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Abstract:  Resonant phenomena for a class of nonlinear systems, which can be described 

by a SDOF model with a polynomial type nonlinear stiffness, are investigated using 

Nonlinear Output Frequency Response Functions (NOFRFs). The concepts of resonance 

and resonant frequencies are proposed for the first time for a class of nonlinear systems. 

The effects of damping on the resonances and resonant frequencies are also analyzed. 

These results produce a novel interpretation of energy transfer phenomena in this class of 

nonlinear systems and show how the damping effect influences the system resonant 

frequencies and amplitudes. The results are important for the design and fault diagnosis 

of mechanical systems and structures which can be described by the SDOF nonlinear 

model. 

1. Introduction 

Resonance is a well known concept in linear system analysis. At a resonance, the 

frequency of an exciting force matches the natural frequency of the system so that the 

energy transmission is efficient, and the amplitude of vibration can become significant. 

The study of resonances is important in many branches of engineering. For example, in 

mechanical and civil engineering design, vehicle design [1], the design of steam-turbine 

rotor-bearing systems [2], and bridge design [3], and the design of vibration controllers 

and isolators [4][5].  Understanding resonances is important to ensure an appropriate 

running condition and a desired behavior of the systems. Almost all studies of resonance 

assume the system is linear. However, in engineering many dynamical systems have 

nonlinear components, which cannot simply be described by a linear model. For example, 

vibration components with clearances [6][7] and motion limiting stops [8][9] or vibration 

components with fatigue damage [10][11], which cause abrupt changes in the stiffness 

and damping coefficients, represent a significant proportion of these systems. To 

investigate such nonlinear systems, nonlinear oscillators have been widely adopted. For 

example, the bilinear oscillator, piecewise linear oscillator and cubic stiffness oscillator 
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[12] are often used to describe the changes of stiffness with operating conditions. In 

engineering practice and laboratory research activities, resonance phenomena have also 

been observed in nonlinear systems. It has been observed that, when the excitation 

frequency is half the eigenfrequency of a cracked object, vibrations often become 

significant. The resonance at the eigenfrequency is a similar effect to the resonance of a 

linear system, but the resonance at half the eigenfrequency is a phenomenon unique to 

nonlinear systems, and is known as the secondary resonance [13][14][15]. In addition, a 

one third eigenfrequency resonance has also been observed in a system with a nonlinear 

stiffness [16]. Although the importance of the resonance for linear systems is well-known 

and the phenomena of resonances have been observed in nonlinear systems, surprisingly, 

there are no equivalent concepts about resonances and resonant frequencies for nonlinear 

systems.  

Unlike linear systems where the dynamic properties can be simply described by the 

system frequency response function (FRF), the description of the dynamic properties of 

nonlinear systems is much more complicated. A comprehensive investigation of the issue 

of resonances and resonant frequencies for nonlinear systems is complicated because 

there are no tools which are capable of tackling problems for all nonlinear systems. 

Nonlinear output frequency response functions (NOFRFs) are a new concept recently 

proposed by the authors [17]. The concept can be considered to be an extension of the 

classical frequency response function for linear systems to the nonlinear case. NOFRFs 

are one dimensional functions of frequency, which allow the analysis of nonlinear 

systems to be implemented in a manner similar to the analysis of linear systems and 

which provide great insight into the mechanisms which dominate many nonlinear 

behaviours. The NOFRF concept was recently used to investigate the energy transfer 

properties of bilinear oscillators in the frequency domain [18], where the results revealed 

the existence of resonances in this class of oscillators.  

In the present study, based on the concept of NOFRFs, the phenomena of resonance is 

studied for a class of nonlinear systems which can be described by a SDOF model with a 

polynomial type nonlinear stiffness. The effects of damping on the resonances and 

resonant frequencies are analyzed. The results are useful for the study of energy transfer 

phenomena for this class of nonlinear systems and for investigating the effects of 

damping on the nonlinear behaviour. These results are important for the design and fault 

diagnosis of mechanical systems and structures which can be described by a SDOF 

nonlinear model.  



 4

2. SDOF Nonlinear Systems with Polynomial Type Stiffness 

In engineering, there are many dynamical systems with nonlinear components, most of 

which can be described as a single degree-of-freedom (SDOF) systems with different 

nonlinear spring characteristics as shown in Equation (1) [12] 

)())(()()( 0 tftxstxctxm =++ &&&                                                 (1) 

In Equation (1), m and c are the object mass and damping coefficient respectively; x(t) is 

the displacement, and  )(xs  is the restoring force which is a nonlinear function of x(t).  

Some of the most commonly used nonlinear restoring force representations can be found 

in reference [12]. Figure 1 gives some of these results, which have been widely used in 

mechanical and structural behaviour studies. For example, a crack in a beam can be 

modelled as a bilinear stiffness oscillator [10][11], the connection between a control 

surface and servoactuator in an aircraft wing [19] can be expressed as a spring with 

piecewise linear stiffness, and a planetary gear system [20] with multiple clearances can 

be described as a clearance type nonlinear system shown in Figure 1 (c).   

  
        (a) Bilinear stiffness     (b) Bilinear stiffness with offset            (c) Clearance   

  
 (d) Off-centre clearance       (e) Piecewise linear stiffness  (f) Pre-loaded piecewise linear  

    stiffness 

x  

s(x) 

x x 

s(x) s(x) 

s(x) s(x) s(x) 

x  x x 
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                                     (g) Saturation                          (h) Cubic Stiffness  

Fig 1 Most commonly used representations of nonlinear restoring force 

In mathematics, the Weierstrass Approximation Theorem [21] guarantees that any 

continuous function on a closed and bounded interval can be uniformly approximated on 

that interval by a polynomial to any degree of accuracy. All the nonlinear restoring forces 

in Fig 1 are continuous functions of displacement x; and can therefore be approximated 

by a polynomial. Figure 2 shows a polynomial approximation for a piecewise linear 

stiffness restoring force. 

 
Figure 2. A polynomial approximation of a piecewise linear restoring force 

With a polynomial approximation of the restoring force s(x), the SDOF nonlinear system 

(1) can be described by a polynomial type nonlinear system, as 

 )(0

1

tfxkxcxm
n

i

i

i =++ ∑
=

&&&                                               (2) 

where n is the order of the approximating polynomial, and ik , ),,1( ni L=  are the 

characteristic parameters of the restoring force s(x). 

Because many nonlinear systems and structures can be approximated by polynomial type 

nonlinear systems, an investigation of the polynomial type nonlinear systems will be 

important for understanding and explaining complicated nonlinear phenomena caused by 

s(x) 

s(x) s(x) 

x 

x x  
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nonlinear components in mechanical systems and structures. The Volterra series theory of 

nonlinear systems is the basis of the study of a wide class of nonlinear systems including 

the polynomial type nonlinear system given by Equation (2). The concepts of Generalised 

Frequency Response Functions (GFRFs) [22]-[24] and Nonlinear Output Frequency 

Response Functions (NOFRFs) are the frequency domain representations of the nonlinear 

systems which can be described by a Volterra series model.  

GFRFs and NOFRFs are the extensions of the frequency response function of linear 

systems to the nonlinear case from two different perspectives. However, the NOFRFs are 

a one dimensional function of frequency. This allows the analysis of nonlinear systems in 

the frequency domain to be implemented in a manner similar to the analysis of linear 

system frequency response functions, and consequently provides a convenient way to 

analyze resonance phenomena of a class of nonlinear systems.  

3. Nonlinear Output Frequency Response Functions (NOFRFs) 

3.1 NOFRFs under General Inputs 

NOFRFs were recently proposed and used to investigate the behaviour of structures with 

polynomial-type non-linearities [17]. The definition of NOFRFs is based on the Volterra 

series theory of nonlinear systems. The Volterra series extends the familiar concept of the 

convolution integral for linear systems to a series of multi-dimensional convolution 

integrals.  

Consider the class of nonlinear systems which are stable at zero equilibrium and which 

can be described in the neighbourhood of the equilibrium by the Volterra series 

i
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where  y(t) and u(t) are the output and input of the system, ),...,( n1nh ττ  is the nth order 

Volterra kernel, and N denotes the maximum order of  the system nonlinearity. Lang and 

Billings [22] have derived an expression for the output frequency response of this class of 

nonlinear systems to a general input. The result is  
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This expression reveals how nonlinear mechanisms operate on the input spectra to 

produce the system output frequency response. In (4), )( ωjY  is the spectrum of the 

system output, )( ωjYn  represents the nth order output frequency response of the system, 

n

j

nnnn ddehjjH nn ττττωω τωτω
...),...,(...),...,( 1

),...,(

11
11 ++−∞

∞−

∞

∞− ∫∫=          (5) 

is the definition of  the Generalised Frequency Response Function (GFRF), and 

∫ ∏
=++ =ωωω
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i

inn djUjjH
,..., 1

1

1

)(),...,(  

denotes the integration of ∏
=

n

i

inn jUjjH
1

1 )(),...,( ωωω  over the n-dimensional hyper-plane 

ωωω =++ nL1 . Equation (4) is a natural extension of the well-known linear relationship 

)()()( 1 ωωω jUjHjY =  to the nonlinear case.  

For linear systems, the possible output frequencies are the same as the frequencies in the 

input. For nonlinear systems described by Equation (3), however, the relationship between 

the input and output frequencies is more complicated. Fortunately, given the frequency 

range of the input, the output frequencies of system (3) can be determined using an 

explicit expression derived by Lang and Billings in [22].  

Based on the above results for output frequency responses of nonlinear systems, a new 

concept known as the Nonlinear Output Frequency Response Function (NOFRF) was 

recently introduced by Lang and Billings [17]. The concept was defined as 
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under the condition that 
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Notice that )( ωjGn  is valid over the frequency range of )( ωjU n , which can be 

determined using the algorithm in [22]. 

By introducing the NOFRFs )( ωjGn , Nn L,1= , Equation (4) can be written as  

∑∑
==

==
N

n

nn

N

n

n jUjGjYjY
11

)( )( )()( ωωωω                               (8) 

which is similar to the description of the output frequency response of linear systems. For 

a linear system, the relationship between )( ωjY  and )( ωjU   can be illustrated as in 
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Figure 3. Similarly, the nonlinear system input and output relationship of Equation (3) 

can be illustrated in Figure 4.  

 

 

 

Figure 3. The output frequency response of a linear system 

 

 

 

 

 

 

Figure 4. The output frequency response of a nonlinear system 

The NOFRFs reflect a combined contribution of the system and the input to the 

frequency domain output behaviour. It can be seen from Equation (6) that )( ωjGn  

depends not only on nH  (i=1,�,N) but also on the input )( ωjU . For any structure, the 

dynamical properties are determined by the GFRFs nH  (i= 1,�,N). However, from 

Equation (5) it can be seen that the GFRF is multidimensional [19][20], which makes it 

difficult to measure, display and interpret the GFRFs in practice. Feijoo, Worden and 

Stanway [27]-[29] demonstrated that the Volterra series can be described by a series of 

associated linear equations (ALEs) whose corresponding associated frequency response 

functions (AFRFs) are easier to analyze and interpret than the GFRFs. According to 

Equation (6), the NOFRF )( ωjGn  is a weighted sum of ),...,( 1 nn jjH ωω  over 

ωωω =++ nL1  with the weights depending on the test input. Therefore )( ωjGn  can be 

used as alternative representation of the structural dynamical properties described by nH . 

The most important property of the NOFRF )( ωjGn  is that it is one dimensional, and 

thus allows the analysis of nonlinear systems to be implemented in a convenient manner 

similar to the analysis of linear systems. Moreover, there is an effective algorithm [17] 

available which allows the estimation of the NOFRFs to be implemented directly using 

system input output data. This algorithm is briefly introduced in below.  

Rewrite Equation (8) as  

[ ] [ ][ ])()(,),()( 1 ωωωω jGjUjUjY NL=                         (9) 

where [ ] T

N jGjGjG )](,),([)( 1 ωωω L= . 

Y(jȦ) U(jȦ) 
H(jȦ)=G1(jȦ) 

Y1(jȦ) 

Y2(jȦ) 

YN(jȦ) UN(jȦ) 

U1(jȦ) 

U2(jȦ) 

G1(jȦ) 

G2(jȦ) 

GN(jȦ) 

Y(jȦ) 
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Consider the case of )()( * tutu α=  where α  is a constant and )(* tu  is the input signal under 

which the NOFRFs of the system are to be evaluated, then 
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where )(* ωjU  is the Fourier Transform of )(* tu  and 
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In this case, it is known from Equation (9) that  

[ ] [ ][ ])( )(,),()( ***

1 ωωαωαω jGjUjUjY N

NL=                           (11) 

where [ ] [ ]TN jGjGjG )(,),()( **

1

* ωωω L= which are the NOFRFs to evaluate. 

Excite the system under study N  times by the input signals )(* tuiα , Ni ,...,1= , where 

N N≥  and 11
,,, ααα L−NN

 are constants which satisfy the condition 

011
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N  output frequency responses )( ωjY i , Ni ,...,1=  can be generated for a system under 

study. From Equation (11), it is known that the output frequency responses can be related 

to the NOFRFs to be evaluated as below. 
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Consequently the values of the NOFRFs, )(,),( **
1 ωω jGjG NL , can be determined using a 

least squares based approach as 
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3.2 NOFRFs under Harmonic Input 

Harmonic inputs are pure sinusoidal signals which have been widely used for dynamic 

testing of many engineering structures. Therefore, the extension of the NOFRF concept to 

the harmonic input case is of considerable engineering significance.  

When system (3) is subject to a harmonic input 

)cos()( βω += tAtu F                                                     (16) 

Lang and Billings [22] showed that Equation (3) can be expressed as 
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{ }
otherwise

1, ±=∈ kk Fωω
                          (18) 

Define the frequency components of nth order output of the system as nΩ , according to 

Equation (17), the frequency components in the system output can be expressed as 

U
N

n

n

1=

Ω=Ω                                                      (19) 

and nΩ  is determined by the set of frequencies 

{ }niFkkk in
,,1,|

1
LL =±=++= ωωωωω                           (20) 

From Equation (20), it is known that if all 
nkk ωω ,,

1
L  are taken as Fω− , then Fnωω −= . 

If  k of them are taken as Fω , then Fkn ωω )2( +−= . The maximal k is n. Therefore the 

possible frequency components of  )( ωjYn  are     

nΩ ={ }nkkn F ,,1,0,)2( L=+− ω                                   (21) 

Moreover, it is easy to deduce that  

},,1,0,1,,,{
1

NNkk F

N

n

n LLU −−==Ω=Ω
=

ω                          (22) 

Equation (22) explains why some superharmonic components will be generated when a 

nonlinear system is subjected to a harmonic excitation. In the following, only those 

components with positive frequencies will be considered. 

The NOFRFs defined in Equation  (6) can be extended to the case of harmonic inputs as 
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Obviously, )( ωjG H

n  is only valid over nΩ  defined by Equation  (21). Consequently, the 

output spectrum )( ωjY  of nonlinear systems under a harmonic input can be expressed as 
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When k of the n frequencies of 
nkk ωω ,,

1
L  are taken as Fω  and the others are as Fω− , 

substituting Equation  (18) into Equation  (24) yields,   
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where ),...,( 1 nn jjH ωω  is assumed to be a symmetric function. Therefore, in this case, 

)( ωjG H

n  over the nth order output frequency range nΩ ={ }nkkn F ,,1,0,)2( L=+− ω  is 

equal to the GFRF ),...,( 1 nn jjH ωω  evaluated at ,1 Fk ωωω ===L  Fnk ωωω −===+ L1 , 

nk ,,0 L= .  

3.3 NOFRFs of the Polynomial Type Nonlinear Systems under Harmonic Inputs 

By setting  
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the polynomial type nonlinear system (2) can be expressed in a standard form 
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The first nonlinear output frequency response function can easily be determined from the 

linear part of Equation (28) as 

2211
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ωωςωω
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==                            (29) 

The GFRF up to 4
th

 order can be calculated recursively using the algorithm by Billings 

and Peyton Jones [30] to produce the results below. 
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From Equations (30)~(35), it can be observed that ),,,( 43214 ωωωω jjjjH , 

),,( 3213 ωωω jjjH  and ),( 212 ωω jjH  are symmetric functions. Therefore, when the 

system (28) is subjected to a harmonic loading, the NOFRFs of the system can be 

described as  
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[ ])4()4()4()4(),,,()4( 4444334221

2

44 ωεωεωεωωωωωωω jHjHjHjHjjjjHjG L

H ++−==
(40)  

where 

( )
)(|)(|

)2()(
2

3
2)2(

)3(
2

1
)2(

),,,()2(

2

1

2

1

1

2

2131

22

2

131

22

2

2

4242

ωω
ωεωεωωε

ωεωωε
ω

ωωωωω

jHjH

jHjHjH

jHjH

jjjjHjH

L

L

L

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+⎥⎦
⎤

⎢⎣
⎡ −++

⎥⎦
⎤

⎢⎣
⎡ −

=−=

               (41) 

[ ] 2

1

2

11

2

24343 |)(|)(1)2(
2

3
),,,()2( ωωωωεωωωωω jHjHjHjjjjHjH L +−=−=            (42) 

2

1

2

14444 |)(|)(),,,()2( ωωωωωωω jHjHjjjjHjH =−=                                               (43)  

[ ]
)(

)2(

)3(2)2(4
),,,()4( 4

12

1

22

2

131

22

22

4242 ω
ωωε

ωεωωε
ωωωωωω jH

jH

jHjH
jjjjHjH

L

L

L ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+

−
==        (44)  

)2()(3)4( 1

4

1

2

243 ωωωεω jHjHjH L−=                                                                             (45) 

)(),,,()4( 4

14444 ωωωωωω jHjjjjHjH ==                                                                   (46) 

4 Analysis of the Resonance Phenomena of the Polynomial Type 
Nonlinear Systems 

Resonance is a well-known phenomenon in engineering, which is an operating condition 

where an excitation frequency is near a natural frequency of machines or structures. 

When a resonance occurs for a structure, the resulting vibration levels can be very high 

and this can cause considerable damage. In a machine that produces a broad vibration 

spectrum, a resonance shows up in the vibration spectrum as a peak. Depending on the 

effect of damping, the peak may be quite sharp or broad. As the dynamic properties of 

SODF linear systems can simply be described by the FRF, it is easy to investigate the 

resonance for linear systems. However, the resonance analysis of nonlinear systems is 

much more difficult. The concept of NOFRFs allows the analysis of a wide class of 

nonlinear systems to be implemented in a manner similar to the analysis of linear system 

frequency responses. Consequentially, the NOFRF concept provides a novel approach to 

the analysis of resonant phenomena of nonlinear systems. 
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4.1 The Resonances and Resonant Frequencies of the NOFRFs 

Consider the polynomial type nonlinear system (2) subjected to a harmonic input (16). 

The output spectrum )( ωjY  of the system can be represented using the concept of 

NOFRFs as (25); and the contribution of the nth order system nonlinearity to the system 

output spectrum is given by  

)( )()( ωωω jAjGjY n

H

nn = , n = 1,�, N                                (47) 

It is known from Equation (21) and (41) that in this case  

⎪
⎩

⎪
⎨

⎧

=+−=
+−+−=+−

=
                                           otherwise                            0

,,1,0 )2(when                               

))2(())2(())2((

)( n, kkn

knjAknjGknjY

jY F

FnF

H

nFn

n Lωω
ωωω

ω      (48) 

Therefore the magnitude of the NOFRF )( ωjG H

n  at frequency Fkn ωω )2( +−= , 

n k ,,1,0 L=  has a considerable effect on the nth order system output spectrum. 

Consequently, the resonances and resonant frequencies of the NOFRF )( ωjG H

n  will be 

introduced and defined as follows. 

Definition: For the polynomial type nonlinear system (2) subjected to harmonic input 

(16), the resonant frequencies of the system nth order NOFRF  )( ωjG H

n  are those 

 s
'

Fω which make any of ))2(( F

H

n knjG ω+− , n k ,,1,0 L=  reach a maximum, and the 

maxima reached will be referred to as the resonances.                                                       Ƒ  

For n =1, ))2(( F

H

n knjG ω+− , n k ,,1,0 L= , are )(1 F

H jG ω−  and )(1 F

H jG ω . In order 

to determine the resonant frequencies, only the  s
'

Fω which make )(1 F

H jG ω  reach a 

maximum need to be considered. Because 

)()( 11 FF

H jHjG ωω =                                                 (49) 

It can be known that the resonant frequency of )(1 F

H jG ω  is LF ωω = , and the 

corresponding resonance is )()( 11 LL

H jHjG ωω = . 

For n =2, ))2(( F

H

n knjG ω+− , n k ,,1,0 L= , are )2(2 F

H jG ω−  )0(2

HG  and )2(2 F

H jG ω . 

Therefore, the resonant frequencies of )(2 ωjG H  are the  s
'

Fω which make )2(2 F

H jG ω  

reach a maximum.  

From Equation (36) 

)2()(),()2( 1

2

1

2

222 FFLFFF

H jHjHjjHjG ωωωεωωω ==                (50) 

Because )(1 FjH ω  reaches a maximum when Lωω = , Equation (50) implies that the 

resonant frequencies of )(2 ωjG H  are LF ωω =  and 2/LF ωω = , and the corresponding 

resonances are )2()( 1

2

1

2

2 LLL jHjH ωωωε  and )()2/( 1

2

1

2

2 LLL jHjH ωωωε . 
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For n =3, ))2(( F

H

n knjG ω+− , n k ,,1,0 L=  are )3(3 F

H jG ω− , )(3 F

H jG ω− , )(3 F

H jG ω  

and )3(3 F

H jG ω . Clearly, the resonant frequencies of )(3 ωjG H  are the  s
'

Fω which make 

)(3 F

H jG ω  and )3(3 F

H jG ω  reach a maximum.  

From Equations (37) and (38)  

( ) 4

131

22

2

2

33 |)(|2)2(
3

2
),,()( FFLLFFFF

H jHjHjjjHjG ωεωωεωωωωω ⎥⎦
⎤

⎢⎣
⎡ −+=−=   (51) 

)3()()2(2),,()3( 1

3

131

2

2

22

33 FFFLLFFFF

H jHjHjHjjjHjG ωωεωεωωωωωω −===  

 (52) 

These results indicate that the resonant frequencies of )(3 ωjG H  are LF ωω = and 

3LF ωω = , and may also include 2LF ωω = , and the corresponding resonances are 

),,(3 LLL jjjH ωωω− , ),,(3 LLL jjjH ωωω ; )3/,3/,3/(3 LLL jjjH ωωω ; and 

)2/,2/,2/(3 LLL jjjH ωωω− , )2/,2/,2/(3 LLL jjjH ωωω .  

For n = 4, ))2(( F

H

n knjG ω+− , n k ,,1,0 L= , are )4(4 F

H jG ω− , )2(4 F

H jG ω− , )0(4

HG , 

)2(4 F

H jG ω  and )4(4 F

H jG ω . The resonant frequencies of )(4 ωjG H  are the  s
'

Fω which 

make )2(4 F

H jG ω  and )4(4 F

H jG ω  reach a maximum.  

Equations (39), (41)-(43) and (40), (44)-(46) show that 

 

( ) 41

2

23

1

2

213

2

21

22

2

131

22

2

2

2

4

11

2

44

1)2(
2

3

)2()(
2

3
2)2(

)3(
2

1
)2(

)()2(),,,()2(

εωωεε

ωεωεεωωε

ωεωωε
ωε

ωωωωωωωω

+⎥⎦
⎤

⎢⎣
⎡ +−+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+⎟
⎠
⎞

⎜
⎝
⎛ −++

⎟
⎠
⎞

⎜
⎝
⎛ −

×

=−=

FL

FFFL

FFL

L

FFLFFFFF

H

jH

jHjHjH

jHjH

jHjHjjjjHjG

              (53) 

and 

( )
41

2

32

1

22

2

131

22

22

2

4

11

2

44

)2(3
)2(

)3(2)2(4

)()4(),,,()4(

εωωεε
ωωε

ωεωωε
ωε

ωωωωωωωω

+−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−
×

==

FL

FL

FFL

L

FFLFFFFF

H

jH
jH

jHjH

jHjHjjjjHjG

           (54) 

Equations (53) and (54) imply that the resonant frequencies of )(4 ωjG H  are 4/LF ωω = , 

2/LF ωω = and LF ωω = , and may also have 3LF ωω = , and the corresponding 

resonances are )4/,4/,4/,4/(4 LLLL jjjjH ωωωω ; )2/,2/,2/,2/(4 LLLL jjjjH ωωωω , 

)2/,2/,2/,2/(4 LLLL jjjjH ωωωω− ; ),,,(4 LLLL jjjjH ωωωω , 

),,,(4 LLLL jjjjH ωωωω− ;  and )3/,3/,3/,3/(4 LLLL jjjjH ωωωω , 

)3/,3/,3/,3/(4 LLLL jjjjH ωωωω− . 
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Figure 5 gives the NOFRFs of a nonlinear system with a 4
th

 order polynomial type 

stiffness. The system parameters are 12.0=ς , 100=Lω rad/s,  3002 =ε , 
4

3 105×=ε , 5

4 109×=ε . Clearly, the above general analysis is confirmed by this specific 

example. 
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Figure 5. The NOFRFs of a nonlinear system with a 4
th

 order polynomial type stiffness 

under a harmonic loading 
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4.2 Physical Implication of the Resonant Frequencies of NOFRFs 

In the study of the resonance of linear mechanical systems, it is known that when the 

driving frequency of the force matches the natural frequency of a vibrating system, the 

energy transmission is efficient, and the amplitude of the vibration becomes significant. 

Similarly, for nonlinear system which can be described by the polynomial type nonlinear 

model (28), when the system subjected to a harmonic input and the driving frequency Fω  

coincides with one of the resonant frequencies of a NOFRF of the system, the magnitude 

of this NOFRF will reach a maximum (resonance) at a high order harmonic of Fω . 

Consequently, a considerable input signal energy may be transferred by the system from 

the driving frequency to the higher order harmonic component. For example, when 

system (28) is subjected to a harmonic excitation with driving frequency 2/LF ωω = , 

which happens to be the resonant frequency of )(3 ωjG H  and )(2 ωjG H , a considerable 

input energy may be transferred through the 2
nd

 order NOFRF and the 3
rd

 order NOFRF 

from the driving frequency 2/Lω  to the 2
nd

 order harmonic component LL ωω =)2/(2 and 

the 3
rd

 order harmonic component 2/3 Lω  in the output. To demonstrate this, two 

harmonic inputs at the frequencies of ( ) LF ωω 2/3=  and 2/LF ωω =  were used 

respectively to excite system (28) with ς  = 0.10, and the other system parameters are the 

same as those used in Section 4.1. As Equations (25) and (27) indicate, if N = 4, then the 

2
nd

, 3
rd

 and 4
th

 order harmonics could appear in the system output frequency response, 

and the output spectrum can analytically be described as 

)()()()()( 3311 FF

H

FF

H

F jAjGjAjGjY ωωωωω +=                            (55) 

         )2()2()2()2()2( 4422 FF

H

FF

H

F jAjGjAjGjY ωωωωω +=                   (56) 

                        )3()3()3( 33 FF

H

F jAjGjY ωωω =                                                         (57) 

)4()4()4( 44 FF

H

F jAjGjY ωωω =                                                         (58) 

As frequency 2/Lω  is the resonant frequency of )(2 ωjG H  and )(3 ωjG H , which could 

make 
( )2/2

2 )(
L

jG H

ωω
ω

=
 and 

( )2/3
3 )(

L

jG H

ωω
ω

=
 reach a maximum, according to Equation 

(56) and (57), it is known that the 2
nd

 and 3
rd

 harmonic components of the output  

spectrum could be considerable when 2/LF ωω = . In contrast, when 2/3 LF ωω =  which 

is not the resonant frequencies of any of the NOFRFs involved in Equation (55)-(58), a 

significant high order harmonic response should not be expected in the system output. 

Figure (6) shows the spectra of the forced responses in the two cases of 2/LF ωω =  and 

2/3 LF ωω = , which were obtained by integrating equation (28) using a fourth-order 

Runge�Kutta method. It can be seen from Figures (6) that the 2
nd

 and 3
rd

 harmonic 

components in the case of  2/LF ωω =  are considerably more significant than in the case 

of LF ωω 2/3= . 
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These observations lead to a novel interpretation regarding when significant energy 

transfer phenomena may take place with nonlinear systems subjected to a harmonic input. 

The interpretation is based on the concept of resonant frequencies of NOFRFs, and 

concludes that significant energy transfer phenomena may occur with a nonlinear system 

when the driving frequency of the harmonic input happens to be one of the resonances of 

the NOFRFs. 
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(a) Ȧ =  1.5ȦL (a non-resonant frequency            (b) Ȧ =  0.5ȦL (a resonant frequency 

           of the involved NOFRFs)                                   of the involved NOFRFs)                                                           

Figure 6 An illustration of the physical implication of the resonant frequencies of 

NOFRFs 

5 The Effects of Damping on the Nonlinear Resonant Phenomena and 
Output Frequency Responses 

5.1 The Effects of Damping on the Resonances 

Damping refers to the dissipation of vibrational energy. All physical systems have some 

inherent damping. The effects of damping and stiffness [31] on linear structures are well 

understood. Basically speaking, damping is one of crucial factors that determine system 

behaviours. It is well known that the FRF )(1 ωjH  of a damped linear system, defined by 

Equation (29), has only one resonance at the frequency Lω , and the amplitude of )(1 ωjH  

at Lω  is highly dependent on the damping coefficient ς , as given by  

21
2

1
)(

L

LjH
ςω

ω =                                                     (59) 

Equation (51) indicates that ς  can reduce the system response at a resonant frequency, as 

shown in Figure 7.  

2 3 4

1

2

3

4

5
x 10

-5

Ȧ / ȦF Ȧ / ȦF 

|Y(jȦ)| |Y(jȦ)| 
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In the nonlinear case, the effects of damping on the NOFRFs are much more complicated. 

As Section 4.1 indicates, a higher order NOFRF may have more than one resonant 

frequency. What is important is which resonant frequency may produce the biggest 

amplitude thus the dominant resonance for the NOFRF at a corresponding output 

frequency, and how the resonance of NOFRFs depends on the damping coefficient ς . 

The NOFRFs involve more complicated mathematical expressions than a linear FRF 

)(1 ωjH , and are therefore difficult to study analytically. In the following, the effect of 

damping on the second order NOFRF )(2 ωjG H  will be studied analytically, and the other 

NOFRFs will be investigated using simulation studies. 

0.05 0.1 0.15

2

4

6

8

10
x 10

-3

 
ς   

Figure 7 The dependence of a FRF at the resonant frequency Lω  on the damping 

coefficientς  

Define λ  as the ratio between the amplitudes of the two resonances of  )(2 ωjG H , 

2/
2 )2(

LF
F

H jG
ωω

ω
=

 and 
LF

F

H jG
ωω

ω
=

)2(2 ,  so that  

)2()(

)2/(

)2()(

)2/2()2/(

)2(

)2/2(

11

2

1

1

2

1

1

2

1

2

2

LL

L

LL

LL

L

H

L

H

jHjH

jH

jHjH

jHjH

jG

jG

ωω

ω

ωω

ωω

ω

ω
λ ===           (60) 

Substituting (29) into (60) yields  
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⎝
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==
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ω
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jj
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jHjH

jH

LLLL

LLL

LL

L

4

3

4

3
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4

3

4

3

432

)2()(

)2/(

2222

222

11

2

1
    (61) 

That is 

16/9

32

169

32

22 +
=

+
=

ςς

ςλ                                                (62) 

Equation (62) shows that λ  only depends on the damping coefficient ς , and λ  will 

increase with increasing ς . When 0945.0)1632/(9 2 ≈−=ς , λ  is equal to 1.0, that is, 

the two resonances of  )(2 ωjG H  have the same amplitudes. When ς  is smaller than 

|H
1
(j
Ȧ

L
)|

 



 20

0.0945, the resonance at Lω  will be larger than the resonance at 2Lω , so that the 

resonance at Lω  becomes the dominant resonance. On the contrary, when ς  is larger 

than 0.0945, the resonance at 2Lω  becomes the dominant resonance. Figure 8 shows 

this dependence of λ  on the damping coefficientς . 

In addition, from Equation (36), it is known that the amplitude of the resonance of 

)(2 ωjG H  at 2Lω  can be written as 

( )24

2
1

2

1

2

22
169

18
)()2()2/2(

ςςω
ε

ωωωεω
+

==
L

LLLL

H jHjHjG                    (63) 

Equation (63) indicates that )2/2(2 L

H jG ω  decreases sharply with ς  over the range 

17.0005.0 ≤≤ ς  when Lω =100rad/s. Figure 9 shows this analytical relationship. 
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Figure 8 The dependence of λ  on damping coefficientς  
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Figure 9 The dependence of )2/2(2 L

H jG ω  on damping coefficientς  

when Lω  = 100 rad/s 

To investigate the effects of the damping coefficient on other NOFRFs, numerical 

methods were used. The fourth-order polynomial type nonlinear system used in Section 

4.1 was used for the simulation study with the damping coefficient ς  changing between 

Ȝ 

)2/2(2 L

H jG ω  
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0.005 and 0.175. The external force )(0 tf  considered was a sinusoidal force with unit 

amplitude and frequency Fω   which was varied within the range of  LF ωω 5.10 ≤≤ . The 

NOFRFs up to 4
th

 order were analyzed. Figures 10~14 give the results of )2(2 F

H jG ω , 

)(3 F

H jG ω , )3(3 F

H jG ω , )2(4 F

H jG ω  and )4(4 F

H jG ω  respectively. In order to 

avoid the situation where the NOFRFs with a considerable amplitude overdominate the 

plots and make NOFRFs with a relatively small amplitude hardly observable, the 

normalized NOFRFs were used in Figs 10 -14, which were defined by 

( )|)(|max

)(
)(

5.10
F

F
F

jNOFRF

jNOFRF
jNOFRF

LF

ω
ωω

ωω ≤≤

=                                      (64) 

 
 

Figure 10 )2(2 F

H jG ω  at different damping coefficients 

 
 

Figure 11 )(3 F

H jG ω  at different damping coefficients 
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Figure 12 )3(3 F

H jG ω  at different damping coefficients 

 
 

Figure 13 )2(4 F

H jG ω  at different damping coefficients 

 
 

Figure 14  )4(4 F

H jG ω  at different damping coefficients 
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Figure 10 clearly shows that )2(2 F

H jG ω reaches two maxima at =Fω Lω  and 

=Fω 2/Lω , the two resonant frequencies of  )(2 ωjG H
. When the damping coefficient 

ς  is small, the maximum at =Fω Lω  is larger than the resonance at =Fω 2/Lω . As ς  

increases, the resonance at =Fω 2/Lω  becomes more and more significant, and around 

ς  = 0.09, the maximum at =Fω 2/Lω  overwhelms the one at Lω  and becomes the 

dominant resonance of  )(2 ωjG H
. These results confirm the analytical analysis results 

about the resonances of )(2 ωjG H
. From Equation (37), it is known that )(3 F

H jG ω  

may have two maxima at =Fω Lω  and =Fω 2/Lω , the appearance of  the two maxima 

in Figure 11 confirms this. It can be found that the maximum at =Fω 2/Lω  is very small 

and hardly observable, especially over the region of  ς  < 0.1. Therefore, for )(3 ωjG H
, 

the resonance at =Fω Lω  is always the dominant resonance compared with the resonance 

at =Fω 2/Lω . Equation (38) shows that )3(3 F

H jG ω  may produce three maxima at 

=Fω Lω , =Fω 2/Lω  and =Fω 3/Lω ,  all of which are shown clearly in Figure 12. 

According to Figure 12, when ς  < 0.09, the maximum at =Fω Lω  is larger than the two 

others, and therefore is the dominant resonance, but when ς  > 0.09, the maximum at 

=Fω 3/Lω  becomes dominant. Equations (39), (41) ~(43) indicate that )2(4 F

H jG ω  

has three possible maxima at =Fω Lω , =Fω 2Lω  and =Fω 3Lω . Figure 13 confirms 

this, and indicates that the maximum at =Fω Lω  is always dominant, while the other two 

are very weak and observable only in the region of ς  > 0.09. Figure 14 clearly shows 

that )4(4 F

H jG ω  has four maxima at =Fω Lω , =Fω 2Lω , =Fω 3Lω  and 

=Fω 4Lω . Just like the other NOFRFs, when ς  is small, the maximum at =Fω Lω  is 

the dominant resonance and larger than the others, and when ς  is increased, the 

dominant resonance swifts to the other resonant frequencies. In the case shown in Figure 

14, the resonances at =Fω 3Lω  and =Fω 4Lω  have nearly the same amplitudes.  

5.2 The Effect of Damping on the Output Frequency Responses 

The analysis above shows that, since both  =Fω Lω  and =Fω 2Lω  are the resonant 

frequencies of )(2 ωjG H  and )(4 ωjG H , and each could make )2(2 F

H jG ω  and 

)2(4 F

H jG ω  reach a maximum. It follows therefore that the second harmonic component 

)2( FjY ω  will achieve a significant amplitude when =Fω Lω  and =Fω 2Lω . Moreover, 

it is also known from the above analysis that if the damping coefficient ς  is smaller than 

0.0945, )2( FjY ω  at LF ωω =  will be larger than that at 2/LF ωω =  because, under this 

condition, the resonance at =Fω Lω  is the dominant resonance for both )(2 ωjG H  and 

)(4 ωjG H . On the contrary, if ς  > 0.0945, then  )2( FjY ω  at 2/LF ωω =  will be larger 

than the resonance at LF ωω = . In this case, the dominant resonance of )(2 ωjG H  shifts 
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from LF ωω =  to 2/LF ωω = , )2( FjY ω  is mainly determined by )2()2( 22 FF

H jAjG ωω , 

and the contribution of )2()2( 44 FF

H jAjG ωω  to )2( FjY ω  is less significant.  

In order to justify these analysis results, harmonic inputs at the frequencies of LF ωω =  

and LF ωω 2/1=  were used respectively to excite the model used in Section 4.1 with ς  = 

0.06 and ς  = 0.15 respectively. The output spectra are shown in Figures (15)~(18). The 

forced system responses were obtained by integrating Equation (28) using a fourth-order 

Runge-Kutta method. It can be seen from Figures (15)~(18) that, for all ς , the first 

harmonics at LF ωω =  are always larger than those at 2/LF ωω = , This arises because 

Lω  is the only resonant frequency of  )(1 ωjG H . Whereas, in the case of ς  = 0.06, the 

second harmonic at LF ωω =  is larger than that at 2/LF ωω = . However, in the case of ς  

= 0.15, the second harmonic at  LF ωω =  is smaller than that at 2/LF ωω = .  This result 

is completely consistent with the analytical study results about the effects of the damping 

coefficient on the second order NOFRF )(2 ωjG H . 

In mechanical engineering studies [32], the appearance of superharmonic components in 

the output spectrum is considered to be a significant nonlinear effect. From the 

perspective of the energy transfer, it is the linear FRF which transfers the input energy to 

the fundamental harmonic component in the output spectrum, and it is the NOFRFs 

which transfer the input energy to the superharmonic components. Therefore, to a certain 

extent, if the superharmonic components contain more energy in the output spectrum, 

then the nonlinear effects of a nonlinear system can be said to be stronger. Figure 19 

shows the percentage of the whole output energy that the superharmonic components 

contain at different driving frequencies Fω  for different damping coefficients ς . It can 

be seen that there are two strong peaks at the frequencies of =Fω Lω21  and =Fω Lω  in 

the plot, which means the superharmonic components make a significant contribution to 

the total output energy when the  driving frequency happens to be at Lω21  and Lω . This 

implies that, when the class of nonlinear systems investigated in the present study work at 

about half the natural frequency, more energy will be transferred to the superharmonic 

frequency locations, and the nonlinear system will thus render a strong nonlinear 

response. Moreover, it can be found that, for all ς , the peaks at =Fω Lω21  are always 

larger than those at =Fω Lω . This follows because, in the cases of smaller ς , 

=Fω Lω21  is not the dominant resonant frequency for all NOFRFs and, consequently, 

the corresponding higher harmonic components will not be as strong as they are at 

=Fω Lω , and hence the first harmonic component will be significantly reduced when the 

driving frequency shifts from =Fω Lω  to =Fω Lω21 . This significant decrease in the 

first harmonic component causes the total output energy of the system to reduce, 
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therefore the whole energy contained by the superharmonic components are on a 

relatively high level only for =Fω Lω21 . This implies that, the dominant nonlinear 

effects will be more apparent when the system is excited at half the resonant frequency.  

In addition, from Figure 19, it can be seen that, with the augment of ς , the energy 

contained in the superharmonic components will decrease sharply. This is because the 

reduction of the amplitude of the Nth order NOFRF with ς  approximately follows the 

law ( Nς/1 ), therefore the higher order superharmonic components will decrease sharply 

with increasing ς . Comparatively, the decrease of the first harmonic component will be 

relatively slow. The sharp decrease of the higher order superharmonic components with 

the augment of ς  indicates that the nonlinear effects will not be apparent for a heavily 

damped nonlinear system. This also means that a heavily damped nonlinear system will 

act more linearly than a nonlinear system with weak damping properties. 

6 Conclusions and Remarks 

The concept of resonances and resonant frequencies for SDOF nonlinear systems with a 

polynomial type stiffness, which can be used to model a wide range of practical vibration 

components with nonlinear stiffness characteristics, has been introduced based on the 

NOFRFs. A detailed analysis of the effects of damping on the resonant phenomena of 

this class of nonlinear systems has also been completed. 

Many commonly used nonlinear models can be approximated by a polynomial-type 

nonlinear model, which can be analyzed using the Volterra series theory of nonlinear 

systems, and this forms the basis of the concept of NOFRFs. The definition of resonances 

and resonant frequencies of nonlinear systems was introduced for the first time to reveal 

that all higher order NOFRFs generally have more than one resonance which usually 

appears when the driving frequency is Lω , Lω2/1 , Lω3/1 , Lω4/1 , etc with Lω  being the 

natural frequency of the system. Furthermore, the analysis of the effects of damping on 

the resonances shows that, when the damping coefficient is small, the dominant resonant 

frequency of the high order NOFRFs is the same as the resonant frequency Lω  of the first 

order NOFRF. However, if the damping coefficient is large enough, the dominant 

resonance will shift to new frequencies, for example, to Lω2/1  for the second NOFRF. In 

addition, the amplitudes of the higher order NOFRFs will decrease sharply with the 

argument of the damping coefficient. Generally, if the order of a NOFRF is higher, the 

amplitude will decrease sharply with the augment of ς . These are important conclusions 

relating to the resonant phenomenon of polynomial type nonlinear systems, and are of 

practical significance for system design. For example, the design of a vibration control 
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devices for a nonlinear systems. Another important conclusion is that the polynomial type 

nonlinear system always exhibits the strongest nonlinearity at the driving frequency of 

=Fω Lω2/1 , no matter how large the damping coefficient is. Since nonlinear effects are 

significant features for detecting cracks in structures, this conclusion is of importance for 

structural fault diagnosis. 
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Figure 15 Output spectrum (ς  = 0.06, and ȦF =  ȦL) 
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Figure 16 Output spectrum (ς  = 0.06, and ȦF =  1/2 ȦL) 
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Figure 17 Output spectrum (ς  = 0.15, and ȦF =  ȦL) 
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Figure 18 Output spectrum (ς  = 0.15, and Ȧ =  ȦL/2) 

 

 
Figure 19  The percentage of the whole energy that the superharmonic components 

contain at different driving frequencies and different damping coefficients 
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