _EL_l ( J a))[l + 1 1_‘(L—I,N) ( J a)) _ 1

s (jo)y= =1 . — | = .
N G(L_l,ﬁ)(Ja)) N JCLa)+ kL G(L_LN)(JG)) 2%71’L(Jw)

(2<N<N) (79)
Under other conditions, if i=J, N = 1, and if i=L, N=1 , for the masses (L <i<J), from
equation (67), it is known that the relationships between the NOFRFs can be expressed as
1 Gnlo) jco+k,
Al(e) Gy (i) [-me’+(1-24" (jo)Njc, o+k, )+ jco+k |
(L<i<J, N=1--,N,andifi=J, N#1,and ifi=L, N =1) (80)

From a different respective, equations (73)~(80) also give a comprehensive description

A (jo) =

for the relationships between the NFRFs of any two consecutive masses of the nonlinear
MDOF system (30).
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3.4 The Properties of NOFRFs of Locally Nonlinear Systems
Important properties of the NOFRFs of locally nonlinear MDOF systems can be obtained
from equations (70)~(80) as the following

1) For the masses which are on the left of the nonlinear spring or on the right of the input

force, below relationships hold.

G, (jo G, o
M::M (1<i<L-2, J<i<n) (81
G(i+1,1)(Ja)) G(i+1,N)(Ja))
that is
AN o)== (@)=2"" (@) (1<i<L-2,J<i<n)(82)
i1) For the masses located between the nonlinear spring and the input force, the following
relationships hold.
G, (jo G, (jo G, (o
(|,1)(J. ) " (|,2)(J. ) e (|,N)(J- ) (L—lSiSJ—l) (83)
G<i+1,1)(10)) G(i+1,2)(10)) G(i+1,N)(J(0)
that is
2N @) 2 4 () == 1) (o) (L-1<i<J-1)(84)

ii1) For the masses which are on the left of the nonlinear spring or on the right of the input
force, the following relationships about the output frequency responses hold
X(jo)y=2"(jo)x, (jo)  (1<i<L-2,J<i<n)(85)
The first property is straightforward. For the masses on the left of the nonlinear spring,

from equation (73), it can be known that

, . K, + jc,w .
/11,2 — . — 11,2 — 2 2 — /11,2 86
2 (jw) R v rarvy rrmrr RS IID
Consequently, substituting (86) into equation (73) yields
jc;o+K,
@)= =1y (0) = . . .
N -mo® + j((1-22(jo)), +¢, Jo+(1-22(jo) Kk, +k,]
=" (jo) (87)

Iteratively use the above procedure until i=(L-2), for the masses (1<i <L —-2) the first
property can be proved. Similarly, starting from the nth mass, and iteratively using

equation (75) until i=J, the first property for the masses (J <i < N) can also be proved.

From equation (70), it can be known that, for the masses located between the nonlinear

spring and the input force, the following relationship is tenable

Gi (Ja)) Gi (Ja)) it/ : i+l /- 1

== = QM (o) = A () =

Gy (Jo) Gian(Jo) A7 (Jo)
(L-1<i<J-1)(88)

So part of the second property has been proved.
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According to Property 1), it can be known that

1 1

A (w) = R B (w) = ) (89)
Substituting (89) into 21" (jw), 227 (@), -, X7 (@), it follows
A7 (@)= 7 (@) = 20 ()
ic 0+ K, (90)

TEme + (-4 @)y, + ¢ Jo+ (- @)k, , +k, |
According equation (76), it is known that

/13’3-‘(w):Zf’J‘l(m)(1+ ! ! ] )

jc,o+Kk, Gy ( jo)

As G, (jo)#0, obviously

~ —3.41 _ _
AN @) " ()= (@)= (@) (92)
then
)= et 0= == B 0= 09
A7 (o) A7 (o) AN (@)
Substituting (93) into 4™ (@), 47 (w),-, A3 (w), it can be proved that
1 1 1
2723 () = 0 N @) =———— = = (@) = ————
1 ﬂqul,sz (a)) 2 /1371,&2 (a)) N ﬂ“ﬂ\l 1, 2(60)
94)

Iteratively using above procedure until i=(L-1), then the property
2 (o) A5 (jo)y=---= 1" (jo) (L-1<i<J-1)
can be proved. By now, the whole second property is proved.

The third property is also straightforward since, according to equation (6), the output

frequency response of the ith mass can be expressed as

N
X, (jo)= ZG(HI,k)(ja)) F(jo) (95)
k=1
Using the first property, equation (95) can be written as
N i . . .
Xa(jo) =2 2" (jo)G  (j@) F(jo) (96)
k=1

Obviously, X, (j®)=A""(jw)x (jo), then the third property is proved.

The above three properties can be easily extended to more general cases, as follows.
iv) For any two masses which are either on the left of the nonlinear spring or on the right
of the input force, the following relationships hold.
G(i,1)(j-a)) L G(i,N)(j-a)) _ itk ()
G (J®) Gy (@)
(Igi<L-2andi+k<L-1lor J<i<nand J<i+k<n) (97)
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and
/1I,I+k (a)) — H/1I+d,l+d+l (a)) (98)
d=0

v) For any two masses which are either on the left of the nonlinear spring or on the right
of the input force, the following relationships hold
X (jo) = "% (@)% (jo)
(1<i<L-2and i+k<L-1or J<i<n and J<i+k<n)(99)
vi) For any two masses located between the nonlinear spring and the input force, the

following relationships can be deduced from property ii).

G(i,l)(j.a)) L Ga,z)(j.a)) L G(i,N)(j.a)) =/1i’i+k(a))
Gian(J®) Gy, (JO) Gk (1@)

(L-1<i<J—1and L<i+k<J)(100)

and
L. k71 N .
/’il’Hk(a)):HﬂHd’Hd+l(a)) (101)
d=0

vii) For any two masses at the different sides of the nonlinear spring or at the different sides
of the input force, the following relationships hold.
G(i,l)(ja)) 2 G(i,z)(ja’) i G(i,N)(ja))
Gyp(i®) Gy, (jw) Gyn) (j0)
(1<i<L-land L<k<norl<i<J-1land J<k<n)(102)
The proof of properties (iv)-(vii) only needs some simple calculations. The details are

omitted here.

4 Numerical Study

To verify the analysis results in Section 3, a damped 8-DOF oscillator was used to conduct
numerical studies, in which the fourth spring was nonlinear. As widely used in modal
analysis, the damping was assumed to be proportional to the damping, e.g., C = xK . The
values of the system parameters are taken as

m=--=m,=1, r,=k =--=k, =3.5531x10*, £=0.01

r,=0.8xr’, r,=04xr>, w, =, W, =0.1°K, ,w, =0

and the input was a harmonic force acting on the 6" mass, f () = Asin(27 x 20t).

If only the NOFRFs up to the 4™ order is considered, according to equations (16) and (17),
the frequency components of the outputs of the 8 masses can be written as

X (Jog)= G(Ii—|,1) ij)Fl(ja)F)+G(|i—|,3) jop)F (jor)

X (J20¢) = G(':Z)(j2a),:)|:2(j2a),:)+G(E4)(j2a),:)F4(j2a),:)

Xi(j3a)F):G(li—|,3)(j3a)F)F3(j3a)F)
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X (j40.) =G, (j40p F,(j4o;) (i=1,--.8) (103)
From equation (103), it can be seen that, using the method in [9], two different inputs with
the same waveform but different strengths are sufficient to estimate the NOFRFs up to 4™
order. Therefore, in this numerical study, two different inputs are used with A=0.8 and
A=1.0 respectively. The simulation studies were conducted using a fourth-order Runge-

Kutta method to obtain the forced response of the system.

The evaluated results of G (jor), G (jor), G (j2w.) and G} (j2w;) for all
masses are given in Table 1 and Table 2. According to the analysis results in the previous

section, it is known that the following relationships should be tenable.

. G (jo G (jo N
//U{H-l(ja)':) — l-(ll,l)(J- F) — }-(||,3)(J- F) — ﬂ,|3°|+l(ja)|:) for | _ 1’2’6,7
G(i+l,1) Jog) G(i+1,3)(la)|:)

G(?J)(ja’F) » G(l;l,3)(ja’F)

AN jop) = =" (joog) for i =3,4,5
H . H . 3 F s Ty
G(i+1,1)(Ja)F) G(i+1,3)(Ja)F)
o G, (j2o.) G, (j2e.) ... . :
A2 = 2T UL G (00, )  fori=1esT
G(i+1,2)(12a)|=) G(i+1,4)(12a’|:)
(104)
able 1, the evaluated results o jo:) an j@
Table 1, th luated Its of G = d G/ .
G (jae) (x10°) G (joe) (x107)
Mass 1 -1.944241903169+2.8775863604121 5.458634750380-7.3663084974671
Mass 2 -4.176583568969+4.8382720305531 11.57208415372-12.281235970971
Mass 3 -6.736933696283+5.0607769304641 18.34919935969-12.573576669871
Mass 4 -9.231909382744+2.9520346208491 -12.79690672083+5.4556608731821
Mass 5 -10.77575870137-1.6642606968521 -5.435201264096+7.5922494828421
Mass 6 -10.10143823260-8.3274798166461 1.220710849413+7.2432101308191
Mass 7 -15.11217068758-0.83770178155581 6.097443770670+5.9104173387421
Mass 8 -17.33646514165+3.5236726401041 8.643601249962+4.879496926152i
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Table 2, the evaluated results of G!' (j2w;) and G} (j2w;)

G (j2@) (x10”) G, (j2w¢) (x107™%)
Mass 1 6.021454230962-12.985542189011 -1.952110843919-3.410834151117i
Mass 2 18.50884595656-19.14114684937i -1.347439298947-7.185522342534i
Mass 3 38.19859798519-9.325491210626i1 3.976662752654-10.03496188850i1
Mass 4 -38.08895161488+6.2165400139031 -4.655561901388+9.516667048108i
Mass 5 -16.52707738569+16.854543892011 1.150036085197+6.3785272584231
Mass 6 -1.252587907918+13.28718243146i1 2.777020782522+2.3906509015021
Mass 7 6.213180893960+5.7292199620271 2.269896229546-0.48168738548491
Mass 8 8.6609835294787+0.5734813561479i 1.505312897830-1.8507116072141
Table 3, the evaluated and theoretical values of 4" (jo;)
Evaluated Theoretical
i=1 0.539568255325-0.063929850245i1 0.539568125657-0.063929279767i
iI=2 0.741189550115-0.161390493546i 0.741190530388-0.1613890400271
i=3 0.821079057389-0.285631391869i1 0.821050118371-0.285603877540i
i=4 0.795445087122-0.3968038570971 0.795467221982-0.3968152183461
i=5 0.715984832936-0.4254927317751 0.715981624553-0.4254526119571
i=6 0.696835117313+0.5124174387331 0.696881219804+0.5124006037151
i=7 0.827684503605+0.2165488172401 0.827677050338+0.2165474050811
Table 4, the evaluated and theoretical values of A" (jo;)
Evaluated Theoretical
i=1 0.539559368397-0.063934254540i1 0.539568125657-0.063929279767i
i=2 0.741241865615-0.161378950912i 0.741190530388-0.1613890400271
i=3 -1.567808155157 +0.314149907382i -1.567764971393+0.314134164548i
i=4 1.272881818401+0.774281438682i 1.272989592311+0.7744096711741
i=5 0.896268022564+0.9014353091101i 0.896263983491+0.901393838300i1
iI=6 0.696884187038+0.5124005839431 0.696881219804+0.5124006037151
i=7 0.827675930682+0.2165503850771 0.827677050338+0.2165474050811
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Table 5, the evaluated and theoretical values of |Zi1’i“ (jop)

and |4 (jor )

4 (jop) 45 (jeop)|
Evaluated Theoretical Evaluated Theoretical
i=1 0.543342367119 0.543342171230 0.543334060158 0.543342171230
iI=2 0.758557078015 0.758557726596 0.758605740248 0.758557726596
i=3 0.869342343673 0.869305971303 1.598972349882 1.598926914797
i=4 0.888924174288 0.888949052960 1.489879146073 1.490037865607
i=5 0.832873547298 0.832850293702 1.271173467620 1.271141211600
iI=6 0.864957115837 0.864984284946 0.864986663810 0.864984284946
i=7 0.855543703007 0.855536135008 0.855535806093 0.855536135008
Table 6, the evaluated and theoretical values of 2, (j2w,)
Evaluated Theoretical
i=1 0.507797183488-0.176441131870i 0.507802742120-0.176493868719i
iI=2 0.572740375500-0.3612714141241 0.572987984997-0.36105753043 11
i=3 -1.015780193448+0.079047935558i -1.015815300438+0.0790734035211
i=4 1.317748969503+0.9677160370221 1.317984293172+0.9669629188801
i=5 1.373531878255+1.114352726037i1 1.373306980736+1.114467844922i
iI=6 0.956810202664+1.2562657440211 0.956791143622+1.2562088573221
i=7 0.757042356332+0.610746352706i 0.757019558226+0.6106764566731
Table 7, the evaluated and theoretical values of ;"' (j2w, )
Evaluated Theoretical
i=1 0.507770526862-0.1764549354571 0.507802742120-0.176493868719i
i=2 0.572874980296-0.3612938380141 0.572987984997-0.361057530431i
i=3 -1.015785489514+0.0790601865661 -1.015815300438+0.0790734035211
i=4 1.317558601335+0.9674336390331 1.317984293172+0.9669629188801
i=5 1.373533098461+1.1144637943741 1.373306980736+1.114467844922i
iI=6 0.956829585455+1.2562440545771 0.956791143622+1.2562088573221
i=7 0.757036113181+0.610748859977i 0.757019558226+0.6106764566731
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Table 8, the evaluated and theoretical values of |/’ti2’i+l (j20 )| and |/1i4’i+1 (j20 )|

A5 (1200, 45 (1200
Evaluated Theoretical Evaluated Theoretical
i=1 0.537577392171 0.537599954055 0.537556743234 0.537599954055
iI=2 0.677162146307 0.677257536859 0.677287959760 0.677257536859
i=3 1.018851302947 1.018888280308 1.018857533617 1.018888280308
i=4 1.634911824820 1.634655891476 1.634591237553 1.634655891476
i=5 1.768720390172 1.768618285754 1.768791316560 1.768618285754
iI=6 1.579141977000 1.579085173677 1.579136466637 1.579085173677
i=7 0.972689177808 0.972627547560 0.972685893093 0.972627547560

From the NOFRFs in Table 1 and Table 2, "' (jo.), A" (jop), 45" (j2w,) and
2 (j20.) (i=1,---,7) can be evaluated. Moreover, from equations (44) and (58), the
theoretical values of 2'""'(jw.), 4" (jor), A" (j20.) and ;"' (j20.) (i=1,--7)
can also be calculated. Both the evaluated and theoretical values of i’i“(ja)F) ,
A (jog), A (j20:)and 2] (j2w.) (i=1,---,7) are given in Tables 3, 4, 6 and 7.

Their moduli are given in Table 5 and Table 8.

It can be seen that the evaluated results match the theoretical results very well. Moreover,
the results shown in Tables 5 and 8 have a strict accordance with the relationships in
(104). Therefore, the numerical study verifies the properties of NOFRFs of the locally
nonlinear MDOF systems described in Section 3.

From Table 5, it can be seen that ‘)til’i“(ja)F )‘ and ‘lg’i“(ja)F )‘ at the 4™ and 5™ masses
are only slight different, but have a significant difference at the 3™ mass. This means that,
for the two masses connected to the nonlinear spring, their ‘)til’i“(ja)F )‘ and ‘ﬁg"“(ja)F )‘
have a considerable difference. This result implies that a class of novel approaches can be
developed based on the properties of NOFRFs derived in the present study for MDOF
nonlinear systems to detect and locate fault elements which make engineering structures
behave nonlinearly. This is the focus of our current research studies. The results will be
present in a series of later publications.

5 Conclusions

In the present study, the relationships between the NOFRFs of MDOF nonlinear system

have been investigated to reveal important properties of nonlinear system. The derivation

22



considered general cases where the input force was allowed to be added at any mass in
the system and the damping characteristics were also taken into account. The results have
considerable significance for the application of the NOFRF concept in engineering
practices to locate the position of the nonlinear element in a locally nonlinear MDOF
system and to diagnose faults in engineering systems which make the system behave
nonlinearly. Further research results on this application will be discussed in later

publications.
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