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Abstract: The concept of Nonlinear Output Frequency Response Functions (NOFRFs) is 

extended to the nonlinear systems that can be described by a multi-input Volterra series 

model. A new algorithm is also developed to determine the output frequency range of 

nonlinear systems from the frequency range of the inputs. These results allow the concept 

of NOFRFs to be applied to a wide range of engineering systems. The phenomenon of the 

energy transfer in a two degree of freedom nonlinear system is studied using the new 

concepts to demonstrate the significance of the new results.  

1 Introduction 

Linear systems, which have been widely studied by practitioners in many different fields, 

have provided a basis for the development of the majority of control system synthesis, 

mechanical system analysis and design, and signal processing methods. However, there 

are certain types of qualitative behaviour encountered in engineering, which cannot be 

produced by linear models [1], for example, the generation of harmonics and inter- 

modulation behaviour. In cases where these effects are dominant or significant nonlinear 

behaviours exist, nonlinear models are required to describe the system, and nonlinear 

system analysis methods have to be applied to investigate the system dynamics.  

The Volterra series approach [2] is a powerful tool for the analysis of nonlinear systems, 

which extends the familiar concept of the convolution integral for linear systems to a 

series of multi-dimensional convolution integrals. The Fourier transforms of the Volterra 

kernels are known as the kernel transforms, Higher-order Frequency Response Functions 

(HFRFs) [3], or Generalised Frequency Response Functions (GFRFs), and these provide 

a convenient tool for analyzing nonlinear systems in the frequency domain. If a 

differential equation or discrete-time model is available for a system, the GFRFs can be 

determined using the algorithm in [4]~[6]. The GFRFs can be regarded as the extension 

of the classical frequency response function (FRF) of linear systems to the nonlinear case. 
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However, the GFRFs are much more complicated than the FRF. GFRFs are 

multidimensional functions [7][8], which can be difficult to measure, display and 

interpret in practice. Recently, the novel concept of Nonlinear Output Frequency 

Response Functions (NOFRFs) was proposed by the authors [9]. The concept can be 

considered to be an alternative extension of the FRF to the nonlinear case. NOFRFs are 

one dimensional functions of frequency, which allow the analysis of nonlinear systems to 

be implemented in a manner similar to the analysis of linear systems and which provides 

great insight into the mechanisms which dominate many nonlinear behaviours. The 

NOFRF concept was recently used to investigate the energy transfer properties of bilinear 

oscillators in the frequency domain [10]. The results revealed the existence of resonances 

at frequencies different from the frequencies at the input excitation in this class of 

oscillators. 

The objective of this paper is to extend the concept of NOFRFs to multi-input nonlinear 

Volterra systems so that the concept of NOFRFs can be applied to a much wider range of 

engineering systems. The phenomenon of energy transfer in a 2DOF nonlinear system is 

also investigated using the extended concept of NOFRFs to demonstrate the effectiveness 

and significance of the results obtained in the present study. 

2   The Concept of Nonlinear Output Frequency Response Functions 

NOFRFs were recently proposed and used to investigate the behaviour of structures with 

polynomial-type non-linearities. The definition of NOFRFs is based on the Volterra 

series theory of nonlinear systems.  

Consider the class of nonlinear systems which are stable at zero equilibrium and which 

can be described in the neighbourhood of the equilibrium by the Volterra series 
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This expression reveals how nonlinear mechanisms operate on the input spectra to 

produce the system output frequency response. In (1.2), )( ωjY  and )( ωjX are the spectra 

of the system output and input respectively, )( ωjYn  represents the nth order output 

frequency response of the system, 

n
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is the definition of  the Generalised Frequency Response Function (GFRF), and 
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For linear systems, the possible output frequencies are the same as the frequencies in the 

input. For nonlinear systems described by Equation (1.1), however, the relationship 

between the input and output frequencies is more complicated. Given the frequency range 

of the input, the output frequencies of system (1.1) can be determined using an explicit 

expression derived by Lang and Billings in [3].  

Based on the above results for output frequency responses of nonlinear systems, a new 

concept known as the Nonlinear Output Frequency Response Function (NOFRF) was 

recently introduced by Lang and Billings [9]. The concept was defined as 
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Notice that )( ωjGn  is valid over the frequency range of )( ωjUn , which can be 

determined using the algorithm in [3]. 

By introducing the NOFRFs )( ωjGn , Nn L,1= , Equation (1.4) can be written as  
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which is similar to the description of the output frequency response of linear systems. For 

a linear system, the relationship between )( ωjY  and )( ωjX   can be illustrated as in 
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Figure 1. Similarly, the nonlinear system input and output relationship of Equation (1.1) 

can be illustrated in Figure 2.  

 

Figure 1. The output frequency response of a linear system 

 

Figure 2. The output frequency response of a nonlinear system 

The NOFRFs reflect a combined contribution of the system and the input to the 

frequency domain output behaviour. It can be seen from Equation (1.4) that )( ωjGn  

depends not only on  (i=1,…,N) but also on the input nH )( ωjX . For a nonlinear system, 

the dynamical properties are determined by the GFRFs  (i= 1,…,N). However, from 

Equation (1.3) it can be seen that a GFRF is multidimensional [7][8], and may become 

difficult to measure, display and interpret in practice. Feijoo, Worden and Stanway [11]-

[12] demonstrated that the Volterra series can be described by a series of associated linear 

equations (ALEs) whose corresponding associated frequency response functions (AFRFs) 

are easier to analyze and interpret than the GFRFs. According to Equation (1.4), the 

NOFRF 

nH

)( ωjGn  is a weighted sum of ),...,( 1 nn jjH ωω  over ωωω =++ nL1  with the 

weights depending on the input. Therefore )( ωjGn  can be used as an alternative 
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)( ωjGn  is that it is one dimensional, and thus allows 

the analysis of nonlinear systems to be implemented in a convenient manner similar to 

the analysis of linear systems. Moreover, there is an effective algorithm [9] available 

which allows the evaluation of the NOFRFs to be implemented directly using system 

input output data. 
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In the single-input case, the Volterra series has only one kernel for each order of 

nonlinearity, for example, ),( 212 ττh  is the second order kernel. It can be seen, however, 
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This is an extension of Equation (1.2) for the single-input case to the multi-input case. 
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then Equation (2.7) can be written in a compact form 
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2.2  Definition of the NOFRFs for Multi-Input Nonlinear Volterra Systems 
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will be referred to as the Nonlinear Output Frequency Response Function for multi-input 

nonlinear Volterra systems, and is a natural extension of Equation (1.4) to more general 

case. Substituting (2.12) into (2.9) yields 
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2.3 Determination of the Output Frequency Range of Multi-Input nonlinear 
Volterra Systems 

For a nonlinear system that can be modeled as a single-input Volterra series, given the 

frequency range of the input, Lang and Billings [3] derived an explicit expression for the 

output frequency range. In the following, a method will be derived to determine the 

output frequency range of multi-input nonlinear Volterra systems.  
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From Equation (2.11), it can be shown that  and  

have the same frequency range. Furthermore, according to Equation (2.9), it can easily be 
shown that the frequency range of  is 
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Therefore, given the frequency ranges of the inputs  (k = 1 ,…, m) as  )(txk

[ ] [ ]kkkk baab   U−− , 

the output frequency range can be determined by Equations (2.22), (2.23) and (2.24). The 

validity of this method will be verified by numerical studies in Section 3. 

2.4 Evaluation of the NOFRFs for Multi-Input Systems 

For single-input nonlinear systems, Lang and Billings [9] derived an effective algorithm 

for the estimation of the NOFRFs, which can be implemented directly using system input 

output data. To estimate the NOFRFs up to Nth order, the algorithm generally requires 

experimental or simulation results for the system under N different input signal 

excitations, which have the same waveforms but different intensities. This algorithm can 

be extended to estimate the NOFRFs in the multi-input case. As a multi-input system of 

nonlinearity up to Nth order involves more than N NOFRFs, more than N experiments or 

simulations under different signal excitations are needed to estimate the NOFRFs.  
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Equation (2.25) can be further written in the polynomial form 
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11 2211
)(

),,,( ωω jGjG
mNNN

mm mm

n

NPNPi 321LLLLL ===                                     (2.27) 

with , and , and  nNN m =++L1 Nn ,,1L=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=== 444 3444 21

LL
444 3444 21

L
444 3444 21

LL

m

mm

N

mm

NN

n

NPNP jUjUjUjUjUjUjU )()()()()()()(

21

11 2211
)(

),,( ωωωωωωω     (2.28) 

The number of terms contained in Equation (2.26) can easily be calculated using the 

method given in [13], as 

!/)1()1(!2/)1(),( NmmNmmmmmNC +−+++++= LL                    (2.29) 
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It can be seen that there are !/)1()1( nmmnm +−+ L  terms for the nth order NOFRFs. 

Sorting all , , )()(

1
ωjG N

kk NL mkk ii ,,1 L−= ni ,,1L= , 10 =k  as a series, and labeling them 

as 
)()(

),( ωjG n

ki ,          ),(:1 mnCk =                                          (2.30) 

where  
!/)1()1(),( nmmnmC mn +−+= L                                      (2.31) 

Denoting the corresponding [ )()(
1

ωω jUjU
nkk L ] as 

)()(
)( ωjU n

k ,          ),(:1 mnCk =                                         (2.32) 

then Equation (2.25) can be rewritten as  
[ ][ ]i

N

C

N

Ci GUUUUjy
mNm

)(
)(

)(
)1(

)1(
)(

)1(
)1( ).(),1(

)( LLL=ω                         (2.33) 

where 

[ ] [ ]TN

Ci

N

iCiii mNm
GGGGG )(

),(
)(
)1,(

)1(
),(

)1(
)1,( ),(),1(

LLL=                             (2.34) 

when, ,  where Į is a constant and  are the input 

signals under which the NOFRFs of the system are to be evaluated, 

.1),()( * mitxtx ii L==α .1),(* mitxi L=

                   ∫ ∏ ∏
=++ =

++

+++=

−

==
−

⎟
⎠
⎞

⎜
⎝
⎛=

ωωω
ωσω

π
αω

n

j

j

mm n

m

j

NN

NNi

ij

n

nn

NPNP djX
n

jU
L

L

L
L

1

0

10

11
1 1

*
1

)(
),,( )(

1

2

1
)(  

=                                               (2.35) )()*(
),,( 11

ωα jU n

NPNP

n

mm== L

where  

∫ ∏ ∏
=++ =

++

+++=

−

==
−

⎟
⎠
⎞

⎜
⎝
⎛=

ωωω
ωσω

π
ω

n

j

j

mm n

m

j

NN

NNi

ij

n

n

NPNP djX
n

jU
L

L

L
L

1

0

10

11
1 1

*
1

)(*
),,( )(

1

2

1
)(           (2.36) 

In this case, from (2.33), Equation (2.25) can be written as  
[ ][ ]*)(*

)(
)(*

)1(
)1(*

)(
)1(*

)1( ).(),1(
)( i

N

C

NNN

Ci GUUUUjy
mNm

ααααω LLL=              (2.37) 

where [ ]  are the NOFRFs to be evaluated.  [ TN

Ci

N

iCiii mNm
GGGGG )(*

),(
)(*

)1,(
)1(*

),(
)1(*
)1,(

*

),(),1(
LLL= ]

Excite the system ),(),1(),( mNm CCmNC ++= L times by the input signals 

)()( * txtx iji α= ,  ),(:1  and, ,:1 mNCjmi ==  

011,, >>>>
−

ααα LmNmN CC
 

to generate  output frequency responses , ),( mNC )( ωjY k

i ),(:1 mNCk = . From (2.37), 

these output frequency responses can be written as 

       

(2.38) 

[ *

)(*
)(),(

)(*
)1(),(

)1(*
)(),(

)1(*
)1(),(

)*(
)(1

)*(
)1(1

)1*(
)(1

)1*(
)1(1

),(),1(

),(),1(

)( i

N

C

N

mNC

NN

mNCCmNCmNC

N

C

NNN

C

i G

UUUU

UUUU

jY

mNm

mNm

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
αααα

αααα
ω

LLL

MMMMMMM

LLL

]

where 

[ ]TmNC

iii jYjYjY )(    )()( ),(1 ωωω L=                                    (2.39) 
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Moreover, defining 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
)(*

)(),(
)(*

)1(),(
)1(*

)(),(
)1(*

)1(),(

)(*
)(1

)(*
)1(1

)1(*
)(1

)1(*
)1(1

),(,,1

),(),1(

),(),1(

)(

N

C

N

mNC

NN

mNCCmNCmNC

N

C

NNN

C

mNC

mNm

mNm

UUUU

UUUU

jAU

αααα

αααα

ω

LLL

MMMMMMM

LLL

L

 

(2.40) 
yields  

[ ]i

mNC

i GjAUjY )()( ),(,,1 ωω L=                                          (2.41) 

From Equation (2.41), [ ]  can then be determined 

using an Least Square based approach to yield 

[ ]TN

Ci

N

iCiii mNm
GGGGG )(*

),(
)(*

)1,(
)1(*

),(
)1(*
)1,(

*

),(),1(
LLL=

[ ] ( ) ( )[ ] ( ) )()()()( ),(,,1
1

),(,,1),(,,1* ωωωω jYjAUjAUjAUG i

TmNCmNCTmNC

i

LLL
−

=    (2.42) 

From Equation (2.29), it is known that the number of NOFRF terms will increase with 

the number of system inputs. For instance, a single input nonlinear system (m=1) with up 

to 4th order nonlinearity (N=4) has only 4 NOFRF terms; however, a nonlinear system of 

N=4 and m=2 will have 14 NOFRF terms. This implies that 14 different signal excitations 

are needed to generate the data of the output spectra to estimate these NOFRFs. 

3 Energy Transfer Phenomena of a Multi-Input Nonlinear System  

In this section, the concept of NOFRFs for multi-input nonlinear systems is applied to 

investigate the energy transfer phenomena in a 2-DOF nonlinear system [2]. The 

differential equation of the considered nonlinear system is given by 

)()()())()((

))()(()()()()()()()(

1
3
13

2
12

3
213

2
212212112112121121111

tutyktyktytyc

tytyctyktykktyctycctym

=++−+

−+−++−++

&&

&&&&&&
 

)())()((

))()(()()()()()()()(

2
3

213

2
212112222121122221222

tutytyc

tytyctyktykktyctycctym

=−−

−−−++−++

&&

&&&&&&
     (3.1) 

Where  are the two outputs of the system, , , , ,  

 ,  are the system parameters: mass, damping and stiffness respectively. The 

nonlinear system can be illustrated as a mechanical oscillator shown in Figure 3. 

)(),( 21 tyty 21,mm 221211 ,, ccc 2c 3c ,, 1211 kk

,22k 2k 3k

 

k3, k2, k11k22 k12

Figure 3, a 2-DOF nonlinear system 

c22

m2

c3, c2, c12

m1

 c11

 11



In the following study, the values of all the parameters used are , kg 121 == mm =11c  

, , , 2212 cc = N/m/s 20= 2
2 N(m/s) 5001×=c 34

3 N(m/s) 101×=c 221211 kkk ==  

, , , and the two input excitations are N/m 101 4×= 27
2 N/m 101×=k 39

3 N/m 105×=k

t

tt
tu

)102sin()352sin(

2

3
)(1

×××−×××
=

ππ
π

     sec10sec10 ≤≤− t        (3.2) 

t

tt
tu

)852sin()1002sin(

2

3
)(2

×××−×××
=

ππ
π

    sec10sec10 ≤≤− t        (3.3) 
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Figure 4, The spectra of the two inputs for the system in Equation (3.1)  
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Figure 5 The spectra of ,  and  for the system in Equation (3.1) )(2
1 tu )(2

2 tu )()( 21 tutu

The frequency ranges of the first input and the second input are [-10 -35] [10 35] Hz 

and [-85 -100]  [85 100] Hz respectively. These spectra are shown in Figure 4. 

According to Equation (2.21), it can be known that the frequency range of  

is [2 10 2×35] [10-35 35-10] U [-2

U

U

)()2(
)0,2( 21

ωjU PP ==

× U ×35 -2×10] = [-70 70] Hz. Similarly, it can be 

deduced that the frequency range of  is [-200 -170] [-15 15] [170 200] 

Hz. According to Equation (2.23), it can be known that the frequency range of 

 is [-135 -95] [-90 -50] U [50 90] U [95 135] Hz. These results are 

verified by the spectra of   and u shown in Figure 5. Furthermore, using 

Equation (2.25), the possible frequency range of the output can be calculated to be [-200 -

170] [-135 135] [170 200] Hz. 

)()2(
)2,0( 21

ωjU PP == U U

)()2(
)1,1( 21

ωjU PP ==

(1 t

U

)(2
2 tu )() 2ut

U U

The forced response of the system is obtained through integrating Equation (3.1) using a 

fourth-order Runge–Kutta method, and the of results over ( 33 ≤≤− t ) are shown in 

Figure 6. Figure 7 shows the spectra of the outputs, which clearly indicate the two 

outputs have the same frequency range over [0 135] U [170 200] Hz, and this frequency 

range is the same as determined using the analysis result by Equation (2.24). From Figure 

7, it can be seen that considerable input energy is transferred by the system from the input 

frequency band [10 35] U [85 100] Hz to the other frequency ranges [0 10) U (35 70] Hz.  
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Figure 6 The output response of the system in Equation (3.1) 
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Figure 7 The output spectra of the system in Equation (3.1) 

The NOFRFs of system (3.1) under the excitation (3.2) and (3.3) have been evaluated up 
to second order over the frequency range [0 135] [170 200] Hz. According to Equation 

(2.30), to evaluate the NOFRFs of a 2-DOF nonlinear system up to the second order, 

generally, five different signal excitations are needed. However, from the frequency 
ranges of ,  , ,  and , 

the output frequency responses in Equation (2.26) can be simplified as the below 

U

)()1(
)1( 1

ωjU P = )()1(
)1( 2

ωjU P = )()2(
)0,2( 21

ωjU PP == )()2(
)2,0( 21

ωjU PP == )()2(
)1,1( 21

ωjU PP ==

)()()()()( )2(
)2,0(

)2(
)2,0,(

)2(
)0,2(

)2(
)0,2,( 21212121

ωωωωω jUjGjUjGjy PPPPiPPPPii ======== += )100[∈ω Hz  (a) 

   )()()()()( )2(
)0,2(

)2(
)0,2,(

)1(
)1(

)1(
)1,( 212111

ωωωωω jUjGjUjGjy PPPPiPPii ====== +=

)()( )2(
)2,0(

)2(
)2,0,( 2121

ωω jUjG PPPPi ====+                                               ]1510[∈ω Hz  (b) 

        )()()()()( )2(
)0,2(

)2(
)0,2,(

)1(
)1(

)1(
)1,( 212111

ωωωωω jUjGjUjGjy PPPPiPPii ====== += ]3515(∈ω Hz  (c) 

)()()( )2(
)0,2(

)2(
)0,2,( 2121

ωωω jUjGjy PPPPii =====                                                )5035(∈ω Hz  (d) 

)()()()()( )2(
)1,1(

)2(
)1,1,(

)2(
)0,2(

)2(
)0,2,( 21212121

ωωωωω jUjGjUjGjy PPPPiPPPPii ======== +=     

]7050[∈ω Hz  (e) 

)()()( )2(
)1,1(

)2(
)1,1,( 2121

ωωω jUjGjy PPPPii =====                              )135100()8570( U∈ω Hz  (f) 

)()()()()( )2(
)1,1(

)2(
)1,1,(

)1(
)1(

)1(
)1,( 212122

ωωωωω jUjGjUjGjy PPPPiPPii ====== +=  

]10095[]9085[ U∈ω  Hz  (g) 

)()()( )1(
)1(

)1(
)1,( 22

ωωω jUjGjy PPii ===                                                           )9590(∈ω  Hz  (h) 

)()()( )2(
)2,0(

)2(
)2,0,( 2121

ωωω jUjGjy PPPPii =====                                            ]200170[∈ω  Hz  (i) 

for i = 1, 2             (3.4) 

Equation (3.4) indicates that, to estimate the NOFRFs up to the second order, three 

different excitations are enough. Equations (3.4-a~3.4-i) also clearly show how the energy 

transfer happens in the nonlinear system (3.1) when subjected to the inputs (3.2) and (3.3). 

For example, from Equation (3.4-a), it is clearly that it is the 2nd order NOFRFs 
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)()2(
)0,2,1( 21

ωjG PP == ,  which transfer the energy from the frequency bands of 

the first input ([10 35] Hz) and the second input ([85 100] Hz) respectively to the frequency 

band [0 10) Hz in the output. The evaluated NOFRFs are shown in Figure 8 and Figure 9. 
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Figure 9, The second order NOFRFs )()2(
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ωjG PPi ==  and 
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ωjG PPi == , (i =1,2)  

As the spectra in Figure 7 show, most of the output energy is located in the frequency 

range [0 70] Hz. From Figure 8 and Figure 9, it can be seen that, in the frequency range 

of [0 70] Hz, the first input dependent NOFRFs, such as  and 

, are much bigger than the other NOFRFs. This implies that the output 

energy in this frequency range is mainly contributed by the first input. For example, 

according to Equation (3.4-b), the first output response at 14 Hz is contributed by the 

three terms , , and 

. The contributions from these terms to the output are 

given in Table 1. 

)()1(
)1,( 1

ωjG Pi =

)()2(
)0,2,( 21

ωjG PPi ==

)()( )1(
)1(

)1(
)1,1( 11

ωω jUjG PP == )()( )2(
)0,2(

)2(
)0,2,1( 2121

ωω jUjG PPPP ====

)()( )2(
)2,0(

)2(
)2,0,1( 2121

ωω jUjG PPPP ====
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Table 1. The contributions of different terms to the output response at frequency of 14 Hz 

Terms Values Modulus 

)()( )1(
)1(

)1(
)1,1( 11

ωω jUjG PP ==
(0.1496 + 0.0066i)×

(1.5899e-004-1.1215e-004i)
2.9135e-005

)()( )2(
)0,2(

)2(
)0,2,1( 2121

ωω jUjG PPPP ====
(4.9330 + 0.2171i)×

(-6.0092e-006 +5.1081e-006i)
3.8944e-005

)()( )2(
)2,0(

)2(
)2,0,1( 2121

ωω jUjG PPPP ====
(0.3888 + 0.0171i) ×

(4.8131e-007 -3.9035e-007i)
2.4117e-007

From Table 1, it can be seen that the contribution of  is so 

small that it can be ignored. The output response at other frequencies can be analyzed in a 
similar way. 

)()( )2(
)2,0(

)2(
)2,0,1( 2121

ωω jUjG PPPP ====

Comparing Equation (1.4) and Equation (2.12), the main difference between the NOFRFs 
of the single-input and the multi-input nonlinear systems is that the multi-input NOFRFs 
have more cross-NOFRF terms, for instance, , (i =1,2) for the second 

order NOFRF. From Equations (3.4-e, f, g), it can be seen that, in this study, 
, (i=1,2) only influence the components at [50 90] U [95 135] Hz. 

Equation (3.4-f) also indicates that the output responses at (70 85) U (100 135) Hz are 

only determined by  , (i=1,2)  and have a very small amplitude. At other 

frequency ranges, , (i=1,2) will influence the output response together 

with other NOFRF terms, for example with , (i=1,2) at [50 70] Hz. For 

the first output response at 55 Hz, the contributions by  and 

 are given in below Table 2. 

)()2(
)1,1,( 21

ωjG PPi ==

)()2(
)1,1,( 21

ωjG PPi ==

)()2(
)1,1,( 21

ωjG PPi ==

)()2(
)1,1,( 21

ωjG PPi ==

)()2(
)0,2,( 21

ωjG PPi ==

)()2(
,1(G P )0,2 21

ωjP ==

)()2(
)1,1,1( 21

ωjG PP ==

Table 2. The contributions of different terms to the output response at frequency of 55 Hz 

Terms Values Modulus 

)()( )2(
)0,2(

)2(
)0,2,1( 2121

ωω jUjG PPPP ====
(3.3131 + 0.5782i)×

(-9.0729e-007 +8.2225e-008i)
3.0639e-006

)()( )2(
)1,1(

)2(
)1,1,1( 2121

ωω jUjG PPPP ====
(1.0498 + 0.1832i) ×

(8.5484e-008 -6.8922e-008i)
1.1702e-007

The results in Table2 show that, compared with , the 

contribution of   to the output response at 55 Hz is very 

small and can be ignored. Similarly, it can be found that the contribution of the cross-

NOFRF to the output responses at other frequencies is also very small. To a certain 

degree, this implies that the influence of the cross-NOFRFs on the output responses can 

be ignored in this specific case.  

)()( )2(
)0,2(

)2(
)0,2,1( 2121

ωω jUjG PPPP ====

)()( )2(
)1,1(

)2(
)1,1,1( 2121

ωω jUjG PPPP ====
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The results shown in Figure 8 and Figure 9 indicate that the maximum gains in the 

NOFRFs of )()2(
)0,2,( 21

ωjG PPi ==  appear near 16Hz and 28Hz, (i =1,2). This means that, at 

these frequencies, the energy transfer through these NOFRFs becomes more efficient, 

and the frequency components at these frequencies will become significant in the output 

spectra. This can be confirmed by the output spectra shown in Figure 7 where some 

significant components can be found at these frequencies. 

The above qualitative analysis gives a clear interpretation regarding why and how the 

generation of new frequencies happens in a multi-input nonlinear system, and extends the 

procedure for the same analysis for single-input nonlinear systems to the more general 

multi-input nonlinear system case. 

4 Conclusions and Remarks 

In the present study, the concept of NOFRFs has been extended from the single-input 

nonlinear system case to the multi-input nonlinear system case. Given the frequency 

range of the inputs, a new method was also developed to determine the output frequency 

range. The phenomenon of energy transfer in a 2DOF nonlinear system subjected to two 

input excitations was investigated using the concept of NOFRFs for multi-input systems.  

Multi-input systems are important in many engineering systems and structures. For 

example, multi-degree of freedom mechanical structures are a typical example of this 

category of systems. Therefore, the extension of the NOFRF concept to the more general 

multi-input case of nonlinear systems is important for the potential applications of the 

NOFRF concept to a wide range of engineering areas. 

Acknowledgements 

The authors gratefully acknowledge the support of the Engineering and Physical Science 

Research Council, UK, for this work. 

References  
1. R.K. Pearson, Discrete Time Dynamic Models. Oxford University Press, 1994 

2. K. Worden, G. Manson, G.R. Tomlinson, A harmonic probing algorithm for the 
multi-input Volterra series. Journal of Sound and Vibration 201(1997) 67-84 

3.  Z. Q. Lang, S. A. Billings, Output frequency characteristics of nonlinear system, 
International Journal of Control 64 (1996) 1049-1067. 

 18



4. S.A. Billings, K.M. Tsang, Spectral analysis for nonlinear system, part I: parametric 
non-linear spectral analysis. Mechanical Systems and Signal Processing, 3 (1989) 
319-339 

5. S.A. Billings, J.C. Peyton Jones, Mapping nonlinear integro-differential equations 
into the frequency domain, International Journal of Control 52 (1990) 863-879. 

6. J.C. Peyton Jones, S.A. Billings, A recursive algorithm for the computing the 
frequency response of a class of nonlinear difference equation models. International 

Journal of Control 50 (1989) 1925-1940. 

7.  H. Zhang, S. A. Billings, Analysing non-linear systems in the frequency domain, I: 
the transfer function, Mechanical Systems and Signal Processing 7 (1993) 531–550. 

8. H. Zhang, S. A. Billings, Analysing nonlinear systems in the frequency domain, II: 
the phase response, Mechanical Systems and Signal Processing 8 (1994) 45–62. 

9. Z. Q. Lang, S. A. Billings, Energy transfer properties of nonlinear systems in the 
frequency domain, International Journal of Control 78 (2005) 354-362. 

10.  Z. K. Peng, Z. Q. Lang, S. A. Billings, Y. Lu, Frequency domain energy transfer 
properties of bilinear oscillators under harmonic loadings, Journal of Sound and 

Vibration, (2005) submitted. 

11.  J. A. Vazquez Feijoo, K. Worden, R. Stanway, Associated Linear Equations for 
Volterra operators, Mechanical Systems and Signal Processing 19 (2005) 57-69. 

12. J. A. Vazquez Feijoo, K. Worden. R. Stanway, System identification using associated 
linear equations, Mechanical Systems and Signal Processing 18 (2004) 431-455. 

13. L.Z. Guo, S.A. Billings, A comparison of polynomial and wavelet expansions for the 
identification of chaotic coupled map lattices. International Journal of Bifurcation 

and Chaos, 9 (2005) 2927-2938 

 19


	Nonlinear Output Frequency Response Functions for Multi-Inpu
	Z K Peng, Z Q Lang, and S A Billings

	Research Report No. 925
	Nonlinear Output Frequency Response Functions for Multi-Inpu
	Abstract: The concept of Nonlinear Output Frequency Response
	1 Introduction
	2   The Concept of Nonlinear Output Frequency Response Funct
	2   NOFRFS for Multi-Input Nonlinear Volterra Systems
	2.1 Multi-Input Nonlinear Volterra Systems
	2.2  Definition of the NOFRFs for Multi-Input Nonlinear Volt
	2.3 Determination of the Output Frequency Range of Multi-Inp
	2.4 Evaluation of the NOFRFs for Multi-Input Systems
	3 Energy Transfer Phenomena of a Multi-Input Nonlinear Syste
	4 Conclusions and Remarks

	Acknowledgements
	References


