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Abstract: The new concept of Nonlinear Output Frequency Response Functions 

(NOFRFs) is introduced in this paper to detect cracks in beams using frequency domain 

information. The results show that the NOFRFs are a sensitive indicator of the presence 

of cracks providing the excitation is of an appropriate strength. The new results provide a 

novel and effective method for the detection of cracks in beams, with applications in 

structural fault diagnosis.  
 

1 Introduction 

Fatigue cracks are a potential source of catastrophic failure in civil structures or 

mechanical machines. To avoid failure caused by cracks, many researchers have 

performed extensive investigations to develop structural integrity monitoring techniques. 

Most of these techniques are based on vibration measurements and analysis because, in 

most cases, vibration based methods can offer an effective and convenient way to detect 

fatigue cracks. Generally, vibration based methods can be classified into two categories: 

linear and nonlinear approaches. Linear approaches detect the presence of cracks in a 

target object by monitoring changes in the resonant frequencies [1][2], in the mode 

shapes [3][4][5] or in the damping factors [6][7]. However, several researchers have 

shown [8]-[10] that, linear detection procedures are not always reliable and they typically 

show a low sensitivity to defects. For example, in [9], the numerical results show that the 

presence of a crack, which makes up about 10~20% of the undamaged cross-sectional 

area, reduces the natural frequencies of a beam by only 0.6~1.9%. Some factors, which 
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may cause difficulties when using linear methods for crack detection in practice, have 

been discussed in [10]. Over recent years, increasing attention has been focused on the 

application of the nonlinear methods to detect the presence of cracks [9]-[14]. When a 

cracked object is subjected to a harmonic input, the appearance of superharmonic 

components and subharmonic resonances may be observed. In [9]-[14], these phenomena 

are termed ‘the nonlinear effects’.  In [9], Bovsunovsky and Surace claimed that 

nonlinear effects are more sensitive to the presence of a crack than the change in natural 

frequencies, or mode shapes. These authors also studied the influence of damping on the 

nonlinear effects. Based on subharmonic resonances, Tsyfansky and Beresnevich [10] 

developed a new approach for the detection of fatigue cracks in flexible, geometrically 

nonlinear beam-type structural elements. Later, they [11] used the same procedure to 

detect cracks in aircraft wings. Sundermeyer and Weaver [12] studied the forced response 

of a bilinear model subjected to an excitation with two frequencies, and based on these 

results they further exploited the weakly nonlinear character of a cracked beam to 

determine the crack location. In [13], Saavedra and Cuitino studied dynamic behaviors of 

different multi-beam systems containing a transverse crack theoretically and 

experimentally, and gave many results regarding which nonlinear effects would be useful 

for crack detection.  

In summary, as indicated by previous studies by several authors, nonlinear analysis based 

methods are often much more sensitive to the presence of cracks than linear vibration 

based methods. The research reported in this paper is devoted to the introduction of the 

concept of the Nonlinear Output Frequency Response Functions (NOFRFs) [14]-[16] and 

the application of this for crack detection. NOFRFs are a new concept developed recently 

by the authors, which allows the analysis of nonlinear systems to be implemented in a 

similar manner to linear system frequency response analysis. This provides great insight 

into how nonlinear phenomena such as the generation of new frequencies occur. This 

paper is focused on an experimental study to demonstrate that the NOFRFs are a good 

indicator of the presence of cracks in a beam, with the aim of establishing a basis for the 

use of NOFRFs in structural defect diagnosis in engineering practice.  

The paper is organized as follows. Section 2 gives a brief introduction to the new concept 

of NOFRFs. The widely used breathing crack model is discussed in Section 3. The 

experimental study showing the application of the NOFRFs to crack detection is 

presented in Section 4. Finally conclusions are given in Section 5.  
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2. Nonlinear Output Frequency Response Functions (NOFRFs) 

2.1 NOFRFs under General Inputs 

NOFRFs were recently proposed and used to investigate the behaviour of structures with 

polynomial-type non-linearities [14]. The definition of NOFRFs is based on the Volterra 

series theory of nonlinear systems. The Volterra series extends the well-known 

convolution integral description for linear systems to a series of multi-dimensional 

convolution integrals, which can be used to represent a wide class of nonlinear systems 

[15].  

Consider the class of nonlinear systems which are stable at zero equilibrium and which 

can be described in the neighbourhood of the equilibrium by the Volterra series 
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This expression reveals how nonlinear mechanisms operate on the input spectra to 

produce the system output frequency response. In (2), )( ωjY  is the spectrum of the 

system output, )( ωjYn  represents the nth order output frequency response of the system, 
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is the nth order Generalised Frequency Response Function (GFRF) [15], and 
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ωωω =++ nL1 . Equation (2) is a natural extension of the well-known linear relationship 

)()()( ωωω jUjHjY = , where )( ωjH  is the frequency response function, to the 
nonlinear case.  

For linear systems, the possible output frequencies are the same as the frequencies in the 

input. For nonlinear systems described by Equation (1), however, the relationship between 
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the input and output frequencies is more complicated. Given the frequency range of an  

input, the output frequencies of system (1) can be determined using the explicit expression 

derived by Lang and Billings in [15].  

Based on the above results for the output frequency response of nonlinear systems, a new 

concept known as the Nonlinear Output Frequency Response Function (NOFRF) was 

recently introduced by Lang and Billings [14]. The NOFRF is defined as 
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Notice that )( ωjGn  is valid over the frequency range of )( ωjUn , which can be 

determined using the algorithm in [15]. 

By introducing the NOFRFs )( ωjGn , Nn L,1= , Equation (2) can be written as  

∑∑
==

==
N

n

nn

N

n

n jUjGjYjY
11

)( )( )()( ωωωω                               (6) 

which is similar to the description of the output frequency response for linear systems. 

For a linear system, the relationship between )( ωjY  and )( ωjU   can be illustrated as 

shown in Figure 1. Similarly, the nonlinear system input and output relationship of 

Equation (6) can be illustrated as shown in Figure 2.  

 
Y(jȦ) U(jȦ) 

H(jȦ)=G1(jȦ) 

 

Figure 1. The output frequency response of a linear system 
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U2(jȦ) 

G1(jȦ) 

G2(jȦ) 

Y(jȦ) 

GN(jȦ) 

Figure 2. The output frequency response of a nonlinear system 

 5



The NOFRFs reflect a combined contribution of the system and the input to the system 

output frequency response behaviour. It can be seen from Equation (4) that )( ωjGn  

depends not only on  (i=1,…,N) but also on the input nH )( ωjU . For any structure, the 

dynamical properties are determined by the GFRFs  (i= 1,…,N). However, from 

Equation (3) it can be seen that the GFRF is multidimensional [17][18], which can make 

the GFRFs difficult to measure, display and interpret in practice. Feijoo, Worden and 

Stanway [19][20] demonstrated that the Volterra series can be described by a series of 

associated linear equations (ALEs) whose corresponding associated frequency response 

functions (AFRFs) are easier to analyze and interpret than the GFRFs. According to 

Equation (4), the NOFRF 

nH

)( ωjGn  is a weighted sum of ),...,( 1 nn jjH ωω  over 

ωωω =++ nL1  with the weights depending on the test input. Therefore )( ωjGn  can be 

used as an alternative representation of the dynamical properties described by . The 

most important property of the NOFRF 
nH

)( ωjGn  is that it is one dimensional, and thus 

allows the analysis of nonlinear systems to be implemented in a convenient manner 

similar to the analysis of linear systems. Moreover, there is an effective algorithm [14] 

available which allows the estimation of the NOFRFs to be implemented directly using 

system input output data. This algorithm is briefly introduced below.  

Rewrite Equation (6) as  
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In this case, it is known from Equation (7) that  
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Excite the system under study N  times using the input signals , )(* tuiα Ni ,...,1= , where 

N N≥  and 11
,,, ααα L−NN

 are constants which satisfy the condition 
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so that N  output frequency responses , )( ωjY i
Ni ,...,1=  can be generated for the system 

under study. From Equation (9), it is known that the output frequency responses can be 

related to the NOFRFs to be evaluated as below. 
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Consequently the values of the NOFRFs, , can be determined using a 

least squares based approach as 
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2.2 NOFRFs under Harmonic Inputs 

Harmonic inputs are pure sinusoidal signals which have been widely used for the 

dynamic testing of many engineering structures. Therefore, it is necessary to extend the 

NOFRF concept to the harmonic input case.  

When system (1) is subject to a harmonic input 

)cos()( βω += tAtu F                                                     (13) 

Lang and Billings [15] showed that Equation (1) can be expressed as 
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Defining the frequency components of nth order output of the system as , then 

according to Equation (14), the frequency components in the system output can be 

expressed as 
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Equation (19) explains why some superharmonic components will be generated when a 

nonlinear system is subjected to a harmonic excitation. In the following, only those 

components with positive frequencies will be considered. 

The NOFRFs defined in Equation  (4) can be extended to the case of harmonic inputs as 

∑

∑

=++

=++
=

ωωω

ωωω

ωω

ωωωω
ω

knk

n

knk

nn

kkn

kkkknn

H

n

jAjA

jAjAjjH

jG

L

L

L

LL

1

1

1

11

)()(
2

1

)()(),,(
2

1

)(     n = 1,…, N      (20) 

under the condition that 

0)()(
2

1
)(

1

1
≠= ∑

=++ ωωω

ωωω
knk

nkknn jAjAjA
L

L                           (21) 

Obviously,  is only valid over )( ωjG H

n nΩ  defined by Equation (18). Consequently, the 

output spectrum )( ωjY  of nonlinear systems under a harmonic input can be expressed as 
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When k of the n frequencies of 
nkk ωω ,,

1
L  are taken as Fω  and the remainder are as 

Fω− , substituting Equation  (15) into Equation  (21) yields,   
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Thus  becomes )( ωjG H
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where ),...,( 1 nn jjH ωω  is assumed to be a symmetric function. Therefore, in this case, 

 over the nth order output frequency range )( ωjG H

n nΩ ={ }nkkn F ,,1,0,)2( L=+− ω  is 

equal to the GFRF ),...,( 1 nn jjH ωω  evaluated at ,1 Fk ωωω ===L  Fnk ωωω −===+ L1 , 

.  nk ,,0L=

This result indicates that the concept of NOFRFs can represent, to a certain extent, the 

dynamic characteristics of a nonlinear system under investigation, and may therefore be 

suitable for fault detection of mechanical or civil structures based on the difference of the 

structural dynamics in the fault and fault free situations. 

3 Nonlinearity of Cracked Beams  

The presence of a crack in a beam will introduce a local flexibility that affects its 

dynamic response. During vibrations, a crack does not remain always open; it will open 

and close over time depending on the loading conditions and vibration amplitudes. If the 

static deflection due to loading on a cracked beam (e.g. body weight of the beam) is 

larger than the vibration amplitude, then the crack may remain in one condition all the 

time, always open or always closed depending on the position of the crack. In this case, 

the cracked beam may be described as a linear system. If the static deflection is small, 

then the crack may open and close over time depending on the vibration amplitude. In 

this case, the cracked beam will behave as a nonlinear system, and nonlinear effects will 

be present in the output response [21]. 

Using the finite element method, the dynamical equation of a crack free beam can be 

written as [21] 

[ ]{ } [ ]{ } { }FUKUM =+&&                                              (25) 

where [  is the mass matrix, [  is the stiffness matrix, ]M ]K { }U  is the displacement vector 

and {  is the load vector. For a cracked beam, when the crack is open, an additional 

stiffness  is introduced, and equation (25) changes to 

}F

[ K∆− ]
[ ]{ } [ ]{ } { }FUKKUM =∆−+&&                                         (26) 
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In the study of cracks, a breathing crack is often considered, and it is assumed that when 

the bending moment changes sign, cracks change from open to closed, or from closed to 

open. Therefore, a cracked beam can behave like a bilinear nonlinear system, as 

described by [21] 

[ ]{ } [ ]{ } { }
[ ]{ } [ ]{ } { } open iscrack   if

closed iscrack   if  

⎩
⎨
⎧

=∆−+
=+

FUKKUM

FUKUM

&&

&&
                     (27) 

The bilinear system (27) is a typical nonlinear system. Numerical studies have shown that 

this bilinear model can explain the nonlinear phenomena of the generation of super-

harmonic components, which have been observed in the output response of cracked 

beams subjected to a harmonic input. A crack free beam behaves linearly as described by 

(25) and can thus be analyzed simply using the well-established Frequency Response 

Function (FRF). However, the FRF cannot be effectively used to explain the nonlinear 

phenomena that are characteristic of a cracked beam. This is because the linear FRF 

based approaches basically monitor the changes of structures at the resonant frequencies 

or in the mode shapes. However, the presence of cracks will often not induce a significant 

change in these structural characteristics. In order to solve this problem, the concept of 

NOFRFs was introduced in [14] to describe the behavior of cracked structures. The 

results showed that the NOFRFs can provide an explicit explanation for the generation of 

superharmonic components from a bilinear system subjected to a harmonic excitation. 

Based on the NOFRF description, the difference between cracked and crack free beams 

can be illustrated as shown in Figure 3.  Figure 3 indicates that the NOFRF concept can 

be used to more effectively distinguish the cracked and crack free situations in structures.  

 

 

 

 

Crack Free 

 

 

NOFRF: G1(jȦ) = H(jȦ), 
G2(jȦ),…, GN(jȦ) 

FRF:  H(jȦ) 

Cracked 

Figure 3, The difference between crack free and cracked beams 

4 An Experimental Study of Crack Detection Using Nonlinear 
Output Frequency Response Functions 

A Volterra series based method was used in [22] to analyze the vibration of a cracked 

beam where the higher order transform function (HOTF) of a cracked cantilevered beam 

was estimated. The HOTF was defined as the ratio between the output spectrum 
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)( ωjY and )( ωjU n  for a particular n of interest and is based on the Volterra series of 

nonlinear systems. Compared to NOFRFs, the HOTF is not a theoretically well 

established concept although under certain conditions, NOFRFs and HOTF can be related 

to each other. In this section, the application of the concept of NOFRFs for crack 

detection is investigated based on an experimental study.  

The experimental test rig is shown in Figure 4, which mainly consists of a shaker to 

generate the excitation, a clamp to fix the beam on the shaker, a beam and an 

accelerometer mounted at the free end of the beam to measure the acceleration. Three 

specimen beams were tested: one crack free, one with a slight crack defect (the ratio Į 

between the crack depth and the thickness of the beam was about 0.2), and one with a 

deep crack (the ratio Į was about 0.4). According to the requirements for estimating the 

NOFRFs up to 4th order, four inputs with the same waveform but different strengths will 

be needed to excite the system respectively. But for the harmonic input case, according to 

equations (22) and (23), the frequency components of the output can be written as  

)()()()()( 3311 FF

H

FF

H

F jAjGjAjGjY ωωωωω +=                          (28) 

)2()2()2()2()2( 4422 FF

H

FF

H

F jAjGjAjGjY ωωωωω +=                 (29) 

                                                                              (30) )3()3()3( 33 FF

H

F jAjGjY ωωω =
)4()4()4( 44 FF

H

F jAjGjY ωωω =                                                      (31) 

From equations (28)~(31), it can be seen that two different inputs with the same waveform 

but different strengths are sufficient to estimate the NOFRFs up to 4th order. Therefore, in 

this study, two different inputs were used in each test. Considering the fact that the strength 

of the excitation forces may affect the nonlinearity of cracked beams, for example a small 

excitation force may only make the cracks open partly while a strong excitation could make 

the cracks open fully, to make sure cracks are at the same status during one test, the 

strengths of the two inputs were chosen such that the strengths did not differ from each 

other considerably. The frequency ȦF of the harmonic excitation was 200 Hz, and the 

vibration signals were sampled using an accelerometer at the sample rate of 8k Hz. 

 
Figure 4, Experimental test rig 

Clamp 

Accelerometer

Beam 

Shaker
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Figures 5, 6, 7 show the FFT spectra of three sets of output reponses which were sampled 

from three specimen beams under different excitation strengths. Figure 5 shows that 

under small excitations the nonlinear effects are very weak for both the crack free beam 

and the beam with a small crack as the superharmonic components of the spectra are too 

small to be observed. However, Fig 6 shows that the second harmonic component has a 

large amplitude when the beam has a large crack. The spectra in Figure 6 show that, 

under moderate excitations, the nonlinear effect is still quite weak for the crack free beam, 

however, the nonlinear effect becomes noticeable for both the two cracked beams as the 

superharmonic components up to fifth order are observable in the output spectra. Figure 7 

shows the output spectra of the vibration signals sampled under strong excitation. It can 

be seen that some superharmonic components and some irregular components appear in 

the output spectra of the crack free beam. It is believed that in this case the strong 

excitations made the whole test rig behavior nonlinearly. For the two cracked beams, 

obviously, the nonlinear effect becomes significant, the superharmonic components are 

quite clear in the output spectra, especially in the output spectrum of the beam with a 

large crack where the second harmonic component is even larger than the fundamental 

harmonic component. These observation results indicate that the presence of cracks will 

induce the nonlinear effects in the output response, and the degree of nonlinearity 

depends on the strength of the excitations.  
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(c) large crack 
Figure 5. The output responses under small excitations 
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Figure 6. The output responses under moderate excitations 
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(c) lagre crack 

Figure 7. The output responses under strong excitations 

Tables 1, 2 and 3 give the NOFRF evaluation results for the three specimen beams. It is 

worth noting that all the NOFRFs in the tables have been normalized by divided by 
. It can be seen that, at the same excitation level, the NOFRFs of the beam with 

a large crack are always the largest, while for the beam with a small crack, and the crack 

free beam the NOFRFs are always relatively small. This means that the behavior of the 

beam with a large crack is considerably more nonlinear than the crack free beam. It also 

can be seen that, under small excitations, the NOFRFs of a beam with a small crack are 

quite small, even smaller than the NOFRFs of the crack free beam under moderate and 

strong excitations. This is because small excitations may not cause the crack to open, and 

therefore the beam behaves just like a crack free beam. In addition, the large values of the 

NOFRFs of the crack free beam under strong excitations indicate that strong excitations 

made the test rig behave nonlinearly. Therefore, in a strong excitation case, the NOFRFs 

of the cracked beams reflect the combined nonlinear effects of the crack in the beam and 

the test rig, but compared to the nonlinear effect caused by a crack, the nonlinear effect 

from the test rig is less significant. 

)(1 F

H jG ω

The results in Tables 1, 2 and 3 show that the NOFRFs are a quite sensitive indicator of 

the presence of a crack as long as the excitation is strong enough to open the crack. Under 

small excitations, there are slight differences between the NOFRFs of the crack free beam 

and the slightly cracked beam, but the NOFRFs of the beam with a deep crack are much 

larger than the NOFRFs of the crack free beam. Under moderate and large excitations, 

most of the NOFRFs of the cracked beams are much larger than the NOFRFs of the crack 

free beam. Therefore, the NOFRFs are a good indicator of the presence of a crack. 

Moreover, it can be seen that the NOFRFs of the beam with a large crack are always 

larger than the NOFRFs of the beam with a small crack under the same excitation, which 

implies that the values of the NOFRFs can be regarded as an indicator of the crack size, 

larger NOFRFs inferring a larger crack size. The advantage of using the NOFRF results 

in Tables 1, 2 and 3 is that single values are given for the NOFRFs which are much easier 

to compare and interpret compared to other frequency based methods. 

In summary, the experimental study shows that the NOFRFs are a sensitive indicator of 

the presence of cracks. To conduct the crack detection procedure using the NOFRFs, 

appropriate excitations should be employed. Ideally, the excitations should be strong 

enough to open a crack but should not be too strong, otherwise, the excitations will make 
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the test rig behave nonlinearly and the difference between the NOFRFs evaluated in the 

cracked and crack free situations may not be considerably different. 

Table 1, The estimated results under small excitations 

NOFRFs Crack Free Small Crack Large Crack 

)(1 F

H jG ω  1.00000000 1.00000000 1.00000000 

)(3 F

H jG ω  0.00100051 0.00263550 0.24103323 

)2(2 F

H jG ω  0.00060379 0.00110494 0.22953284 

)2(4 F

H jG ω  0.00007167 0.00184145 0.00755471 

)3(3 F

H jG ω  0.00002036 0.00060981 0.00369901 

)4(4 F

H jG ω  0.00001137 0.00004290 0.00078840 

Table 2, The estimated results under moderate excitations 

NOFRFs Crack Free Small Crack Large Crack 

)(1 F

H jG ω  1.00000000 1.00000000 1.00000000 

)(3 F

H jG ω  0.00470760 0.02378153 0.28168441 

)2(2 F

H jG ω  0.00163466 0.02360642 0.24038379 

)2(4 F

H jG ω  0.00028966 0.00402358 0.04345069 

)3(3 F

H jG ω  0.00070613 0.00097110 0.02502336 

)4(4 F

H jG ω  0.00010685 0.00034400 0.00859901 

Table 3 The estimated results under strong excitations 

NOFRFs Crack Free Small Crack Large Crack 

)(1 F

H jG ω  1.00000000 1.00000000 1.00000000 

)(3 F

H jG ω  0.00554740 0.02742614 0.05101400 

)2(2 F

H jG ω  0.00991495 0.03443461 0.49263892 

)2(4 F

H jG ω  0.00062943 0.00435547 0.21806627 

)3(3 F

H jG ω  0.00097094 0.00286848 0.06451821 

)4(4 F

H jG ω  0.00018662 0.00024341 0.03216557 
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5 Conclusions and Remarks 

The new concept of the Nonlinear Output Frequency Response Functions (NOFRFs) has 

been introduced for fault detection. The importance of using the NOFRFs instead of the 

FRF to describe cracked beams in the frequency domain has been analyzed. Finally, an 

experimental study using the NOFRFs to detect cracks has been conducted for three 

specimens of beams, one without a crack, one with a small crack and one with a large 

crack. The results indicate that the NOFRFs are a quite sensitive indicator of the presence 

of cracks in a beam as long as the excitations of appropriate strengths are employed, and 

the values of the computed NOFRFs are an indication of the crack size. Larger values of 

NOFRFs normally indicate larger crack sizes. The present study provides a novel and 

effective method for crack detection, with applications in structural fault diagnosis. 
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