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Abstract

In this paper, a modified Orthogonal Forward Regression (OFR) least-squares algorithm
is presented for system identification and modelling from noisy regressors. Under the as-
sumption that the energy and signal-to-noise ratio (SNR) of the signals are known or can be
estimated, it is shown that unbiased estimates of the Error Reduction Ratios (ERRs) and
the parameters can be obtained in each forward regression step. Examples are provided to
illustrate the proposed approach.

1 Introduction

In system identification and modelling, the Orthogonal Forward Regression (OFR) least-squares
algorithm (Billings, Chen, and Korenberg 1989, Chen, Billings, and Luo 1989, and Billings,
Korenberg, and Chen 1988) has proved to be an effective algorithm for determining significant
model terms or the model structure and the associated parameter estimates. The OFR algorithm
involves a stepwise orthogonalisation of the regressors and a forward selection of the relevant
terms based on the Error Reduction Ratio (ERR) criterion (Billings, Chen, and Kronenberg
1989). In recent years, many variants of the OFR algorithm have been introduced to improve the
performance of the OFR algorithm including D-optimality OFR (Hong and Harris 2001), variable
pre-selection OFR, (Wei, Billing, and Liu 2004), piecewise linearization (Mao and Billings 1999),
minimal model structure detection (Mao and Billings 1997) etc. For the past two decades, the
OFR algorithm and its variants have been successfully applied in a variety of fields in system
identification and modelling (Aguirre and Billings 1995a,b; Billings, Chen, and Backhouse 1989;
Billings, Fadzil, Sulley, and Johnson 1988; Coca, Zheng, Mayhew, and Billings 2000; Coca and
Billings 2001; Liu, Kung, and Chao 2001; Balikhin, Zhu, and Billings 2005).
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Although there have been many variations and refinements of the original OFR algorithm all
these are based on the assumption that any noise only affects the measured output values. This
is the classical system identification formulation where it is assumed that the input, which is
often designed by the user to be persistently exciting (Leontaritis and Billings 1987), is assumed
to be measured perfectly or as a noise free signal. If the outputs are corrupted by noise, which
can be nonlinear and coloured, the OFR algorithm can still be applied and often noise models
are fitted to ensure unbiased estimates (Billings, Chen, and Kronenberg 1989). However, there
are situations where all the potential regressors, which can be made up of both input and output
terms, are corrupted by noise. This arises for example in the identification of coupled map lattices
(Coca and Billings 2001, Guo and Billings 2004) where the (noisy) outputs of some neighbouring
nodes are considered as inputs for the identification of a model at other node locations. If the
classical OFR is applied to this class of problems the ordering and the value of the ERRs can
be incorrect. This means that the structure of the model cannot be determined and that the
estimates of the model parameters will probably be biased. There appear to be no results in
the literature relating to the applications of the OFR algorithm to this case, where there is
noise on the regressors. This oversight is addressed in the present study where the effects of
noise on the model regression terms are studied in detail. It is shown that if the classical OFR
algorithm is applied in this case both the ERR values and the parameter estimates will be biased.
The analysis of why this occurs leads to the derivation of a new modified OFR routine which
overcomes these limitations. The new algorithm however requires a knowledge of the power and
the SNR of the signals involved. These requirements are analysed in detail and it is shown that
the ordering or ranking of the model terms should still be possible. The sensitivity of the new
algorithm to the values of the power and SNR of the signals is investigated and it is shown that
the new method can still work reasonably well even when the estimates of these values are not
perfectly accurate.

The paper is organised as follows. Section 2 presents a brief introduction to the principle of
the classical OFR algorithm. Section 3 discusses the OFR algorithm and its applications to
the case where the noise is on the output only. A detailed analysis of the effects of noise on
ERR is given in section 4. The modified OFR algorithm for detecting the correct terms and
determining the associated parameter estimates is presented in section 5. Section 6 provides a
sensitivity analysis of the proposed modified OFR algorithm to the energy. Section 7 illustrates
the proposed approach using numerical simulations, and finally conclusions are given in section
8.

2 The classical OFR least-squares algorithm

Let po,p1,---,ps be independent variables and y the output response of a system. Assume that
there is a subset I of {0,1,---,n} such that a linear relationship

y=>Y_0;p (1)

el



exists. Given a set of observations, the system modelling problem of interest is to determine the
subset I and the values of #;. The OFR algorithm for this problem involves three steps

e Orthogonalise the regressors to remove the correlations between these variables;
e Select significant terms using the ERR as a criterion;

e Estimate the corresponding parameters for the selected terms.

Formally, the classical OFR least-squares algorithm can be stated as follows (Billings, Korenberg,
and Chen 1988).

Let po(t),p1(t), -, pn(t) and y(t), t = 1,2,---, N be the series of observations. Denote ¥ =
(y(1),y(2), -, y(N)T and P; = (p;(1),p:i(2), -+, p:(N))T, i = 0,1,---,n, then the following
linear regression model can be formed

Y =P9+2 2)

where P = (Py, Py, - -, Py) is the regression matrix, 8 = (6,65, ---,0,) represents the unknown
parameters to be estimated, and = = (£(1),£(2),---,&(N))T is some modelling error vector. The
three steps in the OFR algorithm are

1) ORTHOGONALISATION The orthogonal decomposition P = WA, where A is an (n +
1) x (n+1) upper triangular matrix with unity diagonal elements, of the regression matrix
P provides an alternative representation of eqn. (2)

Y =P9+==WAI+==Wg+2 (3)

where W is an N x (n + 1) matrix with orthogonal columns W; such that W'W = D in
which D is an (n+1)x (n+1) diagonal matrix with elements d; =< W;, W; >, i =0,1,---,n.
Note that < -,- > denotes the inner product so that d; =< W, W; >= SN w;(t)w;(t),
i1 =0,1,-+-,n.

2) TERM SELECTION The orthogonal least squares solution to g is given by

<Y, W; > wry
Ai: , : = : 7.:0717"'7 4
g < W;, W; > WiTWz' ! " ()

The fraction of variance not explained by a regression of ¥ on Wy is

<EE> <Y-WgY-Wg> <Y YV>—-<WgWg>
<Y,V > <Y,V > N <Y, Y >

Thus the error reduction ratio (ERR) caused by term i, i = 0,1, ---,n is defined as
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< Wig:, Wig; >
ERR; =
V.Y >

(6)

The OFR least-squares algorithm selects the subset I, that is a subset of regressors in a
forward-regression manner by maximising the contribution of a regressor to the explained
desired response variance, that is its ERR.

3) PARAMETER ESTIMATION Once the parameters g;, i € I have been estimated using
(4) the parameters 6;, i € I in the regression equation (1)can be calculated as

0=A"g (7)

From the definition of ERR (6), it can be observed that the OFR is equivalent to maximising
the product moment correlation coefficient. In fact, the product moment correlation coefficient
p; of term 7 satisfies

<Y, W;>2 : :
<Y, W; >? s <WiWi> < Wi, Wig; >

T Y < W, W, > <Y,V > <YV >

P — ERR,  (8)

3 The OFR algorithm with noise on the output measure-
ments

There are two distinct cases when applying the OFR algorithm to system identification problems.
The first is the classical case where only the output measurements are contaminated by noise,
and the second is the case where both input and output, that is (some of) the regressors, are
corrupted by noise. In this section, the applications of the OFR algorithm to the first case are
presented. For brevity, all discussions will be carried out on single-input single-output (SISO)
systems throughout the paper, however, the results can be readily extended to the MIMO case.

According to Leontaritis and Billings (1985), under some mild assumptions a discrete-time SISO
nonlinear stochastic dynamic system where y(t) is a random variable representing the system
output and u(t) is a deterministic variable representing the system input, can be described by
the NARMAX model

y(t) = fly(t—=1),-- -yt —ny);u(t —1), -, u(t —ny,);e(t —1),---,e(t —ne)) + e(t) 9)

where e(t) = y(t) — Ely(t)|y(t — 1),y(t — 2),---,y(1); u(t),u(t — 1),---,u(1)] is the innovation
sequence, E[-] denotes the expectation; n,,n,, and n, are the maximum lags in the output,
input, and innovation variable. f(-) is some nonlinear function representing the input-output



relationship of the underlying stochastic dynamic system. This represents case one noted above
where the possible correlated noise, e(t) is accommodated within the model by the lagged noise
terms e(t — 1),---,e(t — n.). This is the classical system identification formulation where the
input u(t), which is often generated as a persistently exciting test input, is assumed to be noise
free.

The objective of system identification is to find a suitable model to approximate the underlying
relationship f(-) using a set of input and output observations. For the purpose of implementing
an identification algorithm, the system (9) can generally be parameterised using some basis func-
tions, such as radial basis functions, wavelets, and polynomials, into a linear-in-the-parameters
model structure. The generic form of a linear-in-the-parameters model is as follows

) = 3 0un1) + (0,0 = 1,2, N (10

where N is the data length, p;(-) are model terms which are formed by combining some of the
lagged values of the input, output, and innovation variables, n is the number of all the distinct
terms, £(t) is the modelling error, and 6; are the parameters to be estimated. A regression matrix
form corresponding to (10) is

Y =PO+= (11)

where V' = (y(1),y(2),- -, y(N))", P = (P, P, -+, Px) with B; = (pi(1),pi(2), -+, pi(N))",
i =0,1,---,n, 0 = (01,05,---,0,)T, and = = (£(1),£(2),---,&(N))T. Note that the form of
eqn. (11) is exactly the same as eqn. (2) so that it seems that the OFR algorithm can be
applied directly in the exact manner as described in Section 2. Unfortunately, the innovation
or prediction error e(t) can not be measured or calculated a priori. Then the following question
naturally arises, 'what will happen if the OFR algorithm is applied to eqn. (11) directly?’

To answer the question, consider an orthogonal decomposition of (11) as (3)

Y =PO+Z=WAI+==Wg+= (12)

where W is an N x (n + 1) matrix with orthogonal columns W; such that W7 W = D in which
D is an (n+ 1) x (n + 1) diagonal matrix with element d; =< W;, W; > i = 0,1,---,n. The
orthogonal matrix W can be divided into W = (W,|W,,) where the submatrix W), only contains
the process data such as y and u, and W, contains the data involving the innovations e, following
which eqn. (12) can be rewritten as

Y =P0+==W,g,+W,9, + = (13)

Next, the orthogonal least squares solution to g is given by (4) and the fraction of variance not
explained by a regression of Y on Wy is (5). Substituting W = (W, W,,) into (5) yields
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<E E> <Y)Y > — < Wygp, + Wagn, Wpgp + Wngn >

= (14)
<Y Y > <Y, Y >
< YY > = < Wy, Wpgp > =2 < W0, Whgn > — < Wagn, Wagn >
N <Y,)Y >
considering the orthogonality of W, (14) becomes
<EE> <Y)Y>—<W,g,, Wpgp > — < Wygn, Wngn > (15)
<Y,V > <Y,V >
Therefore, the error reduction ratio (ERR) caused by term i, i = 0,1,---,n is still
< I/Vz 79 I/Vz P >
ERR; = > 190 719 (16)

irrespective of whether the term is in W, or in W,. This implies that the ERR values for the
process terms can be calculated independently of the noise terms and the process and noise terms
can be determined separately. It follows that the OFR algorithm is able to detect the correct
process terms without any knowledge of the prediction error e(t). To detect the noise terms
and provide a noise model, the innovation sequence e(t) must be estimated. In order to solve
this problem, the OFR algorithm is used in an iterative manner. Initially, the OFR algorithm
is employed to determine the significant process terms, then an estimate to the prediction error
sequence {e(t)} can be generated using these initially determined terms. The whole procedure
involves applying the OFR algorithm iteratively with the input and output data together with
the estimated {e(t)} at each iterative step until convergence. For more details see Billings, Chen,
and Kronenberg (1989).

4 The OFR algorithm with noise on the regressors
In this section, the effects of noise on the regressors upon the OFR algorithm is analysed. The
problem can be formalised as follows.

Let po,p1,---,pn be independent variables and y the output response. Assume that there is a
subset I of {0,1,---,n} such that a linear relationship

y=> 0ipi (17)
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where p;(t) = pi(t) + €;(t), i = 0,1,---,n, and g(t) = y(t) + €(¢). Note that this is distinctly
different from the case considered in section 3 because here the noise is assumed to be on all
the potential regressors in eqn. (17) including both input and output terms. The objective is
to apply the OFR algorithm to estimate the relationship (17) from these noisy observations.
Following the definition of Y and P in (2), gives

y(1) +e(1)

o y(2)4:r6(2) Ve (18)
y(N) +&(N)
pz(l) + ei(l)

| PR |, (19)

(V) + (V)

In order to analyse the effects of noise on the regressors in the OFR algorithm, the following
assumptions are made

e ¢(t),i=0,1,---,n, is an independent noise sequence with zero-mean and finite variance

0.2

€;°

e ¢ is an independent noise sequence with zero-mean and finite variance o2.

For any ¢ # 7, ¢; and ¢; are mutually independent.

e For any 7, ¢; and £ are mutually independent.

Both €;, i = 0,1,---,n, and ¢ are independent of any of the true signals (p;, 7 =0,1,---,n,
and y).

Applying the OFR algorithm to the noisy data Y and P;,i = 1,---,n, yields

1—1
W, =P, — Z a; ;W (20)
j=0
where
<P, W;>
Qi =—= L i=0,1,"-+,i—1 (21)
< gy WV >



Note that the results obtained by applying the OFR algorithm to the noise-free data are

where

i—1

<:}%,LL} >
;= —————
ot <:LV},LV}:>

§=0

,n

7j:0717"'7i_1

and g; =< Y,W; > / < W;,W; >. Define AW; = W; — W;, then

From the definition of ERR

i—1 i—1
AW, = (P=P)= (D aW -y
7=0 7=0
i—1 i—1
= € (Zd]ZWj_ZaJlW])
j=0 §=0
- Y, W, >2
ERR; = ff = —o o212

From the assumptions on the noise, it follows that

The first term on the right hand side of (26) is

<Y, W, >

<Y,)Y ><W,, W, >

\ij>%d%m>
<Y+, W, + AW; >

\ij>%d%m>
<Y, W, >+ <Y AW; >

\kYY>%NKM>

<Y,W; >

VY)Y >/< W, W, >

VY)Y >\/< Wi,VVi>\/< Y,V >\/< Wi, Wi >

My

i+ 1

<W, Wi >
< W, W, >

(22)

(23)

(24)

(25)

(27)



where 73 =< Y,Y > /o? can be considered as the signal-to-noise ratio of Y.

The second term on the right hand side of (26) is

<Y, AW; > 1 -
— ——— = — — <V, (Zaj,iWJ_ZanWJ)> (28)
VY)Y SV< WL, W > VY)Y SV W, W > = =
1 L <pw > <P, W >
- _ — () LY, W > =y S YW )
VY, Y SV/<Wi, Wy > g < Wi, Wy > = Wi W

> (< W, W >p_
— <W]5W]>\/T]%+1 Wz; i =0 Jo j> < i,Wi> J
Substituting (27) and (28) into (26) yields
) ny <WZ,W> <P ,W;> vy <W;,Wj > S <P,W > [<W;,W; > _
=" Wo, Wi Z<W'W'>1/_2 T PRI v‘vv‘v Wi, Wi >
ny+1 < () > —0 VR J 77Y+1 < > =0 < i Z>
(29)

From eqn. (29), it can be observed that p; is generally not equal to p; because of the presence
of the noise on the regressors. This difference may produce critical effects on the results when
applying the OFR algorithm with noise on the regressors because at each step the OFR algorithm
may not be able to pick the correct term (the term with maximal p?) and consequently may not
produce the correct parameter estimates. In the following sections, a new algorithm will be
derived to overcome these problems.

5 A modified OFR least-squares algorithm for the case

where there is noise on the regressors

A new OFR algorithm for the case where there is noise on the regressors is derived below.

5.1 Correction for the biased ERR values

In this section, a compensation approach is proposed to correct the bias in the ERR values when
there is noise on the regressors. From the definition (6) of ERR, it follows that

< W.g:, Wig; >
EFRR; = 30
V.Y > (30)




<Y,W; >2
<Y,Y ><W, W, >

where for 2 =1,2,---,n
<Y, Wi> = <Y —e, W, — AW, > (31)
= <Y, W;>—<Y, AW, >
i—1 i—1 D 1
o _ <P, W, > < P,W; > -
= <Y, W;>—-<Y,¢ - - 7 >
€+]§_% Wi, W; >’ jz:%<W], >
i—1 i—1 D 11
- < P, W, > _ < B,W, > o
= <Y, W VI <YW, >+ L <YW >
]2%<Wj,Wj> ! ]Z%<Wj, > !
i—1 i—1 D 11
_ - <P, W, > < P,W: > _
= <Y, W;>-% L <YW >4 ) L <YW >
=0 < W],WJ > §j=0 g Wi >
(32)
and
<Y, Wy >=<Y, W, > (33)

Inspection of (31) and (33) shows that unbiased estimates of FRR; can be determined if <
P, W; > and < W;,W; >, j = 0,1,---,4, and < Y)Y > are known. In order to estimate
< P,W; >, j=0,1,---,i— 1 and < W;,W; >, it is assumed that the energy and SNRs of
the true signals are known, that is < YY > and < P, P, >, ¢ = 0,1,---,n are all known. In
practice, this is not an unrealistic assumption because the energy of signals and the measurement
noise can often be estimated. In what follows an estimation of < P;, W; > and < W;, W; > will
be derived using the known quantities < Y)Y > and < P;, P, >, 1 = 0,1,---,n. In fact for any
i=1,2,---.,n

<P Wy> = <P, ,Py—¢ > (34)
= <P,P>
= <P,Py>

<Woy,Wo> = <Py, P>

and for j =1,2,---,i—landi=2,3,---,n

j—1 j—1 _

—_— < P;, Wi > < P;, Wi > -
<P,W;> = <P,W;> L < Py, Wy, > —=L " < B, W > 35
j j I§<Wk,wk> k +I§)<Wk7Wk> ‘ ()



<Pl 17W >

<Wiit,Wie1 > = <Py, Pio1 > — Z S >
js

Note that eqn. (35) can be solved iteratively with initial condition (34).

5.2 Parameter estimation

Following the estimation of < P;,W; > and < W;,W; >, 1 =1,2,---,n, j =0,1,---,i — 1 in
(35), an unbiased estimates of the noise-free parameters can be obtained. This can be done using
the following equations.

0; = gv (36)

j=i
where
<Y Wi B y(tw(t)
i — — — ) :0717"'7 37
S TR TSI S T " )
and
v, = 1 (38)
vj = _Zak,jvk,j:i—f—l,"',n
in which

<P Wi > SR pit)we(t)

= k=0,1,--,j—1 39
< Wk, Wk > Zi\;l w,%(t) J ( )

Ok,j =

The modified OFR algorithm, for the case where there is noise on the regressors, can now be
summarised as follows

Step 1 Apply the OFR algorithm to the noisy data to obtain < P, W, >, and < W;, W, >,
j=0,1,---,i—1,i=1,2,--- n using (20), that is

W() == P()
i—1

Wi = P—) a;W
§=0
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where

<R S pu
e <W],W> thle() ’

j=0,1,-,i—1

Step 2 Estimate < P, W; > and < W;,W; >, j =0,1,--+,i—1i =1,2,---,n using (34) and
(35), that is

N
<P,Wy> = <P,Py>=> pi(t)po(t)

<Wo,Wo> = <Py, Py >= Zpg(t)

t=1
and for j=1,2,---i—landi=2,3,---,n
j-1 5
= = < P, Wi > < P, Wy > = =
<P W;> = <P W;>=-Y — 1 "~ <P W,> — L 2" <P Wy >
¢ J ¢ J Z<Wk,Wk> ‘ k +Z<WL,WL> ‘ k
N N j—1 N _ _ N
_ Dol p) Dot ()T () s~
= 2 nlw; Z SR Z )+ =S S 2 ()
t=1 k t=1 k=0 t=1 kt) t=1
N i—2 N
< Py, W >2 (3 ey Pic1 (H)w;(1))?
<Wi 1 ,Wi1> = <P 1,Pp1>— Z— Z Z t_lN
<W; W; > =1 §=0 thl w]z(t)

Step 3 Obtain ERR;, i =1,2,---,n using (31) and (30)

L (E ywi)?
Bl = 21{\;1 y2(t) Ei\; wi (t)

Step 4 Select the significant terms according to the maximal ERR criterion. The term selection
procedure should stop when an error tolerance is reached.

Step 5 Calculate the parameters 6 using (39), (38), (31), (37) and (36).

Remark 1 As in the classical OFR case, the final model and parameters need to be assessed.
A commonly used approach to check the validity of the identified model is to use higher order
statistical correlation analysis (Billings and Voon 1986, Billings and Zhu 1994). An alternative
is to check both the short and the long term predictive ability of the model or some quantitative
invariants such as Lyapunov exponents and correlation dimensions etc.

Remark 2 The above modified OFR algorithm is obtained under the assumption that the noise
sequences are independent. In the identification of nonlinear dynamical systems, the noise is
often coloured therefore, in some situations some whitening methods may be needed before the
proposed algorithm is applied.
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6 An analysis of the sensitivity of the ERR values in the
modified OFR algorithm to <Y,Y > and < P,, P, >

The proposed modified OFR algorithm, for the case where there is noise on the regressors, is
based on the assumptions that the energy of the signals, < Y)Y >and < P, P, >,i=0,1,---,n,
are known or can be estimated. In this section, an analysis of the sensitivity of the proposed
algorithm to these quantities is given. Let <Y,Y > €y and < P, P, > €p,, 1 =0,1,---,n be the

perturbation of < Y,Y > and < P;, P, >, where €y and €p, i = 0,1,---,n are n + 2 positive
real numbers. When €y and ep, ¢ = 0,1,---,n vary independently, the problem is known as
multi-parametric. In this paper, it is assumed that ey = €p, =€, 1 = 0,1, .-+, n. Throughout

this section, the quantities calculated from the perturbation are denoted by the subscript d.

From the modified OFR algorithm, the ERRs corresponding to the perturbation are

<Y, W, >2
ERR,; = 7 40
. <}/,Y>d<Wi,Wi>d ( )
where for 2 =1,2,---,n
i—1 i—1 D T
I < P, W, >, < P, W, > I
<Y, W, >4=<Y W, > — 2 ) <Y, W;> I <YW, > 41
= §<Wj,Wj>d J d+j2:% Wj, ]’> J ( )
and
<Y, Wy >4=< Y, W, > (42)

From eqns. (34), (35), (42), and (41), the perturbed < W;, W; >4, < P;,W; >4, and <Y, W; >,
can be derived as

< WU, Wy >4=< Wg, Wy > € (43)

1. <P,P>(-1) & < P, W; >?
<Wi,I/VZ'>:—1 . ’ —=—1 <Wi,Wi> 44
d e[+ < W;, W; > ]2::1<W],W >< Wi, Wi >(5w ) (44)
< Py, Wy >q=< P;, Wy > (45)

13



I i—1 <P;,Wi> p. 11 j—1
< oW, > Ly SE0 > 2o Sy < o W 2 ()= S Sl e Pl > €y g
i Wj >a= <P, W; > = < Wk, Wi > P Wi > gy v
(46)
and
<Y, Wy >;=<Y Wy > (47)
T i—1 <Pi,WJ'> " 1T, i—
<Y, Wi >4= 1[1+< D>t i cwws < VW >(6—1)—i S S (S <Y >
Wi >a= - <Y, W; > j:1<Wj,Wj><Y,Wi> Oij » Wi
(48)
where
5. < Wi, W, >4 < P, W; >2 (49)
ij — 2
<W;,W; > < P, W; >3
i = <W;, Wi >q < Py, W; > < P, W5 > (50)
i =
J <Wj,Wj> <f)i—17Wj >d<Pi’Wj >d
and
0_“_<Wj,Wj >d <Pz'7Wj> <Y7Wj> (51)
1) -

<Wj,Wj> <PZ',WJ' >d<Y,Wj >d

Note that when e approaches 1, all the parameters d;;, 7;;, and o;; tend to e. Substituting (44),
(48) and < Y)Y >;=<Y,Y > € into (40) yields

<Y, W; >2 1
s — “ERR,A, 52
< Y,Y >a< ”z; W; >4 €2 ( )

ERR,; =

where

<P Wi+ ST SN2 g s .
[1 _|_ j=0 <V‘Vj,Wj> (6 - 1) - Zz—_l <P7;.,Wj‘><Y,Wj.> ( 6 _ 1)]2
As — <Y,W;> J=1 <W;, W;><Y,W;> \oyj (53)
¢ 1+ <P, Pi>(e2-1) _ §~i—1 <P;,W;>? (L _ 1)
<W;,W;> J=1 <W;,Wi><W5,Wi> \ 65

14



From (53) it can be observed that if € &~ 1, A; will be very close to 1 as well. In this case, one
can conclude that

1
ERRd,Z’ ~ —ZERR“Z = 0, ]_, e, (54)
€

This implies that a small perturbation will not change the order of the ERR values. This is an
important property of the new modified algorithm because it suggests that the related model
terms will be ordered or ranked correctly even when there is noise on the regressors. Therefore
it should be possible, using the modified OFR algorithm, to correctly select the model structure.
In fact, this conclusion also extends to the parameter estimation problem. Recall the formulae
for calculating the parameters 6; (39), (38), (37) and (36). Now substituting (44), (46), and (41)
into these equations yields

i—1 <Pj,W;>

m <Y Wi>+ 3o Twowys <Y o Wi> (6 — 1) — St SPWi><VW> e )
gA o < Yam >d oA <Y,W;> Jj=1 <W; ,W;><Y,W;> Vo
dji — — Y D 2 _ : > 2
< Wi, W; >4 1+ <Pi,Pi>(e2-1) z.:11 <Py, W;> (L N 1)
<W; ,W;> I=L <Wi Wi > <Wi ,Wi> \ 6y
(55)
5 x k-1 <P;,W;> o -
4 <P Wi>+) Lo TS <Pj:Wl>(€ 1) =y SR Wih Wi )
<Py Wi >q N <P Wi I=1 W, W><PWe> \n;;
d,k,j — — Ggyg Py, P>(2-1) 2
Y < Wk, Wk >d ’ 1+ M Zl ) <Pp,Wi> ( € 1)
<Wp Wi> <W; Wi><Wp Wi> \ g
(56)

which tend to g; and «a; ; when € is close to 1.

Similar results should hold for the multi-parametric case when the perturbations are small
enough.

7 Numerical simulations

7.1 Example 1: A linear system

Consider the following simple AR model

y(t) = ary(t — 1) + agy(t — 2) + agy(t — 3) + agy(t — 4) + u(t) (57)

where a; = 1.8, as = —1.99, a3 = 1.422, and a4 = 0.493. To fully excite all the modes of the
system, the simulation was conducted and data was collected with u(t) selected to be a white
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Model Term 1 y(t—1) y(t —2) y(t —3) y(t—4) u(t)
Noise-free X 1.8000e+00 | -1.9900e+00 | 1.4220e+00 | -4.9300e-01 | 1.0000e+00
Parameter OFR 2.1475e-01 | 8.4570e-01 | -3.9986e-01 X 2.8854e-01 | 5.5197e-01
Estimates Modified OFR X 1.7476e+00 | -1.8962e+00 | 1.3342e+00 | -4.4421e-01 | 9.9035e-01
Modified OFR. (5%) X 1.7088e+00 | -1.8708e¢+00 | 1.2958¢+00 | -4.4594e-01 | 1.2082e+00
Modified OFR (10%) X 1.7515e+00 | -2.0004e+00 | 1.4081e+00 | -5.4020e-01 | 1.4921e+00
Noise-free X 9.0040e-01 2.4071e-02 3.3846e-02 | 6.6658¢-03 | 3.5015e-02
ERR OFR 1.5695e-03 | 8.6605e-01 1.3921e-02 X 2.9565e-02 | 1.5021e-02
Modified OFR X 9.0046e-01 2.3854e-02 3.3530e-02 | 5.6350e-03 | 3.4844e-02
Modified OFR(5%) X 8.8638e-01 2.6103e-02 2.8865e-02 | 5.7656e-03 | 4.0882e-02
Modified OFR(10%) X 8.8660e-01 2.9784e-02 2.4739e-02 | 7.9744e-03 | 4.7882e-02

Table 1: The terms and parameters of the final model for Example 1

noise sequence with mean zero and variance 02 = 1. The set of terms in an initial candidate
model was set to be {1,y(t — 1),y(t — 2),y(t — 3),y(t — 4),y(t — 5),y(t — 6),u(t)}. To test
the algorithm, an additive independent white noise with mean zero was added to u(t) and y(t)
such that the SNRs of the resulting input and output signals were 6.0139dB and 17.072dB,
respectively. The energies of input and output, that is < U, U > and < Y,Y > were calculated
to be 1.6641e+ 05 and 2.1241e+ 06 respectively. The identified results using the original and the
modified OFR algorithms with the above energy values are shown in Table (1), where only those
terms selected by the algorithms are shown and X indicates the term has not been selected by
a specific algorithm.

From the example it can be observed that even for a linear system where the regressros are
corrupted with white noise of relatively low SNR (6.0139dB and 17.072dB), the values of ERRs
calculated by the conventional OFR algorithm can be quite different from the noise-free case,
for example, the ERR value for the term y(¢t — 1) changes from 9.0040e — 01 to 8.6605¢ — 01.
This causes the conventional algorithm to incorrectly select the model terms when the noise
sequences are not considered as additional regression variables whilst the proposed modified
algorithm works extremely well. In order to test the robustness of the proposed algorithm with
respect to the energy, the algorithm was applied with 5% and 10% errors in the above energy
values and the obtained results are also shown in Table (1), which show that the algorithm can
still work reasonably well.

7.2 Example 2: A nonlinear system

A nonlinear dynamical system is defined as

y(t) = 0.5y(t — 1) + 0.1u%(t — 1) + u(t — 2) (58)

where the system input wu(¢) was a white noise sequence of uniform distribution with mean
zero and finite variance 1.0. A polynomial NARMAX model with input and output lags 2 and
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Model Term y(t—1) u?(t —1) u(t — 2) u?(t—2) |yt —Du(t-1)

Noise-free 5.0000e-01 | 1.0000e-01 | 1.0000e+-00 X X

Parameter OFR 5.0349e-01 | 1.0946e-01 | 1.0058e+00 | -1.6782e-02 -9.4633e-03
Estimates Modified OFR 5.0237e-01 | 1.0180e-01 | 9.9122¢-01 X X
Modified OFR(5%) | 5.2932e-01 | 9.9750e-02 | 1.0570e+00 X X
Modified OFR(10%) | 4.9143e-01 | 6.2116e-02 | 1.0404e+00 X X
Noise-free 8.2987e-02 | 7.8675e-04 | 9.1623e-01 X X

ERR OFR 9.1499¢-01 | 8.2803e-04 | 8.2706e-02 | 3.0542e-06 1.6453e-06
Modified OFR 8.1779¢-02 | 8.0391e-04 | 9.1810e-01 X X
Modified OFR(5%) | 8.2933e-02 | 7.3987e-04 | 9.1548e-01 X X
Modified OFR(10%) | 8.1619e-02 | 8.1643e-04 | 9.1708e-01 X X

Table 2: The terms and parameters of the final model for Example 2

nonlinear degree 2 was used to fit the simulated data. The full candidate model contained 15
terms, that is {17 y(t_ 1)7 y(t_ 2)7 U,(t— 1)7 U(t— 2)7 yQ(t_ 1)7 y(t_ 1)y(t_ 2)7 y(t_ 1)U(t— 1)7 y(t_
Du(t—2),y*(t—2),y(t —2)u(t —1),y(t —2)u(t —2),u*(t — 1), u(t — Du(t —2),u*(t — 2)}. To test
the algorithm, an additive white noise with mean zero and finite variance was added to the data.
Note that if the noise is added to input u(¢) and y(¢) directly, the regressors will have a coloured
noise because of the nonlinearity which can not be dealt with by the proposed algorithm directly.
Therefore, the noise in this simulation was added to the regressors so that the noisy regressors
and output sequences have SNRs of around 26dB and 31.728dB, respectively. The energies for
the total 15 terms above are 9.9980e + 03, 1.2427¢ + 04, 1.2424¢e + 04, 3.2940¢e + 03, 3.2933¢ +
03,2.1274e + 04, 1.8713e + 04,4.0674e + 03,4.2918e + 03,2.1267e + 04,4.0821e + 03,4.0653¢ +
03,1.9720e + 03,1.0933e + 03,2.9571e + 03 and the energy of the output is 1.2428e + 04. The
identified results using the original and modified OFR algorithms with the above energy values
are shown in Table (2), where only those terms selected by the algorithms are shown.

The simulation results show that both the conventional OFR and the modified OFR can pick
the correct significant terms. This is because the SNR of the signal was set to be high (26dB
and 31.728dB). However, for the conventional OFR algorithm, the ERRs have been affected by
the presence of noise and the order of the selected terms has been changed from u(t — 2), y(t —
1),u?(t — 1) to y(t — 1), u(t — 2), u?(t — 1). A robustness test was also conducted by using 5%
and 10% errors in the true energy values which shows the algorithm works well when the energy
values are not perfectly estimated.

8 Conclusions

A modified OFR algorithm for the identification of both the model terms or structure and the
unknown parameters when there is noise on the model regressors has been introduced. It has
been shown that the presence of noise on the regressor terms can produce biased results for
both term selection and parameter estimation. The new algorithm makes use of some energy
information about the true signals to correct the ERR values and the estimated parameters. The
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sensitivity of the algorithm to the properties of the noise has been studied and the method has
been tested on simulated data and was shown to perform very well.
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