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Abstract 

Bovine tuberculosis (TB) poses a serious threat for agricultural industry in several countries, 
it involves potential interactions between wildlife and cattle and creates societal problems in terms 
of human-wildlife conflict. This study addresses connectedness network analysis, the spatial, and 
temporal dynamics of TB between cattle in farms and the European badger (Meles meles) using a 
large dataset generated by a calibrated agent based model. Results showed that infected network 
connectedness was lower in badgers than in cattle. The contribution of an infected individual to the 
mean distance of disease spread over time was considerably lower for badger than cattle; badgers 
mainly spread the disease locally while cattle infected both locally and across longer distances. The 
majority of badger-induced infections occurred when individual badgers leave their home sett, and 
this was positively correlated with badger population growth rates. Point pattern analysis indicated 
aggregation in the spatial pattern of TB prevalence in badger setts across all scales. The spatial 
distribution of farms that were not TB free was aggregated at different scales than the spatial 
distribution of infected badgers and became random at larger scales. The spatial cross correlation 
between infected badger setts and infected farms revealed that generally infected setts and farms 
do not coexist except at few scales. Temporal autocorrelation detected a two year infection cycle for 
badgers, while there was both within the year and longer cycles for infected cattle. Temporal cross 
correlation indicated that infection cycles in badgers and cattle are negatively correlated. The 
implications of these results for understanding the dynamics of the disease are discussed.      
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Introduction 

The control of bovine tuberculosis (TB) in cattle is clearly controversial in Great Britain, with 
the recent introduction of pilot badger culls raising the intensity of political debate. While the 
opposing sides argue for tighter controls on either cattle or badgers, the science is often lost. 
Interpreting scientific uncertainty in this political landscape is challenging. The financial and welfare 
costs of TB are substantial and have risen along with the incidence and geographical spread of the 
disease in the cattle herd since the 1970s. Bovine TB has serious financial and welfare costs, in 2013-
14 costs were over £99 million, excluding policy development costs (DEFRA, 2014). There are also 
additional financial and other costs for the farming community and the society in general (Enticott, 
2001) despite the fact that it rarely poses a threat to humans (Torgerson & Torgerson, 2008). Efforts 
have been made since the Second World War to reduce the impact of the disease, while these were 
initially successful and the disease reached a minimum in the 1970s it has been increasing in both 
incidence and prevalence since then (Abernethy et al., 2013; Moustakas & Evans, 2016). 

It is clearly in the country’s interests to reduce the incidence and prevalence of the disease 
yet these are both steadily rising. Many of the stakeholders in this problem have polarised views and 
as such the problem has political dimensions that are similar to those around the debate about 
climatic change (Caplan, 2012; Nisbet & Markowitz, 2015). Stakeholders are broadly divided into 
those that feel that a wild animal reservoir host (in GB this would be badgers) is the principal cause 
of disease outbreaks by reintroducing infection to otherwise clean cattle herds, and those who feel 
that it is to cattle that attention needs to be directed and thus there is a conflict (King et al., 2007; 
Brooks-Pollock et al., 2014; Macdonald & Feber, 2015) – see also farmers view (Cowie et al., 2015; 
Enticott et al., 2015; O'Hagan et al., in press). The role of science in this debate should be to provide 
objective advice and guidance on the best way to tackle the disease. There have been attempts to 
provide scientific input to this debate; TB was the subject of a large scale ecological experiment – the 
randomised badger culling trial (RBCT) that ran from 1998 to 2008 (Bourne et al., 2007). 
Unfortunately the results of this experiment have been interpreted as both providing evidence for 
and against the utility of badger culling as a means of TB control (Donnelly et al., 2006; King et al., 
2007; Donnelly et al., 2015; Donnelly & Woodroffe, 2015). Bovine TB is a problem in several other 
countries, notably New Zealand (Tweddle & Livingstone, 1994), some states of the USA (Schmitt et 
al., 1997), and Ireland (Byrne et al., 2015) where there are also tensions between the degree of 
importance of wild reservoir hosts and cattle (Krebs et al., 1998; Macdonald & Feber, 2015).  

Understanding the spread of any disease is a highly complex and interdisciplinary exercise as 
biological, social, geographic, economic, and medical factors influence the way a disease moves 
through a population and options for its eventual control or eradication (Christakos et al., 2006; 
Moustakas & Evans, 2016). Space-time epidemiology is based on the concept that various 
characteristics of the pathogenic agents and the environment interact and alter the probability of 
disease occurrence and result in the formation of temporal or spatial patterns (Knox & Bartlett, 
1964; Christakos et al., 2014). Patterns of disease occurrence provide insights into which factors may 
be affecting the health of the population, through investigating which individuals are affected, 
where those individuals are located and when they become infected (Lange et al., 2014; Alvarez et 
al., 2016). With the rapid development of computationally-intensive modelling methods (Moustakas 
& Evans, 2015), smart sensors (Reis et al., 2015), social networks (Weber et al., 2013), digital maps 
and remotely-sensed imagery (Touloudi et al., 2015), as well as inventory datasets  (Schumm et al., 
2015) spatio-temporal data are more ubiquitous and richer than ever before in veterinary and 
ecological epidemiology (Pfeiffer & Stevens, 2015). The availability of such large datasets (big data) 
poses great challenges in data analysis (Fan et al., 2014; Najafabadi et al., 2015) but may provide 
insights into the TB problem in the UK in terms of facilitating understanding of the dynamics of the 
disease and potential approaches to control. 



In the current study we sought to quantify the dynamics of TB between and within and 
between badger and cattle populations using outputs from a stochastic, spatially-explicit model 
(Moustakas & Evans, 2015). The model has been calibrated in detail with a scale-specific parameter 
space corresponding to the surface area of a large county in GB, and agent based models of badgers 
are coupled with agent based models of cattle and farms. We sought to investigate: (i) how 
connected TB infected badger setts are with other TB infected badger setts, and similarly how 
connected TB infected cattle farms are with other TB infected cattle farms. (ii) The mean 
contribution of an infected badger or cattle individual in the spread of the disease in space per 
annum. (iii) The spatial distribution of TB infected badger setts and TB infected farms, and the cross 
correlation of TB infected setts and farms across scales. (iv) The temporal correlation of the number 
of infected badger individuals, the temporal correlation of the number of cattle individuals and their 
temporal cross correlation.  

Methods 

Model description 

The model (Moustakas & Evans, 2015) employs agent based models (ABM); (Moustakas & 
Evans, 2013; Zhang et al., 2015; Augustijn et al., in press) that are coupled (Louca et al., 2015) across 
scales (Walpole et al., 2013). The model  includes both badgers and cattle, it has details of the 
behaviour and natural history of badgers and the husbandry of cattle and dynamics of TB between 
and within species - see (Moustakas & Evans, 2015) for a full description.  In brief; the model couples 
an ABM of cattle and farms with an ABM of badgers on a scale-specific grid for each life form. No 
barriers exist for badgers (they can move throughout the grid), while cattle can move within the 
farm cells and between farms when a cattle is sold. The grid size of badgers scales to the mean home 
range area of badgers in the UK (0.7 km2) and the grid size of cattle scales to the farm surface areas 
in the UK (0.7 - 2.8 km2). Badgers live in social groups (sett size 2-21 individuals), occupying their 
home range area, they breed in the spring producing an average of three offspring, they live for an 
average of five years when healthy and up to three years when infected and contract TB both from 
each other and from cattle (badger-to-badger infection rate = 0.01 - 5%, most common value = 
2.55%, badger-to-cattle infection rate = 0.1 - 6%, most common value = 3.4%). Cattle live on farms, 
give birth of one calf once a year, all the cattle on a farm are housed in one group (one cell of 0.7 
km2) over winter but spread around the farm in non-winter months (winter months = November to 
April), they live on average five years when healthy and up to two years when infected, cattle 
contract TB from each other and badgers (cattle-to-cattle infection rate = 2.7%, cattle-to-badger 
infection rate =0.1-6%, most common value = 3.4%). In addition cattle are moved between farms 
(Gilbert et al., 2005) at realistic rates and distances (percentage of the total cattle population moving 
to other farms 7.5 – 12% yr-1, mean distances of cattle movement 25.2  – 126 km yr-1). The TB test in 
cattle is imperfect i.e. it exhibits false negative cases as it is known to do (Claridge et al., 2012).  
Cattle are tested for TB prior to movement and at regular intervals (testing every 1 or 4 yr, testing 
accuracy 50 – 90% most common value 70%). If a cattle individual tests positive it is killed. Badgers 
can be culled (in 169km2 blocks) and show post-cull perturbation (Woodroffe et al., 2006a) moving 
up to 3.36 km away from their sett per time step. The time step is one month. The model explicitly 
follows all individuals. This model is run on a grid of 128 x 128 cells equivalent to the surface area of 
a large county in the UK, with each cell scaling at 0.7km2, the mean home range area of a group of 
badgers. The duration of each simulation run is 360 months. The model is initialised with an initial 
number of badgers and cattle scaling to the mean badger density per unit area (cell) and the mean 
cattle density per unit area in a county in the UK. Initialization is not homogeneous and it is defined 
by the initial percentage of infected individuals for badgers or cattle, as well as the min and max 
group size for badgers. Each simulation scenario follows for each month for 30 years 65,372 badger 
individuals and 1,387,725 cattle individuals. These numbers derive from a scale-specific model 
calibration such as there are 5.7 badgers km-2 (a value corresponding to Bristol area see table 3.3 in 
(Krebs et al., 1997)) x 0.7 km2 cell-1 (this is the cell size in the model) x 128 x 128 cells (the simulation 



grid) and for cattle (1,387,725 = 121 cattle km-2 (Eurostat, 2009) x 0.7 km2 cell-1 x 128 x 128 cells). Full 
references and a detailed description of how these parameters were derived are provided in Supp. 1 
in Moustakas and Evans (2015). The amendments in the parameters space from Moustakas and 
Evans (2015) performed here due to additional data availability as well as the number of sufficient 
simulation scenarios n=161, determined from Latin Hypercube Sampling are described in the next 
paragraph. Each of the 161 simulation scenarios was replicated 10 times to account for model 
stochasticity. We have thus followed in a spatially-explicit manner a very large number of badgers 
and cattle (65,372 badgers and 1,387,725 cattle for 360 months across 161 scenarios, each scenario 
replicated 10 times). 

Previous model outputs have been compared with known patterns of TB see section 
‘Confronting model outputs with data‘ in (Moustakas & Evans, 2015). 

Model parameterisation  

We used a large and computationally intensive parameter space as described in (Moustakas 
& Evans, 2015) and supplementary material therein . The model’s sensitivity to input parameters 
had been tested with Latin Hypercube Sampling a robust method for sweeping out parameter space 
(McKay et al., 1979; Athira & Sudheer, 2015). Two amendments in the input parameters of 
(Moustakas & Evans, 2015) were made here: (i) the initial number of infected badgers, and (ii) initial 
number of infected cattle. Recent papers provide field evidence that there are locations in the UK 
where the percentage of infected badgers is as high as 50% or even higher (Weber et al., 2013; King 
et al., 2015). We have expanded parameter space by including scenarios in which the percentage of 
initially infected badgers is up to 55% (initial percentage of infected badgers 2 – 55% most common 
value 4.05%). Public data show that the percentage of cattle herds that are not TB free has been 
detected to be as high as 5.4% in July 2014 in the UK and in high risk areas up to 14.5% (DEFRA, 
2015). We have expanded parameter space by including scenarios with percentage of initially 
infected cattle up to 15% (initial percentage of infected cattle 0.2 – 15%, most common value = 2%).  

Analysis 

Infection networks  

We sought to quantify how connected infected badgers are with other infected badgers and 
how connected infected cattle are with other infected cattle. To do so Krackhardt's connectedness 
was calculated for a non-directed graph G (Krackhardt, 1994). Connectedness is equal to the fraction 
of all pairs, (i, j), such that there exists an undirected path from i to j in G. Values of connectedness 
close to 1 indicate that all nodes (in our case badger setts or farms) are connected with every other 
node in the graph while values close to 0, indicate that the nodes in the graph are isolated. Analysis 
was conducted using the ‘connectedness’ function in the ‘sna’ package in R (R Development Core 
Team, 2016). Connectedness was calculated for networks of badgers and cattle separately at the 
final time step of each simulation scenario. For badgers a node in the graph was a badger sett 
containing at least one infected badger. For cattle a node in the graph was a farm containing at least 
one infected cow. 

Distance of infections in time  

We quantified the mean distance between an infected individual and any other individual(s) 
it infects per year.  Each individual that was either infected at the beginning of the simulation or that 
became infected at some time step during the simulation was followed. We recorded the starting 
cell (i. j) of each initially infected individual, or the cell in which it became infected (each then 
became a focal individual). For each time step (month) the uninfected individuals that were infected 
by the infected focal individual and the coordinates of the cell in which they contracted the infection 
were recorded. At the end of the simulation period we summed the distances between the initial 



location of the focal individual (either the starting point if the focal individual was infected from the 
beginning of simulation or the cell in which the individual became infected) and the locations of all 
the individuals which contracted infection from the focal individual (where they first became 
infected). For each focal individual we divided the sum of these distances in terms of number of cells 
by 30 years equal to the length of each simulation scenario, and multiplied by the scale of cell side (= 
0.84 km) resulting in a mean distance of infection in km yr-1. This process was repeated for both 
cattle and badgers across all scenarios, and the mean of these values was calculated for each 
scenario. 

Spatial point pattern analysis 

In order to quantify the finer scale spatial pattern of the disease we calculated the pair-
correlation function g(r), (Stoyan & Stoyan, 1994). The function g(r) is the conditional probability 
density of finding an infected individual at a distance r , given that there is an infected individual at 
the coordinate origin. The function g(r) provides a measure of local spatial ordering which is the 
mean expected density V of points N at a given distance r from an arbitrary point rij, divided by the 
intensity of the pattern. It is defined as: 

𝑔 𝑟 =
𝑉

4𝜋𝑟2𝑁2
 [  𝛿(𝑟 − 𝑟𝑖𝑗 )]

𝑗≠𝑖𝑖

  

Under complete spatial randomness (CSR), g(r)=1. Values of g(r)< 1 indicate regularity at 
scale r (also called overdispersion), while values of g(r)>1 indicate clustering at scale r (also called 
aggregation). The g(r) is non-cumulative and particularly suitable to reveal critical scales of the 
pattern (Wiegand & Moloney, 2004). In addition we calculated the L-function, a cumulative 
counterpart to g(r) (Besag, 1977), to assess spatial pattern of the disease at larger scales r (Wiegand 
& Moloney, 2004). L(r) is a summary statistic based on Ripley's K-function: 

𝐾 𝑟 = 2𝜋  𝑔 𝑟 𝑟𝑑𝑟
𝑟=0

 and 𝐿 𝑟 = 𝑟( 
𝐾 𝑟 

𝜋
− 1). 

Under CSR, L(r) = 0 and values of L(r) < 0 indicate regularity, while values of L(r) > 0 indicate 
aggregation. Monte Carlo permutations (n=99) were employed to approximate confidence intervals 
of the L(r).  

The g(r), and L(r) analysis was performed for the final time step of each simulation scenario 
for badgers and cattle separately, and the distance-specific g(r) and L(r) values were averaged across 
scenarios and plotted - for a similar approach see (Moustakas, 2015). For badgers the locations of 
setts containing at least one infected badger were analysed, while for cattle the locations of farms 
containing at least one infected cow were analysed. Analysis was conducted using the ‘pcf’ and ‘Lest’ 
functions respectively in ‘spatstat’ library in R (R Development Core Team, 2016). We also sought to 
quantify the scale of spatial coexistence of TB infected badgers and cattle. We analysed the spatial 
cross-correlation between locations (points) of badger setts containing at least one infected badger 
and locations of farms containing at least one infected cattle using a multivariate spline cross-
correlogram (BjØrnstad & Falck, 2001). Spatial cross-correlogram estimates the spatial dependence 
at discrete distance classes. The region-wide similarity forms the reference line (the zero-line); the x-
intercept is thus the distance at which object are no more similar than that expected by-chance-
alone across the region. The analysis was performed using the ‘spline.correlog’ function in the ‘ncf’  
package in R (R Development Core Team, 2016).  

Temporal analysis 



We sought to quantify the temporal dynamics of TB in badgers, cattle, and between them. 
To do so we calculated the partial correlation function for infected badgers and infected cattle and 
the temporal cross correlation between infected badgers and cattle (Venables & Ripley, 2002). 
Temporal correlation analysis was performed using the time series of the number of infected 
badgers and infected cattle on a monthly time step throughout each simulation. All data were 
log10(x+1) transformed prior to the analysis to successfully normalise them. The analysis was 
performed using the ‘acf’, ‘pacf’, and ‘ccf’ functions in the ‘stats’ package in R (R Development Core 
Team, 2016). As we had multiple observations for each month (equal to the number of simulation 
scenarios explored), we averaged the values for each time step. 

Results 

Infection networks  

Badger infection networks had mean connectedness values of 0.12 with a standard 
deviation of 0.09 (Table 1). Cattle networks had mean connectedness values of 0.23 with a standard 
deviation of 0.12 (Table 1). Cattle infection networks are therefore relatively more interconnected 
than badger infection networks. 

Distance of infections in time  

The mean distance that an infected badger individual spreads TB is 0.92 km year-1, StDev = 0.62 (Fig. 
1a). The mean distance that an infected cattle individual contributes into the spread of the disease is 
2.34 km year-1, StDev = 0.98 (Fig. 1a). The distribution of cattle individuals’ distances of disease 
spread varied greatly; the distribution peaks at three values (ca 0.75km, 1.5km and 2.25 km) and has 
a long tail of long distance disease spread values (Fig. 1a). The cumulative effect of the differences 
between the distribution of mean infection distances can be seen in figure 1b which displays the 
empirical cumulative density function (ECDF) and shows that 80% of badgers spread the disease at 
distances up to one km per year (Fig. 1b). Around 80% of cattle spread the disease at distances up to 
three km per year (Fig. 1b).  

Further analysis of the data reveals that TB spread in badgers derived mainly from badgers 
leaving their sett: a contour plot of badgers leaving their setts vs badgers remaining in their sett and 
the distance that badgers spread TB per year showed that around 17,000 moving badgers contribute 
to the same mean distance of disease spread as 225,000 non moving badgers (Fig. 1c). The number 
of infected badgers is positively correlated with the badger population growth rate (SS=4065120000, 
F=26,12, p<0.001, R2=13.6%; Fig. 1d). The number of infected badgers is positively correlated with 
the number of badgers leaving their setts (SS=5797950000, F=40.06, p<0.001, R2=19.6%; Fig. 1e), 
more badgers leave their home sett as badger population growth rate increases (SS= 1084865345, 
F= 69.74, p<0.001; R2= 30.1%, Fig. 1f) and the distance that badgers spread TB increases as badger 
population growth rates increase (Fig. 1g). However, the percentage (fraction) of infected badgers 
was not significantly correlated with badger growth rate (SS=0.2378, F=3.45,  p=0.065, R2=1.5%; Fig. 
1h), was negatively correlated with the distance that badgers spread TB in a year (SS=0.201758, 
F=78.05 p<0.001, R2=32.5%; Fig. 1i) and negatively correlated with the number of badgers leaving 
their home sett (SS= 796055533, F=45.82,  p<0.001, R2=21.9%; Fig. 1j).  

The distance that cattle spread TB per year increased as the percentage of cattle individuals 
moved from their current farm rises (Fig. 1k).  

Spatial point pattern analysis 

An overview of the spatial distribution of badger setts with at least one infected badger and 
of cattle farms with at least one infected cattle in Fig. 2a. A  detail  of spatial TB dynamics with a 
Gaussian kernel smoothing with a sigma equal to the standard deviation to improve the visualization 
of setts with at least one TB infected badger is provided in Fig. 2b, of farms with at least one TB 



infected cattle in Fig. 2c. These provide a visualisation of the differences in the spatial patterns of the 
disease in the two species after 30 years of simulation. 

The spatial distribution of setts containing at least one TB infected badger was aggregated at 
scales up to 4.3 km (Fig. 3a), and cumulatively aggregated across all examined scales up to 25.2 km 
(Fig. 3b). The spatial distribution of farms containing at least one TB infected cattle was aggregated 
at scales up to 11.5 km (Fig. 3c), and cumulatively aggregated at scales up to 21.1 km and random 
thereafter (Fig. 3d). The spatial distribution of TB in both species (at least one infected badger per 
sett or at least one infected cattle per farm) was aggregated at scales up to 4.4 km (Fig. 3e), and 
cumulatively aggregated across all scales examined up to 25.2 km (Fig. 3f). This shows that infected 
badger setts are typically clustered together, while infected cattle farms are clustered at small scales 
but become randomly distributed throughout space at large scales. 

Results from spatial cross-correlation indicated that overall there are few scales where 
infected badgers and infected cattle coexist; the cross correlation between badgers and cattle was 
weakly positive and not significantly different from zero at distances up to 6.3 km (the lower 
confidence interval crosses zero) (Fig. 3g). Cross correlation between badgers and cattle was positive 
and significant at distances between 7.5 km and 9.25 km (Fig. 3g), and negative or non-significantly 
different from zero at all other scales (Fig. 3g). 

Temporal analysis 

Temporal autocorrelation was significantly positive for badgers for time lags of up to 23 
months (Fig. 4a). Temporal autocorrelation in cattle was significantly positive for time lags of one to 
7 months, and significantly positive for time lags of 32 to 39 months (Fig. 4b). Temporal partial 
autocorrelation showed no significant correlation cycles for the number of infected badgers (Fig. 4c), 
but significantly positive cycles for the number of infected cattle for time lags of 31 to 36 months, 
and a significant negative cycle for a time lag of 37 months (Fig. 4d). Temporal cross correlation 
between the number of infected badgers and cattle was always negative across all time lags, with 
this negative effect being more pronounced between lags of 1 to 6 (Fig. 4e).  

Discussion 

Computational models provide a valid alternative to limitations due to accessibility, ethics, 
or cost-prohibitive experimental approaches (Desouza & Yuan, 2013) and present a method of 
testing the likely effects of various strategies designed to control or eradicate TB in cattle (Brooks-
Pollock et al., 2014; Moustakas & Evans, 2015). To be useful such models need to represent the 
modelled system and be parameterised in sufficient detail (Evans et al., 2013; Evans et al., 2014; 
Lonergan, 2014) to allow realistic predictions to be made about the outcome of any control strategy.   

Badger growth rates and TB spread 
It is well recorded that badger culling induces perturbation thereby increasing badger 

dispersal (Woodroffe et al., 2006a; Woodroffe et al., 2006b; Carter et al., 2007; Donnelly et al., 2007; 
Jenkins et al., 2010). Several studies have shown that cattle testing is an imperfect but  effective 
control strategy (Goodchild et al., 2015), that cattle testing is more effective than badger culling as a 
control strategy (Brooks-Pollock et al., 2014; Moustakas & Evans, 2015) and that every control 
strategy should be implemented such as to minimise badger population disruption (Wright et al., 
2015). It has been reported that group size reduction rather than group size per se has most 
influence on disease dynamics (Vicente et al., 2007). Results derived here show that badger 
population growth is correlated with the number of badgers leaving their home sett and that they 
then contribute more to the spread of the disease than non-moving badgers, despite the number of 
non-moving badgers being at least an order of magnitude higher than moving badgers. To that end 
high population growth rates in badgers may act similarly to culling: a high number of dispersing 



badger individuals spread the disease more than a low number of dispersing badger individuals, and 
the number of dispersing individuals increases both with culling and with a high badger population 
as both result in badgers leaving their home sett. While this applies to the number of badger 
individuals, it is not valid for percentages: there was no significant correlation with badger growth 
rates and the percentage of infected badgers, and there was negative correlation between the 
percentage of infected badgers and the absolute number of badgers leaving their home sett. This 
study does not address why badgers are increasing in some regions. Badger density in the Republic 
of Ireland is not increasing (Byrne et al., 2012; Byrne et al., 2014a) nor in Wales (Judge et al., 2014), 
but it is increasing in England (Judge et al., 2014). Badger densities in England are already high (some 
recently reported values span from 5.2 badgers km-2 (Smith & Cheeseman, 2007)  to 11.6 badgers 
km-2 (Woodroffe et al., 2008)) in comparison to Ireland (1-3 badgers km-2 (Byrne et al., 2012; Byrne 
et al., 2014a)). Badgers are among the top predators in the habitats in which they live, but they are 
generalists with a wide diet range; despite this their population size will be limited by food 
availability. Therefore it would be logical to couple badger population changes over time with data 
on land use changes over time, to discern any possible causal patterns which might explain this 
population growth.  

Networks of infections and the contribution of individual badger and cattle to TB spread 
According to results derived here, cattle farms with at least one infected individual are more 

strongly connected with each other than badger setts containing at least one infected badger are 
connected with other infected setts. Furthermore, the contribution of infected badger individuals to 
the spread of the disease in terms of km yr-1 is considerably smaller than the contribution of infected 
cattle. Values of connectedness between farms derived here are lower than the ones derived for 
farms in Minnesota, USA (Ribeiro-Lima et al., 2015) possibly due to lower cattle movements in 
Minnesota. Studies of networks of badgers have reported that badger networks  correlate with 
infections (Weber et al., 2013). A study of TB in possums in New Zealand reported that potential 
contact with TB-positive possums increased the odds of disease transmission whereas potential 
contact with a large number of possums did not (Porphyre et al., 2011). This suggests that multiple 
contacts with TB infected possums are necessary for transmission of TB and this is more likely to 
occur in networks that are smaller (Porphyre et al., 2011). While there are obviously differences 
between possums and badgers this is likely to have some merit also in badger networks in the UK, as 
it is consistent with the finding that TB prevalence was consistently higher at low badger densities 
and in small social groups (Woodroffe et al., 2009).  

Analysis of cattle movements in the UK has indicated that this movement is contributing 
towards the spread of the disease (Gilbert et al., 2005; Gopal et al., 2006) and that the majority of 
cattle movements occur over a range of 10 to 100 km per journey (Christley et al., 2005) although 
many tens of thousands of cows move over far greater distances (up to 1000 km) (Mitchell et al., 
2005). The geographical distribution of these movements appears to be relatively stable from year 
to year (Mitchell et al., 2005). The distribution of annual rate of disease spread by cattle in the 
model is close to the values obtained in another study for the spread of TB in cattle (0.04 - 15.9, 
median = 3.3 km per year), and the same study additionally found a long tail (Brunton et al., 2015). 

Analysis of badger movement patterns has indicated that generally badgers move very little 
outside their home range area: Inter-group contacts between badgers only occurred between 
directly adjacent social groups at a frequency <1% of all contacts, in a medium density population 
(O’Mahony, 2015), and even in a high density population the majority (75.8%) of badgers were never 
captured in more than two social groups, (Macdonald et al., 2008). Despite the existence and 
potential underestimation of long-distance badger dispersal, in a field study addressing badger long-
distance dispersal, the longest recorded was 22.1 km with a mean distance of 2.6 km and with the 
95 percentile at 7.3 km (Byrne et al., 2014b). These dispersal values are considerably smaller than 
the distance that cattle disperse (Christley et al., 2005; Gilbert et al., 2005; Mitchell et al., 2005). In 
addition contacts between badgers and cattle occurred more frequently than contacts between 
different badger groups and  these inter-specific contacts involved those individual cows, that were 



highly connected within the cattle herd (Böhm et al., 2009). These differences in the distances 
dispersed by the two species involved here are consistent with the differences in the patterns of TB 
spread by the two species. Badgers disperse short distances, typically interact only within social 
groups and spread TB relatively short distances. Cattle are moved large distances, interact within the 
herd in which they reside and spread TB over both long and short distances. 

Spatial pattern analysis 

Results derived here show that there is a scale-dependent pattern in the spatial distribution 
of farms that contain TB infected cattle. TB infected farms aggregated at scales of 11.5 km 
corresponding to infections between nearby farms and at larger scales up to 21.1 km but were 
random thereafter. Movements of cattle from farm to farm via markets should also be considered at 
such distances (see also Fig. 11 in Mitchell et al. 2005) however this model does not include that. The 
spatial distribution of setts containing TB infected badgers exhibited an aggregated pattern across all 
scales examined with local infections recorded at scales of up to 4.3 km. The spatial distribution of 
TB (including both setts and farms) was aggregated at all scales with local infections recorded at 
scales up to 4.4 km. Therefore the TB spatial prevalence pattern is different between infected farms 
and setts but the overall TB infection spatial pattern is similar to the one of the most aggregated 
pattern – badgers. This implies that spatial associations between infected badgers and cattle will be 
detected at fine scales of 1-2 km (Woodroffe et al., 2005; Byrne et al., 2015), but locations of 
infected cattle will not detect infected badgers (Smith et al., 2015) and vice versa. In a study of farms 
in the UK it was concluded that cattle tested and found infected (reactors)  within 8 km of known 
infected herds are more likely to harbour undetected infection than those located further away 
(Goodchild et al., 2015) indicating a potential local clustering at a scale comparable to the one 
derived here for infected farms.   

These results have implications for TB vaccinations of badgers (Carter et al., 2012): Spatial 
pattern formation facilitates eradication of infectious diseases and disease vaccination efforts could 
be spatially targeted to prioritize those areas where the disease is known to occur (Eisinger & 
Thulke, 2008). Field evidence showed that vaccination reduces risk of TB infection in badgers (Carter 
et al., 2012) and surveys showed that some farmers in the UK are becoming more positive towards it 
(Enticott, 2015; O'Hagan et al., in press)  but see also (Naylor et al., 2015). Equally for cattle 
vaccination, a spatial targeting following the pattern and scale of not TB free farms can save effort in 
vaccination and towards disease control  (Eisinger & Thulke, 2008). Note that until recently cattle 
vaccination was problematic because it was hard to distinguish infected from vaccinated cattle 
(Vordermeier et al., 2016). However recently tests have been developed that differentiate infected 
from vaccinated animals, and it may now be feasible to use vaccines to assist in the control of this 
disease (Parlane & Buddle, 2015; Vordermeier et al., 2016).  

Results derived here indicate generally little overlap between infected setts and infected 
farms and that this overlap mainly occurs in a few scales; the spatial cross correlation between TB 
infected setts and infected farms was only positive at scales of 7.5 - 9.25 km and either not different 
from zero or negative at other scales. Thus there is a fairly narrow total area defined by a torus of 
width of 1.75 km between infected setts and infected farms where both TB positive cattle and 
badgers coexist. This is in agreement with field studies reporting direct contacts between badgers 
and cattle at pasture being very rare (four out of >500 000 recorded animal-to-animal contacts) 
despite ample opportunity for interactions to occur (Drewe et al., 2013), that badgers avoid cattle 
(Mullen et al., 2015), and that direct contact between individuals is unlikely to be a major route of 
TB transmission between species (Drewe et al., 2013; Mullen et al., 2015). The overlap between 
infected setts and farms at scales 7.5 – 9.25 km but not at scales where the actual infection is taking 
place, 1 to 2 km, shows that in the locations where both farms and setts are infected the infection 
between them is a movement-based one rather than a residential  one deriving from either cattle or 
badgers that move. These results indicate that the main source of infection for badgers is other 



badgers, and for cattle are other cattle. For data analyses on cattle to cattle transmission see (Conlan 
et al., 2012) while for badger to cattle see (Donnelly & Nouvellet, 2013).The introduction of the 
disease in areas that are TB free is more likely to occur through cattle movement as infected farm 
networks are better connected and cattle move considerably larger distances than badgers, and 
there are considerably more cattle than badgers per unit area. 

Temporal analysis 

 Temporal autocorrelation results derived here indicated that there are positive population 
cycles of infected badgers up to 23 months but no significant cycles in terms of partial 
autocorrelation indicating no longer term cycles or cycles within the 23-month-cycle. Temporal 
autocorrelation showed cycles of infected cattle of one to 7 months, of 32 to 39 months, while 
partial autocorrelation detected cycles 31 to 36 and a significant negative cycle for a time lag of 37 
months. Combined these results suggest a (positive or negative) three-year infection cycle - the 
cycles between 1-7 months can be an artefact created by the three-year cycle. Temporal cross 
correlation between the number of infected badgers and cattle was always negative across all time 
lags. These results imply that badgers have infection cycles of around two years and are negatively 
synchronised with cattle infection cycles as deduced from cross-correlation. Badger life span when 
infected is less than when not infected, and the time from infection to death is reported to vary 
between studies spanning from 'a rapid course' up to 709 days (Clifton-Hadley, 1993) and up to 3.5 
years when in captivity (Little et al., 1982). This cycle is likely to correspond to a median of two 
years, which is the value that we have typically used as badger life span when infected (Moustakas & 
Evans, 2015), and thus the cycle duration may be linked to the average life span of infected badgers. 
The decay of the autocorrelation function in badgers may in part be caused by the increase of 
badger population in time in several simulation scenarios. Other studies addressing temporal trends 
of TB in badgers have reported significant correlation in the disease status within groups over time, 
suggesting that infection persists for many years in some social groups (Delahay et al., 2000). The 
same study also reported that temporal trends in disease were not synchronized amongst 
neighbouring groups, suggesting low rates of disease transfer between them (Delahay et al., 2000). 
Seasonal trends of TB in badgers were reported to be significantly higher in summer than in any 
other season, but this was not consistent across all study locations (King et al., 2015).  
  

Cattle have an infection cycle within the year lasting 6 months possibly corresponding to 
winter housing lasting four months (Moustakas & Evans, 2016) and a longer term oscillation of 
around three to three and half years. The negative cycle of 37 months in cattle is likely to derive 
from cattle testing: in the analysis we have averaged several scenarios, these included annual testing 
when the percentage of infected herds is > 1% and testing every four years (48 months) when 
infected herds are 0.2% or less according to EU directives. These results  indicate that (i) the cycle of 
infection is different between badgers and cattle, (ii) that the cycle is shorter in badgers than in 
cattle, and (iii) that there is a negative cycle in cattle infections possibly due to testing, while there is 
no inverse cycle in badgers.  

 

Acknowledgements 

Comments of three anonymous reviewers have been exceptionally thorough and helpful. This paper 
is part of the special issue in Spatio-temporal Data Mining in Ecological and Veterinary Epidemiology. 
AM has been the guest editor for the special issue and declares that this submission was handled by 
regular member of the editorial board.  

  



References 

Abernethy, D., Upton, P., Higgins, I., McGrath, G., Goodchild, A., Rolfe, S., Broughan, J., Downs, S., 
Clifton-Hadley, R. & Menzies, F. (2013) Bovine tuberculosis trends in the UK and the Republic 
of Ireland, 1995–2010. Veterinary Record, 172, 312-312. 

Alvarez, J., Goede, D., Morrison, R. & Perez, A. (2016) Spatial and temporal epidemiology of porcine 
epidemic diarrhea (PED) in the Midwest and Southeast regions of the United States. 
Preventive Veterinary Medicine, 123, 155-160. 

Athira, P. & Sudheer, K. (2015) A method to reduce the computational requirement while assessing 
uncertainty of complex hydrological models. Stochastic Environmental Research and Risk 
Assessment, 29, 847-859. 

Augustijn, E.-W., Doldersum, T., Useya, J. & Augustijn, D. (in press) Agent-based modelling of cholera 
diffusion. Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-015-
1199-x. 

Besag, J. (1977) Contribution to the discussion of Dr. Ripley’s paper. JR Stat. Soc. B, 39, 193-195. 
BjØrnstad, O.N. & Falck, W. (2001) Nonparametric spatial covariance functions: estimation and 

testing. Environmental and Ecological Statistics, 8, 53-70. 
Böhm, M., Hutchings, M.R. & White, P.C.L. (2009) Contact Networks in a Wildlife-Livestock Host 

Community: Identifying High-Risk Individuals in the Transmission of Bovine TB among 
Badgers and Cattle. PLoS ONE, 4, e5016. 

Bourne, J., Donnelly, C.A., Cox, D.R., Gettinby, G., McInerney, J.P., Morrison, W.I. & Woodroffe, R. 
(2007) Bovine TB: The Scientific Evidence. In, p. 289. DEFRA, London. 

Brooks-Pollock, E., Roberts, G.O. & Keeling, M.J. (2014) A dynamic model of bovine tuberculosis 
spread and control in Great Britain. Nature, 511, 228-231. 

Brunton, L.A., Nicholson, R., Ashton, A., Alexander, N., Wint, W., Enticott, G., Ward, K., Broughan, 
J.M. & Goodchild, A.V. (2015) A novel approach to mapping and calculating the rate of 
spread of endemic bovine tuberculosis in England and Wales. Spatial and Spatio-temporal 
Epidemiology, 13, 41-50. 

Byrne, A.W., Acevedo, P., Green, S. & O’Keeffe, J. (2014a) Estimating badger social-group abundance 
in the Republic of Ireland using cross-validated species distribution modelling. Ecological 
Indicators, 43, 94-102. 

Byrne, A.W., Quinn, J.L., O'Keeffe, J.J., Green, S., Paddy Sleeman, D., Wayne Martin, S. & Davenport, 
J. (2014b) Large-scale movements in European badgers: has the tail of the movement kernel 
been underestimated? Journal of Animal Ecology, 83, 991-1001. 

Byrne, A.W., O’Keeffe, J., Green, S., Sleeman, D.P., Corner, L.A.L., Gormley, E., Murphy, D., Martin, 
S.W. & Davenport, J. (2012) Population Estimation and Trappability of the European Badger 
(<italic>Meles meles</italic>): Implications for Tuberculosis Management. PLoS ONE, 7, 
e50807. 

Byrne, A.W., Kenny, K., Fogarty, U., O’Keeffe, J.J., More, S.J., McGrath, G., Teeling, M., Martin, S.W. & 
Dohoo, I.R. (2015) Spatial and temporal analyses of metrics of tuberculosis infection in 
badgers (Meles meles) from the Republic of Ireland: Trends in apparent prevalence. 
Preventive Veterinary Medicine, 122, 345-354. 

Caplan, P. (2012) Cull or vaccinate?: Badger politics in Wales (Respond to this article at 
http://www.therai.org.uk/at/debate). Anthropology Today, 28, 17-21. 

Carter, S.P., Delahay, R.J., Smith, G.C., Macdonald, D.W., Riordan, P., Etherington, T.R., Pimley, E.R., 
Walker, N.J. & Cheeseman, C.L. (2007) Culling-induced social perturbation in Eurasian 
badgers Meles meles and the management of TB in cattle: an analysis of a critical problem in 
applied ecology. Proceedings of the Royal Society B: Biological Sciences, 274, 2769-2777. 

Carter, S.P., Chambers, M.A., Rushton, S.P., Shirley, M.D.F., Schuchert, P., Pietravalle, S., Murray, A., 
Rogers, F., Gettinby, G., Smith, G.C., Delahay, R.J., Hewinson, R.G. & McDonald, R.A. (2012) 
BCG Vaccination Reduces Risk of Tuberculosis Infection in Vaccinated Badgers and 
Unvaccinated Badger Cubs. PLoS ONE, 7, e49833. 

http://www.therai.org.uk/at/debate)


Christakos, G., Wang, J.-F. & Wu, J. (2014) Space–Time Medical Mapping and Causation Modeling. 
STOCHASTIC MEDICAL REASONING AND ENVIRONMENTAL HEALTH EXPOSURE, pp. 249-292. 
World Scientific. 

Christakos, G., Olea, R.A., Serre, M.L., Yu, H.L. & Wang, L.L. (2006) Interdisciplinary Public Health 
Reasoning and Epidemic Modelling: The Case of Black Death: The Case of Black Death. 
Springer. 

Christley, R., Robinson, S., Lysons, R. & French, N. (2005) Network analysis of cattle movement in 
Great Britain. Proc. Soc. Vet. Epidemiol. Prev. Med, 234-243. 

Claridge, J., Diggle, P., McCann, C.M., Mulcahy, G., Flynn, R., McNair, J., Strain, S., Welsh, M., Baylis, 
M. & Williams, D.J.L. (2012) Fasciola hepatica is associated with the failure to detect bovine 
tuberculosis in dairy cattle. Nature Communications, 3 

Clifton-Hadley, R. (1993) The use of a geographical information system (GIS) in the control and 
epidemiology of bovine tuberculosis in south-west England.  (ed by.  

Conlan, A.J.K., McKinley, T.J., Karolemeas, K., Pollock, E.B., Goodchild, A.V., Mitchell, A.P., Birch, 
C.P.D., Clifton-Hadley, R.S. & Wood, J.L.N. (2012) Estimating the Hidden Burden of Bovine 
Tuberculosis in Great Britain. PLoS Comput Biol, 8, e1002730. 

Cowie, C.E., Gortázar, C., White, P.C.L., Hutchings, M.R. & Vicente, J. (2015) Stakeholder opinions on 
the practicality of management interventions to control bovine tuberculosis. The Veterinary 
Journal, 204, 179-185. 

DEFRA (2014) Request for information: Bovine TB control costs. REF: 6505. In, 
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/323911/R
FI_6505.pdf. 

DEFRA (2015) Monthly publication of National Statistics on the Incidence of Tuberculosis (TB) in 
Cattle to end September 2015 for Great Britain. Available at:  
https://www.gov.uk/government/statistics/incidence-of-tuberculosis-tb-in-cattle-in-great-
britain (accessed  

Delahay, R.J., Langton, S., Smith, G.C., Clifton-Hadley, R.S. & Cheeseman, C.L. (2000) The spatio-
temporal distribution of Mycobacterium bovis (bovine tuberculosis) infection in a high-
density badger population. Journal of Animal Ecology, 69, 428-441. 

Desouza, K. & Yuan, L. (2013) Towards evidence-driven policy design: complex adaptive systems and 
computational modeling. Annual Review of Policy Design, 1, 1-19. 

Donnelly, C.A. & Nouvellet, P. (2013) The contribution of badgers to confirmed tuberculosis in cattle 
in high-incidence areas in England. PLOS Currents Outbreaks, Oct 10 . Edition 1, DOI: 
10.1371/currents.outbreaks.097a904d3f3619db2fe78d24bc776098. 

Donnelly, C.A. & Woodroffe, R. (2015) Bovine tuberculosis: Badger-cull targets unlikely to reduce TB. 
Nature, 526, 640-640. 

Donnelly, C.A., Bento, A.I., Goodchild, A.V. & Downs, S.H. (2015) Exploration of the power of routine 
surveillance data to assess the impacts of industry-led badger culling on bovine tuberculosis 
incidence in cattle herds. Veterinary Record, 177, 417. 

Donnelly, C.A., Woodroffe, R., Cox, D.R., Bourne, F.J., Cheeseman, C.L., Clifton-Hadley, R.S., Wei, G., 
Gettinby, G., Gilks, P., Jenkins, H., Johnston, W.T., Le Fevre, A.M., McInerney, J.P. & 
Morrison, W.I. (2006) Positive and negative effects of widespread badger culling on 
tuberculosis in cattle. Nature, 439, 843-846. 

Donnelly, C.A., Wei, G., Johnston, W.T., Cox, D.R., Woodroffe, R., Bourne, F.J., Cheeseman, C.L., 
Clifton-Hadley, R.S., Gettinby, G., Gilks, P., Jenkins, H.E., Le Fevre, A.M., McInerney, J.P. & 
Morrison, E.S. (2007) Impacts of widespread badger culling on cattle tuberculosis: 
concluding analysis from a large-scale field trial. International Journal of Infectious Disease, 
11, 300-308. 

Drewe, J., O'Connor, H., Weber, N., McDonald, R. & Delahay, R. (2013) Patterns of direct and indirect 
contact between cattle and badgers naturally infected with tuberculosis. Epidemiology and 
infection, 141, 1467-1475. 

http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/323911/RFI_6505.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/323911/RFI_6505.pdf
http://www.gov.uk/government/statistics/incidence-of-tuberculosis-tb-in-cattle-in-great-britain
http://www.gov.uk/government/statistics/incidence-of-tuberculosis-tb-in-cattle-in-great-britain


Eisinger, D. & Thulke, H.-H. (2008) Spatial pattern formation facilitates eradication of infectious 
diseases. Journal Of Applied Ecology, 45, 415-423. 

Enticott, G. (2001) Calculating nature: the case of badgers, bovine tuberculosis and cattle. Journal of 
Rural Studies, 17, 149-164. 

Enticott, G. (2015) Public attitudes to badger culling to control bovine tuberculosis in rural Wales. 
European Journal of Wildlife Research, 61, 387-398. 

Enticott, G., Maye, D., Carmody, P., Naylor, R., Ward, K., Hinchliffe, S., Wint, W., Alexander, N., Elgin, 
R., Ashton, A., Upton, P., Nicholson, R., Goodchild, T., Brunton, L. & Broughan, J. (2015) 
Farming on the edge: farmer attitudes to bovine tuberculosis in newly endemic areas. 
Veterinary Record, 177, 439. 

Eurostat (2009) Farm Structure Survey in the United Kingdom - 2007 In: Statistics in Focus, 
http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-SF-09-081/EN/KS-SF-09-081-
EN.PDF. 

Evans, M.R., Benton, T.G., Grimm, V., Lessells, C.M., O’Malley, M.A., Moustakas, A. & Weisberg, M. 
(2014) Data availability and model complexity, generality, and utility: a reply to Lonergan. 
Trends in Ecology & Evolution, 29, 302-303. 

Evans, M.R., Bithell, M., Cornell, S.J., Dall, S.R.X., Díaz, S., Emmott, S., Ernande, B., Grimm, V., 
Hodgson, D.J., Lewis, S.L., Mace, G.M., Morecroft, M., Moustakas, A., Murphy, E., Newbold, 
T., Norris, K.J., Petchey, O., Smith, M., Travis, J.M.J. & Benton, T.G. (2013) Predictive systems 
ecology. Proceedings of the Royal Society B: Biological Sciences, 280, 20131452. 

Fan, J., Han, F. & Liu, H. (2014) Challenges of Big Data analysis. National Science Review, 1, 293-314. 
Gilbert, M., Mitchell, A., Bourn, D., Mawdsley, J., Clifton-Hadley, R.S. & Wint, W. (2005) Cattle 

movements and bovine tuberculosis in Great Britain. Nature, 435, 491-496. 
Goodchild, A.V., Downs, S.H., Upton, P., Wood, J.L.N. & de la Rua-Domenech, R. (2015) Specificity of 

the comparative skin test for bovine tuberculosis in Great Britain. The Veterinary Record, 
177, 258-258. 

Gopal, R., Goodchild, A., Hewinson, G., de la Rua Domenech, R. & Clifton-Hadley, R. (2006) 
Introduction of bovine tuberculosis to north-east England by bought-in cattle. Vet Rec, 159, 
265-71. 

Jenkins, H.E., Woodroffe, R. & Donnelly, C.A. (2010) The duration of the effects of repeated 
widespread badger culling on cattle tuberculosis following cessation of culling. PloS One, 5, 
e9090. 

Judge, J., Wilson, G.J., Macarthur, R., Delahay, R.J. & McDonald, R.A. (2014) Density and abundance 
of badger social groups in England and Wales in 2011–2013. Scientific Reports, 4, 3809. 

King, D., Roper, T.J., Young, D., Woolhouse, M.E.J., Collins, D.A. & Wood, P. (2007) Tuberculosis in 
cattle and badgers: a report by the Chief Scientific Advisor, Sir David King. In, London. 

King, H.C., Murphy, A., James, P., Travis, E., Porter, D., Hung, Y.-J., Sawyer, J., Cork, J., Delahay, R.J. & 
Gaze, W. (2015) The variability and seasonality of the environmental reservoir of 
Mycobacterium bovis shed by wild European badgers. Scientific reports, 5, 12318  

Knox, E. & Bartlett, M. (1964) The detection of space-time interactions. Journal of the Royal 
Statistical Society. Series C (Applied Statistics), 13, 25-30. 

Krackhardt, D. (1994) Graph theoretical dimensions of informal organizations. Computational 
organization theory, 89, 123-140. 

Krebs, J.R., Anderson, R., Clutton-Brock, T., Morrison, I., Young, D., Donnelly, C.A., Frost, S. & 
Woodroffe, R. (1997) Bovine tuberculosis in cattle and badgers. Report to the Rt Hon Dr Jack 
Cunningham MP by The Independent Scientific Review Group, London, 191 pages. In, 
London. 

Krebs, J.R., Anderson, R.M., Clutton-Brock, T., Donnelly, C.A., Frost, S., Morrison, W.I., Woodroffe, R. 
& Young, D. (1998) Badgers and Bovine TB: Conflicts Between Conservation and Health. 
Science, 279, 817-818. 

http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-SF-09-081/EN/KS-SF-09-081-EN.PDF
http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-SF-09-081/EN/KS-SF-09-081-EN.PDF


Lange, M., Siemen, H., Blome, S. & Thulke, H.H. (2014) Analysis of spatio-temporal patterns of 
African swine fever cases in Russian wild boar does not reveal an endemic situation. 
Preventive Veterinary Medicine, 117, 317-325. 

Little, T., Naylor, P. & Wilesmith, J. (1982) Laboratory study of Mycobacterium bovis infection in 
badgers and calves. The Veterinary Record, 111, 550-557. 

Lonergan, M. (2014) Data availability constrains model complexity, generality, and utility: a response 
to Evans et al. Trends in ecology & evolution, 29, 301-302. 

Louca, M., Vogiatzakis, I.N. & Moustakas, A. (2015) Modelling the combined effects of land use and 
climatic changes: Coupling bioclimatic modelling with Markov-chain Cellular Automata in a 
case study in Cyprus. Ecological Informatics, 30, 241-249. 

Macdonald, D.W. & Feber, R.E. (2015) Wildlife Conservation on Farmland Volume 2: Conflict in the 
Countryside. Oxford University Press, USA. 

Macdonald, D.W., Newman, C., Buesching, C.D. & Johnson, P.J. (2008) Male-Biased Movement in a 
High-Density Population of the Eurasian Badger (Meles meles). Journal of Mammalogy, 89, 
1077-1086. 

McKay, M.D., Beckman, R.J. & Conover, W.J. (1979) A Comparison of Three Methods for Selecting 
Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 
21, 239-245. 

Mitchell, A., Bourn, D., Mawdsley, J., Wint, W., Clifton-Hadley, R. & Gilbert, M. (2005) Characteristics 
of cattle movements in Britain–an analysis of records from the Cattle Tracing System. Animal 
Science, 80, 265-273. 

Moustakas, A. (2015) Fire acting as an increasing spatial autocorrelation force: Implications for 
pattern formation and ecological facilitation. Ecological Complexity, 21, 142-149. 

Moustakas, A. & Evans, M.R. (2013) Integrating Evolution into Ecological Modelling: Accommodating 
Phenotypic Changes in Agent Based Models. PLoS ONE, 8, e71125. 

Moustakas, A. & Evans, M. (2015) Coupling models of cattle and farms with models of badgers for 
predicting the dynamics of bovine tuberculosis (TB). Stochastic Environmental Research and 
Risk Assessment, 29, 623-635. 

Moustakas, A. & Evans, M.R. (2016) Regional and temporal characteristics of bovine tuberculosis of 
cattle in Great Britain. Stochastic Environmental Research and Risk Assessment, 30, 989-
1003. 

Mullen, E.M., MacWhite, T., Maher, P.K., Kelly, D.J., Marples, N.M. & Good, M. (2015) The avoidance 
of farmyards by European badgers Meles meles in a medium density population. Applied 
Animal Behaviour Science, 171, 170-176. 

Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R. & Muharemagic, E. (2015) 
Deep learning applications and challenges in big data analytics. Journal of Big Data, 2, 1-21. 

Naylor, R., Manley, W., Maye, D., Enticott, G., Ilbery, B. & Hamilton-Webb, A. (2015) The Framing of 
Public Knowledge Controversies in the Media: A Comparative Analysis of the Portrayal of 
Badger Vaccination in the English National, Regional and Farming Press. Sociologia Ruralis, 
n/a-n/a. 

Nisbet, M.C. & Markowitz, E.M. (2015) Expertise in an Age of Polarization Evaluating Scientists’ 
Political Awareness and Communication Behaviors. The ANNALS of the American Academy of 
Political and Social Science, 658, 136-154. 

O'Hagan, M.J.H., Matthews, D.I., Laird, C. & McDowell, S.W.J. (in press) Farmer beliefs about bovine 
tuberculosis control in Northern Ireland. The Veterinary Journal, 10.1016/j.tvjl.2015.10.038. 

O’Mahony, D.T. (2015) Badger (Meles meles) contact metrics in a medium-density population. 
Mammalian Biology - Zeitschrift für Säugetierkunde, 80, 484-490. 

Parlane, N.A. & Buddle, B.M. (2015) Immunity and Vaccination against Tuberculosis in Cattle. Current 
Clinical Microbiology Reports, 2, 44-53. 

Pfeiffer, D.U. & Stevens, K.B. (2015) Spatial and temporal epidemiological analysis in the Big Data 
era. Preventive Veterinary Medicine, 122, 213-220. 



Porphyre, T., McKenzie, J. & Stevenson, M.A. (2011) Contact patterns as a risk factor for bovine 
tuberculosis infection in a free-living adult brushtail possum Trichosurus vulpecula 
population. Preventive Veterinary Medicine, 100, 221-230. 

R Development Core Team (2016) R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0., 

Reis, S., Seto, E., Northcross, A., Quinn, N.W.T., Convertino, M., Jones, R.L., Maier, H.R., Schlink, U., 
Steinle, S., Vieno, M. & Wimberly, M.C. (2015) Integrating modelling and smart sensors for 
environmental and human health. Environmental Modelling & Software, 74, 238-246. 

Ribeiro-Lima, J., Enns, E.A., Thompson, B., Craft, M.E. & Wells, S.J. (2015) From network analysis to 
risk analysis—An approach to risk-based surveillance for bovine tuberculosis in Minnesota, 
US. Preventive Veterinary Medicine, 118, 328-340. 

Schmitt, S.M., Fitzgerald, S.D., Cooley, T.M., Bruning-Fann, C.S., Sullivan, L., Berry, D., Carlson, T., 
Minnis, R.B., Payeur, J.B. & Sikarskie, J. (1997) Bovine tuberculosis in free-ranging white-
tailed deer from Michigan. Journal of Wildlife Diseases, 33, 749-758. 

Schumm, P., Scoglio, C. & Scott, H.M. (2015) An estimation of cattle movement parameters in the 
Central States of the US. Computers and Electronics in Agriculture, 116, 191-200. 

Smith, C.M., Downs, S.H., Mitchell, A., Hayward, A.C., Fry, H. & Le Comber, S.C. (2015) Spatial 
Targeting for Bovine Tuberculosis Control: Can the Locations of Infected Cattle Be Used to 
Find Infected Badgers? PLoS ONE, 10, e0142710. 

Smith, G.C. & Cheeseman, C.L. (2007) Efficacy of trapping during the initial proactive culls in the 
randomised badger culling trial. Veterinary Record, 160, 723-726. 

Stoyan, D. & Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical 
statistics. Wiley, Chichester, UK. 

Torgerson, P. & Torgerson, D. (2008) Does risk to humans justify high cost of fighting bovine TB? 
Nature, 455, 1029-1029. 

Touloudi, A., Valiakos, G., Athanasiou, L.V., Birtsas, P., Giannakopoulos, A., Papaspyropoulos, K., 
Kalaitzis, C., Sokos, C., Tsokana, C.N., Spyrou, V., Petrovska, L. & Billinis, C. (2015) A 
serosurvey for selected pathogens in Greek European wild boar. Veterinary Record Open, 2, 
e000077. 

Tweddle, N.E. & Livingstone, P. (1994) Bovine tuberculosis control and eradication programs in 
Australia and New Zealand. Veterinary microbiology, 40, 23-39. 

Venables, W.N. & Ripley, B.D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New 
York. ISBN 0-387-95457-0.  

Vicente, J., Delahay, R.J., Walker, N.J. & Cheeseman, C.L. (2007) Social organization and movement 
influence the incidence of bovine tuberculosis in an undisturbed high-density badger Meles 
meles population. Journal of Animal Ecology, 76, 348-360. 

Vordermeier, H.M., Jones, G.J., Buddle, B.M., Hewinson, R.G. & Villarreal-Ramos, B. (2016) Bovine 
Tuberculosis in Cattle: Vaccines, DIVA Tests, and Host Biomarker Discovery. Annual Review 
of Animal Biosciences, 4, 87-109. 

Walpole, J., Papin, J.A. & Peirce, S.M. (2013) Multiscale Computational Models of Complex Biological 
Systems. Annual Review of Biomedical Engineering, 15, 137-154. 

Weber, N., Carter, S.P., Dall, S.R.X., Delahay, R.J., McDonald, J.L., Bearhop, S. & McDonald, R.A. 
(2013) Badger social networks correlate with tuberculosis infection. Current Biology, 23, 
R915-R916. 

Wiegand, T. & Moloney, K.A. (2004) Rings, circles, and null‐models for point pattern analysis in 
ecology. Oikos, 104, 209-229. 

Woodroffe, R., Donnelly, C.A., Cox, D.R., Bourne, F.J., Cheeseman, C.L., Delahay, R.J., Gettinby, G., 
McInerney, J.P. & Morrison, W.I. (2006a) Effects of culling on badger Meles meles spatial 
organisation: implications for the control of bovine tuberculosis. Journal Of Applied Ecology, 
43, 1-10. 



Woodroffe, R., Donnelly, C.A., Wei, G., Cox, D., Bourne, F.J., Burke, T., Butlin, R.K., Cheeseman, C., 
Gettinby, G. & Gilks, P. (2009) Social group size affects Mycobacterium bovis infection in 
European badgers (Meles meles). Journal of Animal Ecology, 78, 818-827. 

Woodroffe, R., Gilks, P., Johnston, W.T., Le Fevre, A.M., Cox, D.R., Donnelly, C.A., Bourne, F.J., 
Cheeseman, C.L., Gettinby, G., McInerney, J.P. & Morrison, W.I. (2008) Effects of culling on 
badger abundance: implications for tuberculosis control. Journal of Zoology, 274, 28-37. 

Woodroffe, R., Donnelly, C.A., Johnston, W.T., Bourne, F.J., Cheeseman, C.L., Clifton-Hadley, R.S., 
Cox, D.R., Gettinby, G., Hewinson, R.G., Fevre, A.M.L., McInerney, J.P. & Morrison, W.I. 
(2005) Spatial Association of Mycobacterium bovis Infection in Cattle and Badgers Meles 
meles. Journal of Applied Ecology, 42, 852-862. 

Woodroffe, R., Donnelly, C.A., Jenkins, H.E., Johnston, W.T., Cox, D.R., Bourne, F.J., Cheeseman, C.L., 
Delahay, R.J., Clifton-Hadley, R.S., Gettinby, G., Gilks, P., Hewinson, R.G., McInerney, J.P. & 
Morrison, W.I. (2006b) Culling and cattle controls influence tuberculosis risk for badgers. 
Proceedings of the National Academy of Sciences, 103, 14713-14717. 

Wright, D.M., Reid, N., Ian Montgomery, W., Allen, A.R., Skuce, R.A. & Kao, R.R. (2015) Herd-level 
bovine tuberculosis risk factors: assessing the role of low-level badger population 
disturbance. Scientific Reports, 5, 13062. 

Zhang, H., Jin, X., Wang, L., Zhou, Y. & Shu, B. (2015) Multi-agent based modeling of spatiotemporal 
dynamical urban growth in developing countries: simulating future scenarios of Lianyungang 
city, China. Stochastic environmental research and risk assessment, 29, 63-78. 

 

  



 

Table 1 
         Variable Mean StDev Q1 Median Q3 

cattle 0.23 0.12 0.14 0.22 0.32 

badgers 0.12 0.09 0.04 0.11 0.17 

 

Table 1. Connectedness values between farms containing at least one infected cattle (cattle) and 
between badger setts containing at least one infected badger (badgers).  
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Figure 1. Distance of infections in time. (a) Mean distance of infection spread per infected badger 
and per infected cattle individual per year (km yr-1). (b) Empirical Cumulative Density Function (ECDF) 
of the distribution of mean infection distances for badgers and cattle. ECDF plots the value of each 
observation against the percentage of values in the sample that are less than or equal to that value. 
Data are in stepped lines while the continuous line is a fitted normal distribution in the data (c) 
Contour plots of the contribution of infected badger individuals in terms of mean distance of disease 
spread (km yr-1) of badger individuals staying in their home sett and badger individuals leaving their 
home sett (moving badgers). Darker colours indicate longer mean distances of disease spread. (d) 
Linear regression between the infection spread distance (km yr-1) and badger population growth rate 
Regression fit is displayed with solid red lines, 95% confidence intervals are displayed with dashed 
green lines and 95% predicted intervals are displayed with dotted purple lines (e). Linear regression 
between the number of infected badgers and the number of badgers leaving their sett (f) Linear 
regression between the number of badgers leaving their sett and badger population growth rate. (g) 
Box plots of badger infection distance (km yr-1) per badger population growth rates. (h) Linear 
regression between the percentage (fraction) of infected badgers and badger population growth 
rate. (i) Linear regression between badger infection distance (km yr-1) and the percentage of infected 
badgers. (j) Linear regression between the number of badgers leaving their sett and the percentage 
of infected badgers. Note that the lower predicted interval is always below zero but the lower 
confidence interval is only crossing zero for very large values of % of infected badgers. (k) Box plots 
of cattle infection distance (km yr-1) as a function of the fraction of the total cattle population 
moving to other farms per year. 
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Figure 2. (a) Full scale model output of locations of both badger setts and cattle farms with at least 
one TB infected individual at the end of simulation. Badgers are depicted with red circles while cattle 
with blue triangles (b) A time snapshot of a detail (20 x 20 cell grid) of locations of badger setts with 
at least one TB infected badger individual in the middle (month = 180) of simulation period. For 
improving visualisation, a Gaussian kernel smoothing with a sigma equal to the standard deviation 
was used. (c) same as b for cattle. 
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Figure 3. Spatial analysis results of badger setts containing at least one infected badger and farms 
containing at least one infected cattle. All horizontal axes refer to distances (scales, r) in increments 
of 0.84 km corresponding to one cell in the model. Upper graphs refer to badgers (a, b), middle 
graphs to cattle (c, d), and bottom graphs badgers and cattle (e-g). Graphs a, c, and e (first column) 
refer to the pair correlation function g(r) across scales r. Values of g(r)< 1 indicate regularity at scale 
r, while values of g(r)>1 indicate clustering at scale r, while values close to 1 indicate random 
spacing. Graphs b, d, and f (middle column) refer to the L-function with confidence intervals in grey 
colour. Values of the L(r)>0 indicate clustering at scale r while L(r)<0 indicate regularity at scale r. 
Graph g depicts the spatial cross-correlation between locations across scales r of badger setts 
containing at least one infected badger and locations of farms containing at least one infected cattle 
using a multivariate spline cross-correlogram. Values on the vertical axis spanning from -1 to 1 
indicate negative (-) positive (+) or no correlation (≈0). Upper and lower lines depict a 95% 
confidence interval. In order to assume a scale-specific spatial correlation significance all three lines 
should be above or below zero (no line should cross zero at that scale). 
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Figure 4. Temporal analysis of the number of infected badger and cattle individuals per time month 
for 30 years of simulation. (a) Autocorrelation function for the number of infected badgers per time 
step of simulations. (b) Autocorrelation function for the number of infected cattle per time step of 
simulations. (c) Partial autocorrelation function for the number of infected badgers per time step of 
simulations. (d) Partial autocorrelation function for the number of infected cattle per time step of 
simulations. (e) Cross correlation function between the number of infected badgers and the number 
of infected cattle per time step of simulations. Vertical solid red lines indicate 95% confidence 
intervals. 
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