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Convergence Rate for the Ordered Upwind Method∗

Alex Shum† Kirsten Morris† Amir Khajepour ‡

Abstract

The Ordered Upwind Method (OUM) is used to approximate the viscosity solution
of the static Hamilton-Jacobi-Bellman (HJB) with direction-dependent weights on un-
structured meshes. The method has been previously shown to provide a solution that
converges to the exact solution, but no convergence rate has been theoretically proven.
In this paper, it is shown that the solutions produced by the OUM in the boundary
value formulation converge at a rate of at least the square root of the largest edge length
in the mesh in terms of maximum error. An example with similar order of numerical
convergence is provided.

1 Introduction

The static Hamilton-Jacobi-Bellman (HJB) equation with a prescribed value on the bound-
ary of a region Ω ⊂ Rn where the solution is found on the interior of Ω arises in a number of
optimization problems. Applications include optimal escape from a region [1], area patrol
and perimeter surveillance [15], modelling folds in structural geology [17] and reactive fluxes
[8].

There are two classes of semi-Lagrangian approximations [19] that approximate a
solution to the static HJB equation. These approximations are known as semi-Lagrangian
because the solution is approximated along short segments of characteristics dependent
on the discretization. Both are solved on a fixed simplicial mesh or grid that discretizes
the region of interest. The difference between them is the method in which the control is
approximated.

In the first approach, the control is assumed to be held constant within an element of
a mesh [16]. Non-iterative schemes such as the Ordered Upwind Method (OUM), Monotone
Acceptance Ordered Upwind Method (MAOUM) [2] and Fast Marching Method (FMM)
[18] use this approximation. In OUM, MAOUM and FMM, the order in which the solution
on the vertices of the mesh (or grid) is found explicitly much like in Dijkstra’s algorithm [11]
resulting in a significant speed up in computation, despite the coupling between vertices.

In the other semi-Lagrangian approximation, the control is assumed to be held fixed
for a small time 4t. To determine the solution at a mesh point, a first-order reconstruction
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from nearby points on the discretization is required. An error bound O(4t) has been shown
for controls that have bounded variation [6]. Results of higher-order convergence rates using
higher-order semi-Lagrangian approximation schemes of this type exist [14]. Many iterative
algorithms [5, 10] have been devised that use this approximation.

Convergence rate results exist for the related time-dependent Hamilton-Jacobi equa-
tion, where similar half-order convergence is observed in terms of the longest time step
(rather than edge length). These results have been proven for grid like discretizations
[9, 23] and have been extended to the use of triangular meshes [4] both using finite differ-
ence schemes. In [5], convergence rate results are given using similar schemes that include
both time step and spatial discretizations. The proof of the main result in this work draws
on some similar ideas such as doubling the variables in the use of an auxiliary function as
in [5] and [13, Chapter 10].

It is proven in this paper that the convergence rate of the approximate solution
provided by OUM to the viscosity solution of the static HJB boundary value problem is
at least O(

√
hmax) in terms of maximum error, where hmax is the longest edge length of a

mesh. In [21], the OUM was shown to provide an approximate solution to the static HJB
equation that converges as hmax → 0, but no convergence rate was obtained. The proof in
this work is based on a similar result for FMM in [20]. The OUM however is a different
algorithm used to solve a wider class of problems where the weight (or speed) function can
depend on position and direction and the boundary function can depend on position. The
result in [20] is proven on a uniform grid whereas the result here holds on a simplicial mesh.
Simplicial meshes are better suited towards discretizing regions with complex geometries.
A finer discretization may be required to obtain the same accuracy when the discretization
is restricted to grids. A key step in the proof for the OUM convergence rate is showing the
existence of a directionally complete stencil that is consistent with the result of OUM, an
idea which was first presented in [2].

The optimal control problem along with an introduction to viscosity solutions will
be presented in section 2. In section 3, a general discretization of Ω ⊂ Rn, known as a
simplicial mesh, will be described. The Ordered Upwind Method [21] will be reviewed in
section 4. Properties of the OUM algorithm required in the proof of the main result will be
presented in section 5. The convergence rate result will be proven in section 6. An example
demonstrating numerical convergence close to the proven theoretical rate will be presented
in section 7. Conclusions and directions of future work will be discussed in section 8.

2 Problem Formulation

A point is denoted x ∈ Rn and the Euclidean norm is denoted ‖·‖. The set of positive real
numbers is denoted R+. Let Ω ⊂ Rn be open, connected, bounded with non-empty interior
and boundary ∂Ω. Let Ω = Ω ∪ ∂Ω be the closure of Ω.

Let U = {u(·) : R+ ∪ {0} → Sn−1|u(·) is measurable} where Sn−1 = {u ∈ Rn|
‖u‖ = 1} be the set of admissible controls and the trajectory y : R+ ∪ {0} → Ω is governed
by control u(·) ∈ U ,

ẏ(t) = u(t),y(0) = x0, x0 ∈ Ω. (1)

The control problem is to steer y(·) from x0 ∈ Ω to any point on the boundary xf ∈ ∂Ω.
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The trajectory with initial condition y(0) = x0 may be written yx0
(·).

Definition 2.1. The exit-time T : Ω × U → R+ ∪ {0} is the first time yx0
(·) reaches

xf ∈ ∂Ω under the influence of the control u(·),

T (x0,u(·)) = inf{t|yx0
(t) ∈ ∂Ω}. (2)

To discuss optimality, a cost is assigned to each control.

Definition 2.2. The cost function, Cost: Ω× U → R is

Cost(x0,u(·)) =

∫ T (x0,u(·))

0
g(yx0

(s),u(s))ds+ q(yx0
(T (x0,u(·)))), for x0 ∈ Ω (3)

where q : ∂Ω→ R is the boundary exit-cost and g : Ω× Sn−1 → R+ is the weight.

The optimal control problem is to find a control u∗(·) that minimizes (3).

Definition 2.3. The value function V : Ω → R at x ∈ Ω is the cost associated with the
optimal control u∗(·) for reaching any xf ∈ ∂Ω from x,

V (x) = inf
u(·)∈U

Cost(x,u(·)). (4)

The value function at x ∈ Ω is the lowest cost to reach ∂Ω from x. The value function
satisfies the continuous Dynamic Programming Principle (DPP).

Theorem 2.4. (Dynamic Programming Principle [13, Theorem 10.3.1]) For h > 0, t ≥ 0,
such that 0 ≤ t+ h ≤ T (x0,u

∗(·)),

V (yx0
(t)) = inf

u(·)∈U

{∫ t+h

t
g(yx0

(s),u(s))ds+ V (yx0
(t+ h))

}
. (5)

For V to be continuous on Ω, continuity between V on Ω and q on ∂Ω must be
established. Let L : Ω× Ω be

L(x1,x2) = inf
u(·)∈U

{∫ τ

0
g(yx1

(s),u(s))ds
∣∣∣ yx1

(τ) = x2,yx1
(t) ∈ Ω, t ∈ (0, τ)

}
. (6)

Definition 2.5. The exit-cost q is compatible (with the continuity of V ) if

q(x1)− q(x2) ≤ L(x1,x2) (7)

for all x1,x2 ∈ ∂Ω.

Definition 2.6. The speed profile of g(x,u) is

Ug(x) =

{
tu

g(x,u)

∣∣∣u ∈ Sn−1 and t ∈ [0, 1]

}
.
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In R2, the speed profile is the shape centred at x with radius 1/g(x,u) at the angle corre-
sponding to the direction u.

The optimal control problem (1), (3) will be assumed to satisfy the following:

(P1) The boundary function q is compatible with the continuity of V .

(P2) There exist constants Gmin, Gmax ∈ R+ and continuous functions gmin, gmax : Ω →
R+ such that for all x ∈ Ω and u ∈ Sn−1,

0 < Gmin ≤ gmin(x) ≤ g(x,u) ≤ gmax(x) ≤ Gmax <∞. (8)

(P3) There exists Lg ∈ R+ such that for x1,x2 ∈ Ω and u ∈ Sn−1,

|g(x1,u)− g(x2,u)| ≤ Lg ‖x1 − x2‖ . (9)

(P4) For all x1,x2 ∈ Ω and λ ∈ (0, 1), λx1 + (1− λ)x2 ∈ Ω.

(P5) The speed profile Ug(x) is convex for all x ∈ Ω.

Assumption (P5) is needed to guarantee uniqueness in the optimizing direction in
the approximated problem provided ∇V exists [2, 25].

Lemma 2.7. The boundary function q : ∂Ω→ R is Lipschitz-continuous.

The proof follows from (P1),(P2), and (P4) with Lipschitz constant 2Gmax.
Since q is Lipschitz-continuous on a compact subset of Rn, there exist qmin, qmax ∈ R

such that
qmin ≤ q(x) ≤ qmax. (10)

Define the Hamiltonian H : Ω× Rn → R

H(x,p) = − min
u∈Sn−1

{p · u + g(x,u)}. (11)

The corresponding static Hamilton-Jacobi-Bellman (HJB) equation which can be derived
from a first-order approximation of (5) [25] is

H(x,∇V ) = min
u∈Sn−1

{(∇V (x) · u) + g(x,u)} = 0,x ∈ Ω, (12)

V (x) = q(x), for x ∈ ∂Ω.

Definition 2.8. The characteristic direction u∗ : Ω → Sn−1 at x ∈ Ω is an optimizer
of (12) at x.

Even for smooth g(x,u), q(x) and ∂Ω, ∇V (and hence unique u∗) may not exist
over all of Ω. The weaker notion of viscosity solutions [5], is used to describe solutions
of (11). Let Ck(Ω), k ∈ N ∪ {∞} denote the space of functions on Ω that are k-times
continuously-differentiable.
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Definition 2.9. [5] A function V : Ω → R is a viscosity subsolution of (12) if for any
φ ∈ C∞(Ω),

H(x0,∇φ(x0)) ≤ 0, (13)

at any local maximum point x0 ∈ Ω of V − φ.

Definition 2.10. [5] A function V : Ω → R is a viscosity supersolution of (12) if for
any φ ∈ C∞(Ω),

H(x0,∇φ(x0)) ≥ 0, (14)

at any local minimum point x0 ∈ Ω of V − φ.

Definition 2.11. [5] A viscosity solution of the static HJB (12) is both a viscosity
subsolution and a viscosity supersolution of (12).

3 Simplicial Meshes

Viscosity solutions are often difficult to find analytically. The region Ω will be discretized
using a simplicial mesh on which V (4) will be solved approximately.

Definition 3.1. A set of points F = {x0, ...,xk} ⊂ Rn is affinely independent if the
vectors {x1 − x0, ... , xk − x0} are linearly independent.

Definition 3.2. A k-simplex (plural k-simplices) s = xs
0xs

1 · · ·xs
k is the convex hull of an

affinely independent set of points F = {xs
0,x

s
1...,x

s
k}.

Definition 3.3. Suppose s is a k-simplex defined by the convex hull of F . A face of s is
any m-simplex (−1 ≤ m ≤ k) forming the convex hull of a subset of F containing m + 1
elements.

Definition 3.4. A simplicial mesh, X is a set of simplices such that

1. Any face of a simplex in X is also in X.

2. The intersection of two simplices s1, s2 ∈ X is a face of X.

Definition 3.5. A k-simplicial mesh is a simplicial mesh where the highest dimension
of any simplex in X is k.

Denote Xj , 0 ≤ j ≤ n the set of j-simplices of X. Elements of X0, the 0-simplices of X
are denoted xi and known as vertices. Elements of X1, the 1-simplices of X, are known as
edges.

Suppose X ⊂ Rn is an n-simplicial mesh. For 0 ≤ k ≤ n, define

Ξk =

(ζ0, ζ1, ..., ζk) ∈ Rk+1
∣∣∣ k∑
j=0

ζj = 1, ζj ∈ [0, 1] ∀ 0 ≤ j ≤ k − 1

 . (15)

Definition 3.6. The barycentric coordinates of x ∈ Rn belonging to a k-simplex s is a
vector ζ = (ζ0, ..., ζk) ∈ Ξk such that x =

∑k
j=0 ζjx

s
j.

5



Figure 1: An example of Ω ⊂ R2 contained in a 2-simplicial mesh X.

Definition 3.7. A closed region A ⊂ Rn is contained in an n-simplicial mesh X if for
every x ∈ A, there exists s = xs

0xs
1 · · ·xs

n and ζ = (ζ0, ζ1, ..., ζn) ∈ Ξn such that x =∑n
j=0 ξjx

s
j.

Definition 3.8. The maximum edge length hmax is the length of the longest edge of X.

Definition 3.9. Let 1 ≤ k ≤ n. A neighbour of simplex x0x1 · · ·xk−1 ∈ Xk−1, is a vertex
xk ∈ X0 such that x0x1 · · ·xk ∈ Xk.

Definition 3.10. The minimum simplex height hmin of X is the shortest perpendicular
distance between any s ∈ Xn−1 with its neighbours.

If n = 2, then hmin is the shortest triangle height. The following assumptions will be
made on the (n-simplicial) mesh X ⊂ Rn on which the approximation of V in the optimal
control problem (1), (3) will be found.

(M1) There exists M ∈ R+ such that 1 ≤ hmax
hmin

≤M .

(M2) The region Ω is contained (Definition 3.7) in the mesh X.

(M3) The mesh X is bounded and has a finite number of vertices X0.

The value M is a measure of the worst-case degeneracy for a mesh X. An example of Ω ⊂ R2

being contained in a mesh X is shown in Figure 1. With the discretization definitions and
assumptions stated, the OUM will now be presented.

4 Review of the Ordered Upwind Method

The OUM [21] is used to find an approximation Ṽ : X0 → R of V in (5) on the vertices of
an n-simplicial mesh X ⊂ Rn satisfying (M1) -(M3).

The vertices of X0 are assigned and updated between the following labels throughout
the execution of the OUM.

Far - These vertices have values Ṽ (xi) = K, where K is a large value. Computation of Ṽ
has not yet started.
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Figure 2: OUM Labels - An example for Ω ⊂ R2. The vertex xi with Considered label
is updated from the set of directions provided by NF(xi). Vertices labelled Accepted are
shaded, including vertices on the edges that make up AF and the Near Front of xi, NF(xi).
Vertices outside Ω are also labelled Accepted. BΓhmax(xi) is the closed ball with radius Γhmax
and centre xi. Vertices labelled Considered are marked with a triangle. Unmarked vertices
are labelled Far.

Considered - These vertices have tentative values Ṽ < K and are computed using an
update formula.

Accepted - These vertices have finalized values Ṽ .

At any instant of the algorithm, each vertex in X must be labelled exactly one of Accepted,
Considered or Far. Simplices with Accepted label are further classified.

Accepted Front - The subset of vertices X0 with Accepted label that have a neighbour
labelled Considered.

AF - The subset of Xn−1 made of vertices on the Accepted Front that have a neighbouring
vertex labelled Considered.

Definition 4.1. Let Γ = Gmax
Gmin

denote the global anisotropy coefficient where Gmin and
Gmax are described in (8).

Near Front of xi (NF(xi)) - Let xi be labelled Considered. Define

NF(xi) =
{

s ∈ AF
∣∣∣ ∃ x̃ ∈ s

∣∣∣ ‖x̃− xi‖ ≤ Γhmax

}
. (16)

See Figure 2. The sets AF, NF(xi) ⊂ Xn−1 change throughout the execution of the OUM
due to the vertices of X being relabelled from Far to Considered to Accepted.

Define the discrete set of controls Ũ

Ũ =
{

ũ(·) ∈ U
∣∣∣ũ(t) = ũi, ũi ∈ Sn−1 while y(t) ∈ s ∈ X

}
. (17)

The distance between vertex xi and x ∈ s ∈ Xn−1, where x =
∑n−1

j=0 ζjx
s
j is denoted

τs(xi, ζ) =
∥∥∥∑n−1

j=0 ζjx
s
j − xi

∥∥∥ = ‖x− xi‖. The direction from xi to x is us(xi, ζ) = x−xi
τs(xi,ζ)

.
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The update for xi provided by s = xs
0x

s
1 · · ·xs

n−1 is a first-order approximation of the DPP
(2.4),

C̃s(xi) = min
ζ∈Ξn−1


n−1∑
j=0

ζj Ṽ (xs
j) + τs(xi, ζ)g(xi,us(xi, ζ))

 , (18)

where ζ = (ζ0, ζ1, ..., ζn−1) ∈ Ξn−1. The optimizing direction is captured by updating xi
from its Near Front [21]. The update formula over all of NF(xi) is

C̃(x) = min
s∈NF(xi)

C̃s(xi). (19)

Note that the minimizing update along all of NF(xi) (19) does not necessarily come from
s ∈ Xn−1 where xi is a neighbour of s.

The algorithm can now be stated. Recall that any vertex xi ∈ X0 is labelled only one
of Accepted, Considered or Far at any instant of the algorithm.

1. Label all vertices xi ∈ X0 Far, assigning Ṽ (xi) = K (where K is large).

2. For each vertex xi ∈ X0 ∩ Ωc, relabel xi Accepted, and set Ṽ (xi) = q(x̂) where
x̂ = arg minx̃∈∂Ω ‖xi − x̃‖.

3. Relabel all neighbours of Accepted vertices xi that have Far label, to Considered. For
these vertices, compute Ṽ (xi) = C̃(xi) according to (19).

4. Relabel vertex xi with Considered label with lowest value Ṽ (xi) with Accepted label.
If all vertices in X are labelled Accepted, terminate the algorithm.

5. Relabel all neighbouring vertices xi of xi with Far label to Considered. For these
vertices, compute C̃(xi) using (19) and set Ṽ (xi) = C̃(xi).

6. Recompute C̃(xi) for all other xi with Considered label using (19) such that xi ∈
NF(xi), using only s ∈ NF(xi) such that xi ∈ s. If Ṽ (xi) > C̃(xi), then update
Ṽ (xi) = C̃(xi). Go to Step 4.

The domain of Ṽ will be extended from X0 to all of X. Define

ΩX =

 ⋃
s∈Xn

⋃
ζ∈Ξn

n∑
j=0

ζjx
s
j

 . (20)

From (M2), Ω ⊆ ΩX .
The domain of the spatial dimension of value function V and g (and as a result H)

are extended from Ω to ΩX . For x ∈ Ω
c ∩ ΩX , let

x̂ = arg min
x̃∈∂Ω

‖x− x̃‖ , V (x) = q(x̂), and g(x,u) = g(x̂,u).

The domain of Ṽ is extended from X0 to ΩX by linear interpolation using barycentric
coordinates. For x ∈ s = xs

0x
s
1 · · ·xs

n ∈ Xn,

Ṽ (x) =

n∑
j=0

ζj Ṽ (xs
j), where x =

n∑
j=0

ζjx
s
j .
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Most of the effort in the implementation of the OUM occurs in the maintenance and
the searching of AF and NF(xi). The focus of this paper however is on the accuracy
and its convergence to the true solution in relation to discretization properties. Additional
discussion on the implementation and computational complexity of OUM can be found in
[21].

5 Properties of the Approximated Value Function and Nu-
merical Hamiltonian

An approximation of the Hamiltonian H (11) known as the numerical Hamiltonian will be
defined on the vertices X0 of X. A similar numerical Hamiltonian was proposed in [2]. As in
[2], the numerical Hamiltonian will be shown to be both monotonic and consistent with the
Hamiltonian (11). The consistency statement here resembles that in [20], which was given
as an assumption for the half-order convergence proof for FMM. The proof of consistency
relies on directional completeness introduced in [2].

Consider the OUM algorithm at the instant the vertex xi ∈ X0 ∩ Ω is about to be
relabelled Accepted. The Near Front of xi at this instant is denoted NF(xi).

Definition 5.1. The approximated characteristic direction ũ∗s̃ : X0∩Ω×Ξn−1 → Sn−1

at xi ∈ X0 ∩ Ω from the OUM algorithm is

ũ∗s̃(xi, ζ̃
∗) =

x̃∗ − xi
‖x̃∗ − xi‖

=

∑n−1
j=0 ζ̃

∗
j xs̃∗

j − xi

τs̃∗(xi, ζ̃
∗
j )

where x̃ =

n−1∑
j=0

ζ̃∗j xs̃∗

j (21)

where s̃∗ ∈ NF(xi) and ζ̃∗ ∈ Ξn−1 are the minimizers of (18), (19) when xi is labelled
Accepted.

Definition 5.2. Let φ : X0 ∩Ω→ R. The numerical Hamiltonian H̃ : X0 ∩Ω×R→ R
is

H̃[S, φ[S]](xi, µ) = −min
s∈S

min
ζ∈Ξn−1

{∑n−1
j=0 ζjφ(xs

j)− µ
τs(xi, ζ)

+ g(xi,us(xi, ζ))

}
, (22)

where S ⊂ Xn−1.

The argument φ[S] of H̃ denotes the use of the values of φ on the vertices that make up the
(n− 1)-simplices of φ[S] in the optimization of (22). For notational brevity, the argument
of φ will be dropped.

The numerical HJB equation for the OUM algorithm for all xi ∈ X0 ∩ Ω is

H̃[NF(xi), Ṽ ](xi, Ṽ (xi)) = 0. (23)

Theorem 5.3. [1, Prop 5.3] Let S ⊂ Xn−1. The solution µ to H̃[S, Ṽ ](xi, µ) = 0 with H̃
defined by (22) is unique, and is given by

µ̃ = min
s∈S

min
ζ∈Ξn−1


n−1∑
j=0

ζj Ṽ (xs
j) + τ(xi, ζ)g(xi,us(xi, ζ))

 . (24)

Furthermore, if s̃∗ ∈ S and ζ̃∗ ∈ Ξn−1 are the minimizers in (22), then s̃∗ and ζ̃∗ also
minimize (24).
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(a) After relabelling xi Ac-
cepted, AF3 is no longer
part of AF.

(b) After relabelling xi Ac-
cepted, the other vertices in
the interior of AF1 are still
not yet Accepted.

(c) Relabelling xi Accepted
splits AF1 into two re-
gions, each only containing
not yet Accepted vertices in
their interiors.

Figure 3: Lemma 5.5: Three cases in R2

From Theorem 5.3, finding the solution Ṽ (xi) to (23) is equivalent to solving the update
(19) in the OUM algorithm for S = NF(xi).

Definition 5.4. [2, Section 2.2] The set S ⊆ Xn−1 is directionally complete for a vertex
xi ∈ X0 if for all u ∈ Sn−1 there exists x ∈ s where s ∈ S such that

u =
x− xi
‖x− xi‖

.

A subset A ⊂ Rn has no holes if its complement Ac is connected.

Lemma 5.5. Prior to each instance of Step 4 of the OUM algorithm, (n− 1)-simplices of
AF form the boundaries AFk of j (1 ≤ k ≤ j < ∞) bounded open subsets ΩAFj ⊂ ΩX ,

such that each Ωc
AFj

is connected and
⋃j
k=1 AFk = AF.

Furthermore, if xm ∈ X0 ∩ ΩAFk
, then

1. the set of (n− 1)-simplices AFk is directionally complete for xm, and

2. xm is not labelled Accepted.

Proof. At the initialization (Steps 1-3) of the OUM algorithm, only vertices in X0 ∩Ωc are
labelled Accepted. From (M2) and (P4), j = 1 and AF1 = AF form a single boundary
that encloses ΩAF1 ⊇ Ω. The lemma is satisfied in the first instance of Step 4.

The Accepted Front and AF change only in Step 4 of the OUM. Proof by induction
will be used. The lemma is assumed to hold prior to step 4 of the OUM. Let xi ∈ X0∩ΩAFk

be the vertex to be relabelled Accepted for some 1 ≤ k ≤ j. Only AFk and ΩAFk
may

change while ΩAFj 6=k
will remain unchanged.

If xi has no neighbours in X0 ∩ ΩAFk
, then the resulting ΩAFk

and X0 ∩ ΩAFk
are

both empty. See Figure 3a.
If xi has a neighbour in X0 ∩ ΩAFk

, then xi is added to the Accepted Front. If
ΩAFk

remains a single open connected subset of Rn, xm ∈ X0 ∩ ΩAFk
\{xi}, AFk remains

directionally complete and xm is not labelled Accepted. See Figure 3b.
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Otherwise, ΩAFk
is no longer a single open connected subset of Rn. Thus, ΩAFk

has
been split into p ≥ 2 non-intersecting open connected regions ΩAFk1

,ΩAFk2
,...,ΩAFkp

with
a subset of the resultant AFk as the boundary of each. Vertices xm ∈ X0 ∩ΩAFk

\{xi} are
still not labelled Accepted, and AFkl is directionally complete for xm ∈ ΩAFkl

. See Figure
3c. �

Definition 5.6. For every xi ∈ X0 ∩ Ω, let S(xi) ⊂ Xn−1 such that

1. NF(xi) ⊆ S(xi),

2. S(xi) is directionally complete for xi.

3. For all s ∈ S(xi), if a point x ∈ s, then

‖x− xi‖ ≤ (2Γ + 1)hmax.

4. H̃[S(xi), Ṽ ](xi, Ṽ (xi)) = H̃[NF(xi), Ṽ ](xi, Ṽ (xi))

Such S(xi) will now be constructed for all xi ∈ X0∩Ω and shown to satisfy Definition
5.6. Let Br(x) = {x̃ ∈ Rn| ‖x− x̃‖ ≤ r, r ∈ R+}.

Definition 5.7. Assume the OUM algorithm is at the instant that vertex xi labelled Con-
sidered is about to be relabelled Accepted. Let AF(xi) be the subset of AF described in
Lemma 5.5 for xi labelled Considered.

Two cases are considered.

Case 1: The set AF(xi) lies in the interior of B2Γhmax(xi), where hmax and Γ have been
defined in Definitions 3.8 and 4.1 respectively. Let

S(xi) = AF(xi) ∪NF(xi).

Case 2: Otherwise, let R(xi) be the region described by the smallest subset of Xn in
which ΩX ∪B2Γhmax(xi) is contained, and ∂R(xi) its boundary.

Let SAFR(xi) ⊂ Xn−1 form the boundary of the compact region ΩAF(xi)
∩ R(xi).

Finally for Case 2,
S(xi) = SAFR(xi) ∪NF(xi). (25)

See Figure 4.

In both cases, the union with NF(xi) ensures that s ∈ NF(xi)\AF(xi) are still
included in S(xi), just as in OUM.

By construction, S(xi) satisfies the first three properties of Definition 5.6. It remains
to show Property 4 in Definition 5.6 is satisfied.

For xi ∈ X0 ∩ Ω, let Ṽ
AFxi
min be the minimum value on the Accepted Front AF just

before xi is labelled Accepted.

Lemma 5.8. [21, Lemma 7.3(i) and (iii)] Assume the vertex xi ∈ X0 is about to be labelled
Accepted. Then

11



Figure 4: S(xi) in R2 - Left: Edges of NF(xi), AF(xi) and ∂R(xi) are shown. Right: S(xi)
is the union of NF(xi) with the boundary of the intersection of regions R(xi) with AF(xi).
Vertices strictly inside S(xi) are not labelled Accepted.

1. Ṽ
AFxi
min + hminGmin ≤ Ṽ (xi) ≤ Ṽ

AFxi
min + hmaxGmax.

2. If xi is labelled Accepted before xj then Ṽ
AFxi
min ≤ Ṽ

AFxj

min .

Lemma 5.9. Let x̃ =
∑n−1

j=0 ζjx
s
j where s = xs

0xs
1 · · ·xs

n−1 ∈ Xn−1, ζ ∈ Ξn−1. If xi ∈ X0 is
labelled Accepted before all of xs

0, xs
1, ...,xs

n−1 and ‖x̃− xi‖ > Γhmax, then

Ṽ (xi) <
n−1∑
j=0

ζj Ṽ (xs
j) + ‖x̃− xi‖ g

(
xi,

x̃− xi
‖x̃− xi‖

)
. (26)

Proof. From Lemma 5.8, (P2), Definition 4.1 and Ṽ
AFxs

j

min < Ṽ (xs
j) for j = 1, ..., n− 1,

Ṽ (xi) ≤ Ṽ
AFxi
min + hmaxGmax,

≤
n−1∑
j=0

ζj min{Ṽ
AFxs0
min , Ṽ

AFxs1
min , ..., Ṽ

AFxsn−1

min }+ ΓhmaxGmin

<
n−1∑
j=0

ζj Ṽ (xs
j) + ‖x̃− xi‖ g

(
xi,

x̃− xi
‖x̃− xi‖

)
.�

Lemma 5.10. [21, Lemma 7.1] Let xi be the vertex with Considered label that is about to
be relabelled Accepted. Let

W̃ (xi) = min
s∈AF

min
ζ∈Ξn−1


n−1∑
j=0

ζj Ṽ (xs
j) + τs(xi, ζ)g(xi,us(xi, ζ))

 . (27)

Then W̃ (xi) = Ṽ (xi).

The minimizing update from AF must come from NF(xi). The next theorem states that
the minimizing update Ṽ (xi) from S(xi) must come from NF(xi).

12



Theorem 5.11. Let Ṽ : X0 → R be computed by the OUM on mesh X, with weight function
g and boundary function q. Then for xi ∈ X0 ∩ Ω,

Ṽ (xi) = min
s∈S(xi)

min
ζ∈Ξn−1


n−1∑
j=0

ζj Ṽ (xs
j) + τ(xi, ζ)g(xi,us(xi, ζ))

 . (28)

Proof. Let the OUM algorithm be at the instant where vertex xi with Considered label is
about to be relabeled Accepted.

Recall Case 1, where AF(xi) is entirely inside B2Γhmax(xi) and S(xi) = AF(xi) ∪
NF(xi). Since AF(xi) ⊆ AF and NF(xi) ⊆ AF, S(xi) ⊆ AF. By Lemma 5.10, NF(xi)
must contain the minimizers s̃∗ and ζ̃∗ of (28).

Recall Case 2, where S(xi) = SAFR(xi)∪NF(xi). The minimizing s̃∗, ζ̃∗ of S(xi) will
be shown to come from NF(xi) by showing the updates of S(xi)\NF(xi) = (AF(xi)\NF(xi))∪
(S(xi)∩ ∂R(xi)) are at least the value from OUM. By Lemma 5.10, the minimizers are not
from AF(xi)\NF(xi).

It remains to show that updates (18) from s ∈ S(xi)∩ ∂R(xi) (which are just outside
B2Γhmax(xi)) are at least the value obtained from OUM. Because vertices of s lie on or
inside AF(xi), they must either be on the Accepted Front or not yet Accepted (Lemma 5.5).
Three cases are considered.

1. If none of the vertices of s have been labelled Accepted, Lemma 5.9 applies. The
update for xi from s ∈ S(xi) ∩ ∂R(xi) is greater than Ṽ (xi) from OUM.

2. If the vertices of s are all on the Accepted Front, then s ∈ AF and Lemma 5.10 applies.
The update from s is at least Ṽ (xi) from OUM.

3. If at least one but not all the vertices of s are on the Accepted Front, then the rest
of the vertices on s (that are not labelled Accepted) must be labelled Considered. Let
the Accepted and Considered vertices of s be denoted {xsa

1 , ...,x
sa
l } and {xsc

1 , ...,x
sc
k }

respectively. Let s be rewritten
s = xsa

1 · · ·xsa
l xsc

1 · · ·xsc
k where l+k = n since s has n vertices. Let ζ = (ζsa1 , ..., ζsal , ζ

sc
1 , ..., ζsck )

be the barycentric coordinates for x ∈ s. By Lemma 5.8, Ṽ (xi) > Ṽ
AFxi
min and Defini-

tion 4.1, for all 1 ≤ j ≤ k,

Ṽ (xi) ≤ Ṽ
AFxi
min + hmaxGmax < Ṽ (xsc

j ) + ΓhmaxGmin.

For all 1 ≤ j ≤ k, and 1 ≤ m ≤ l, xsc
j is labelled Considered and xsa

m is on its Near

Front NF(xsc
j ). Thus,

Ṽ (xsc
j ) ≤ Ṽ (xsa

m ) +
∥∥xsa

m − xsc
j

∥∥ g
xsc

j ,
xsa
m − xsc

j∥∥∥xsa
m − xsc

j

∥∥∥
 ≤ Ṽ (xsa

m ) + ΓhmaxGmin

Ṽ (xsa
m ) ≥ Ṽ (xsc

j )− ΓhmaxGmin > Ṽ (xi)− 2ΓhmaxGmin.

13



Consider the update for xi (18) from s ∈ S(xi) ∩ ∂R(xi). For any ζ ∈ Ξn−1,

n−1∑
j=0

ζj Ṽ (xs
j) + τs(xi, ζ)g(xi,us(xi, ζ))

=

(
l∑

m=1

ζsam Ṽ (xsa
m )

)
+

 k∑
j=1

ζscj Ṽ (xsc
j )

+ τs(xi, ζ)g(xi,us(xi, ζ)),

>

l∑
m=1

ζsam (Ṽ (xi)− 2ΓhmaxGmin) +

k∑
j=1

ζscj (Ṽ (xi)− ΓhmaxGmin) + 2ΓhmaxGmin,

≥Ṽ (xi),

since τs(xi, ζ) > 2Γhmax and (
∑l

m=1 ζ
sa
m ) + (

∑k
j=1 ζ

sc
j ) = 1.

Therefore s ∈ S(xi)∩ ∂R(xi) provides an update larger or equal to OUM. By Lemma 5.10,
a minimizing update (28) in S(xi) must always come from NF(xi). �

By Theorems 5.3 and 5.11,

H̃[S(xi), Ṽ ](xi, Ṽ (xi)) = H̃[NF(xi), Ṽ ](xi, Ṽ (xi)).

Therefore, for xi ∈ X0 ∩ Ω, S(xi) satisfies Definition 5.6.
The monotonicity and consistency of the numerical Hamiltonian will now be discussed.

Theorem 5.12. (Monotonicity) [2, Proposition 2.1] For φ, φ : X0 → R that satisfy φ(xj) ≤
φ(xj) for all xj ∈ X0 ∩ Ω, and φ(xi) = φ(xi) = φ(xi) ∈ R,

H̃[S(xi), φ](xi, φ(xi)) ≥ H̃[S(xi), φ](xi, φ(xi)).

Theorem 5.13. (Consistency) There exists C1 ∈ R+ (not dependent on hmax) for all
xi ∈ X0 ∩ Ω and φ ∈ C2(Ω), such that

|H(xi,∇φ)− H̃[S(xi), φ](xi, φ(xi))| ≤ C1

∥∥∇2φ
∥∥

2
hmax.

where ‖A‖2 is the maximum singular value of A ∈ Rn×n.

Proof. Let φ ∈ C2(Ω) and xi ∈ X0 ∩ Ω. Recall S(xi) is directionally complete, so the
characteristic direction (Definition 2.8) u∗ can be described using barycentric coordinates
ζ∗ = (ζ∗0 , ζ

∗
1 , ..., ζ

∗
n−1) ∈ Ξn−1 from an appropriate simplex s∗ ∈ S(xi). Let x∗ =

∑n−1
j=0 ζ

∗
j x

s∗
j .

Taylor’s theorem will be used on H (11). Let c∗ and c∗j for j = 0, 1, ..., n − 1 denote the
points arising from Taylor’s theorem on the line segments between x∗ and xi and x∗ and
xs∗
j respectively. Since

∑n−1
j=0 ζ

∗
j∇φ(x∗)T (xs∗

j − x∗) = ∇φ(x∗)T (x∗ − x∗) = 0, evaluating

14



both H and H̃ at s∗ and ζ∗,

H(xi,∇φ)− H̃[S(xi), φ](xi, φ(xi))

≤ −
∑n−1

j=0

ζ∗j
2 (xs∗

j − x∗)T∇2φ(c∗j )(x
s∗
j − x∗) + 1

2(x∗ − xi)
T∇2φ(c∗)(x∗ − xi)

τs∗(xi, ζ∗)
,

≤ 1

hmin

(∑n−1
j=0 ζ

∗
j

2

∥∥∇2φ
∥∥

2
h2
max +

1

2

∥∥∇2φ
∥∥

2
(2Γ + 1)2h2

max

)
,

≤ M

2

∥∥∇2φ
∥∥

2
(1 + (2Γ + 1)2)hmax,

since the point x∗ ∈ s∗ ∈ S(xi) is at most (2Γ+1)hmax from xi and at most hmax away from
any of the vertices of s∗. The distance τs∗(xi, ζ

∗) is at least the minimum simplex height hmin
and M from (M1) satisfies 1 ≤ hmax

hmin
≤M . The proof for H̃[S(xi), φ](xi, φ(xi))−H(xi,∇φ)

yields the same estimate using the minimizers of H̃, (n − 1)-simplex s̃∗ ∈ S(xi) and ζ̃∗ ∈
Ξn−1. The theorem is proved with C1 = M

2 (1 + (2Γ + 1)2). �
A similar consistency property was assumed in [20] for the half-order proof for FMM.

A similar proof without rate using similar arguments was given in [2, Prop 2.2] for the
Monotone Acceptance OUM.

6 OUM Error Bound

The error bound proof will be presented. Several definitions and results are first required.

Lemma 6.1. [3] Let x ∈ Rn. If Ω is convex, then z∗ = arg minz∈Ω ‖x− z‖ is unique, and
satisfies

(x− z∗) · (w− z∗) ≤ 0, for all w ∈ Ω. (29)

Lemma 6.2. The value function V is globally Lipschitz-continuous over ΩX . That is, there
exists LV ∈ R+ such that for any x1,x2 ∈ ΩX ,

|V (x1)− V (x2)| ≤ LV ‖x1 − x2‖ .

An outline of the proof is given using three cases.
Case 1: x1,x2 ∈ ΩX ∩ Ωc. This is an exercise in [7, Exercise 2.8d], which can be shown
using the Cauchy-Schwartz inequality and Lemma 2.7.
Case 2: x1,x2 ∈ Ω. This is shown in [25, Lemma 2.2.7] with constant Gmax.
Case 3: x1 ∈ Ω and x2 ∈ ΩX ∩ Ωc. This can be shown using Lemma 6.1 and

L(a,b) ≤ L(a, c) + L(c,b),

for a,b, c ∈ Ω. For x1,x2 ∈ ΩX , a valid Lipschitz constant is LV = 2Gmax.

Lemma 6.3. [25, Lemma 2.2.9] Let x ∈ ΩX . Let x̃ = arg minz∈∂Ω |x − z|. The value
function V satisfies

qmin ≤ V (x) ≤ Gmax ‖x− x̃‖+ qmax.
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The proof is shown in [25] for x ∈ Ω. The proof is trivial for x ∈ ΩX ∩ Ω
c
.

Lemma 6.4. [21, Lemma 7.5] Let Ṽ : X0 → R obtained by the Ordered Upwind Method.
There exists L

Ṽ
∈ R+ for any xi,xj ∈ X0, such that

|Ṽ (xi)− Ṽ (xj)| ≤ LṼ |xi − xj |.

A possible Lipschitz constant for Ṽ is L
Ṽ

= M2Gmax [21], where M is described in (M1).
Similar proof from case 1 and case 3 of Lemma 6.2 is valid with a restriction of x ∈ X0 and
function L (6) is replaced with L̃ : X0 ×X0 → R,

L̃(x1,x2) = inf
u(·)∈Ũ

{∫ τ

0
g(yx1

(s),u(s))ds
∣∣∣ yx1

(τ) = x2,yx1
(t) ∈ Ω, t ∈ (0, τ)

}
. (30)

where Ũ is defined in (17).

Lemma 6.5. [21, Lemma 7.2] Let x ∈ s where s ∈ Xn and x̃ = arg minz∈∂Ω ‖x− z‖ . Then

qmin ≤ Ṽ (x) ≤ Gmax|x− x̃|+ qmax.

The proof is shown in [21] for x ∈ Ω. The proof is trivial for x ∈ Ω
c
.

The next lemma states that any point on the boundary ∂Ω must be at most hmax
away from its nearest vertex of X outside of Ω.

Lemma 6.6. If x ∈ ∂Ω, there exists xi ∈ X0 ∩ Ωc such that

‖x− xi‖ ≤ hmax. (31)

Proof. Assumption (M2) states that Ω is contained in X. The point x ∈ s where s ∈ Xn.
Since Ω is convex (P4), and x can be described by barycentric coordinates of s, at least
one of the vertices of s must be outside Ω. Furthermore, for all 1 ≤ j ≤ n,∥∥x− xsj

∥∥ ≤ max
1≤k≤n

∥∥xs
k − xs

j

∥∥ ≤ hmax.�
The following definitions provide a weaker description of the gradient for functions

that are not necessarily differentiable. Let A be a bounded subset of Rn.

Definition 6.7. The vector p ∈ Rn is a subgradient of a function f : A → R at x0 ∈ A
if there exists δ > 0 such that for any x ∈ Bδ(x0),

f(x)− f(x0) ≥ p · (x− x0).

Definition 6.8. The vector p ∈ Rn is a supergradient of a function f : A→ R at x0 ∈ A
if there exists δ > 0 such that for any x ∈ Bδ(x0),

f(x)− f(x0) ≤ p · (x− x0).

Let D−f(x0) and D+f(x0) denote the sets of all subgradients and supergradients of f at
x0 respectively.
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Lemma 6.9. Let f : A→ R be globally Lipschitz-continuous with Lipschitz constant C and
x0 ∈ A. If p ∈ D−f(x0) ∪D+f(x0) , then

‖p‖ ≤ C.

Proof. Let x0 ∈ A, b ∈ Sn−1, δ > 0, such that x0 + δb ∈ A. Let p ∈ D−f(x0) (Definition
6.7). The Lipschitz continuity of f gives

C ‖x0 + δb− x0‖ ≥ f(x0 + δb)− f(x0) ≥ p · (x0 + δb− x0).

Choosing b = p
‖p‖ gives ‖p‖ ≤ C. The proof is analogous for p ∈ D+f(x0). �

Lemma 6.10. [5, Lemma 1.7] A vector p ∈ D−f(x0) if and only if there exists φ ∈
C1(Ω) → R such that f − φ has a local minimum at x0. Similarly, a vector p ∈ D+f(x0)
if and only if there exists φ ∈ C1(Ω) → R such that ∇φ(x0) = p, and f − φ has a local
maximum at x0.

The approximated value function Ṽ is in a sense a viscosity solution for the numerical
HJB equation (23).

Definition 6.11. Let x̂ = arg minx∈∂Ω ‖xi − x‖. A subsolution of the numerical HJB

equation (23) Ṽ : X0 → R satisfies{
Ṽ (xi) ≤ q(x̂) for xi ∈ X0 ∩ Ωc,

H̃[NF(xi), Ṽ ](xi, Ṽ (xi)) ≤ 0 for xi ∈ X0 ∩ Ω.

Definition 6.12. Let x̂ = arg minx∈∂Ω ‖xi − x‖. A supersolution of the numerical

HJB equation (23) Ṽ : X0 → R satisfies{
Ṽ (xi) ≥ q(x̂) for xi ∈ X0 ∩ Ωc,

H̃[NF(xi), Ṽ ](xi, Ṽ (xi)) ≥ 0 for xi ∈ X0 ∩ Ω.

Definition 6.13. A solution of the numerical HJB equation (23) Ṽ is both a subso-
lution and a supersolution of the numerical HJB equation (23).

By Theorem 5.3, the approximate value function Ṽ produced by the OUM algorithm is
a solution of the numerical HJB equation. Hence, it is both a subsolution and supersolution
of the numerical HJB equation. Recall the definition of ΩX (20).

Theorem 6.14. Let V : ΩX → R be a viscosity solution of (12) and Ṽ : X0 → R be a
solution of the numerical HJB equation (23). There exist C, h0 > 0, both independent of
hmax such that

max
xi∈X0

|V (xi)− Ṽ (xi)| ≤ C
√
hmax, (32)

for every xi ∈ X0 and hmax < h0.
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Proof. The proof is trivial for xi ∈ X0 ∩ Ω
c
. Otherwise, xi ∈ X0 ∩ Ω. Since Ω ⊆ Rn is

bounded, define
dΩ = max

x,x̃∈∂Ω
‖x− x̃‖ , (33)

C0 = max{LV , LṼ , |qmin|, dΩGmax + |qmax|}, (34)

where LV , LṼ , |qmin|, Gmax, and |qmax| are from Lemmas 6.2, 6.3, 6.4, 6.5.

For xi ∈ X0 ∩ Ω, the result of the theorem is shown for V (xi) − Ṽ (xi). A similar
argument for Ṽ (xi)− V (xi) can be made.

Two parameters ε and λ are used to determine the error bound. For ε > 0 and
0 < λ < 1, define Φ : Ω×X0 → R

Φ(x,xi) = λV (x)− Ṽ (xi)−
‖x− xi‖2

2ε
. (35)

Let x ∈ Ω and xi ∈ X0 maximize Φ, over the compact set Ω×X0. Define

Mε,λ = max
x∈Ω,xi∈X0

Φ(x,xi) = Φ(x,xi). (36)

For xi ∈ X0 ∩Ω, using (35) and (36) with V (xi) ≤ C0 from Lemma 6.3 (boundedness
of V ),

V (xi)− Ṽ (xi) ≤ (1− λ)V (xi) +Mε,λ ≤ C0(1− λ) +Mε,λ. (37)

Choose λ such that

1− λ =
2

Gmin

(
C1

ε
hmax + C0Lgε

)
, (38)

where Lg is defined in (9), and C1 = M(1+(2Γ+1)2)
2 is defined in Theorem 5.13 with M in

(M1) and Γ = Gmax
Gmin

.

The result of the theorem will be true with ε =
√
hmax. Therefore, it is sufficient to

pick h0 small enough so that for all hmax < h0, 0 < (1 − λ) < 1 is satisfied. Setting (38)

less than 1, with ε =
√
hmax yields hmax <

G2
min

4(C1+C0Lg)2
. Let h0 = min{ G2

min
4(C1+C0Lg)2

, 1}.
The point x in (35) must belong to Ω or ∂Ω, while xi must belong to X0 ∩ Ω or

X0 ∩ Ωc. An outline of the remainder of proof is as follows.

Step 1: Show that at most only one of x and xi may be in Ω.

Step 2: Find an upper bound for Mε,λ in (36) given the restriction in Step 1.

Step 3: Find an upper bound on V (xi)− Ṽ (xi) (37) in terms of hmax.

Step 1: Define φ : Ω→ R,

φ(x) =
1

λ

(
Mε,λ + Ṽ (xi) +

‖x− xi‖2

2ε

)
and so ∇φ(x) =

1

λ

(
x− xi
ε

)
. (39)

Using (35), (36), (39), and Mε,λ ≥ Φ(x,xi), it can be shown that V (x) ≤ φ(x) for
all x ∈ Ω and V (x) = φ(x). Therefore V − φ has a local maximum at x. By Lemma 6.10,
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p = ∇φ(x) ∈ D+V (x). By Lemma 6.9, |∇φ(x)| is bounded by the Lipschitz constant LV ,
which by (34) and (39),

‖x− xi‖ ≤ λ ‖∇φ(x)‖ ε ≤ λC0ε.

From (38), and using 0 < λ < 1,

(1− λ) >
1

Gmin

(
C1

ε
hmax + λLg ‖x− xi‖

)
. (40)

Define ψ : ΩX → R,

ψ(xi) = −Mε,λ + λV (x)− ‖x− xi‖2

2ε
, and so ∇ψ(xi) =

x− xi
ε

. (41)

Let u∗xi
optimize the Hamiltonian (11) for arguments xi and ∇ψ(xi),

H(xi,∇ψ(xi)) = −∇ψ(xi) · u∗xi
− g(xi,u

∗
xi

).

From (40), assumptions (P2), (P3) and definitions of ∇φ (35) and ∇ψ (41),

(1− λ)g(xi,u
∗
xi

) >
C1

ε
hmax + λ(g(x,u∗xi

)− g(xi,u
∗
xi

)),

x− xi
ε
· u∗xi

+ g(xi,u
∗
xi

)− λ
(

1

λ
· x− xi

ε
· u∗xi

+ g(x,u∗xi
)

)
>
C1

ε
hmax,

∇ψ(xi) · u∗xi
+ g(xi,u

∗
xi

)− λ(∇φ(x) · u∗xi
+ g(x,u∗xi

)) >
C1

ε
hmax. (42)

Since u∗xi
is not necessarily the maximizer of H(x,∇φ(x)),

−λ(∇φ(x) · u∗xi
+ g(x,u∗xi

)) ≤ λH(x,∇φ(x)). (43)

It will now be shown that at most one of xi or x can be in Ω. Following (42) and using the
definition of the Hamiltonian (11), (43), u∗xi

is the optimizer of H(xi,∇ψ(xi)),

−H(xi,∇ψ(xi)) + λH(x,∇φ(x)) >
C1

ε
hmax. (44)

Case 1: Let x ∈ Ω. From Definition 2.9, H(x,∇φ(x)) ≤ 0. From (44),

H(xi,∇ψ(xi)) < −
C1

ε
hmax. (45)

For all xi ∈ X0, ψ(xi) ≤ Ṽ (xi), ψ(xi) = Ṽ (xi). By Definition 5.6 and Theorem 5.12,

H̃[NF(xi), Ṽ ](xi, Ṽ (xi)) = H̃[S(xi), Ṽ ](xi, Ṽ (xi)) ≤ H̃[S(xi), ψ](xi, ψ(xi)). (46)

It will be shown that xi ∈ X0 ∩ Ωc using proof by contrapositive. Since Ṽ is a solution
to the numerical HJB equation (23), it is a supersolution of the numerical HJB equation
(Definition 6.12). If xi ∈ X0 ∩ Ω, then

H̃[NF(xi), Ṽ ](xi, Ṽ (xi)) = H̃[S(xi), Ṽ ](xi, Ṽ (xi)) ≥ 0. (47)
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Furthermore if xi ∈ X0 ∩ Ω, Theorem 5.13 must also hold. That is, since
∥∥∇2ψ

∥∥
2

= 1
ε ,

|H(xi,∇ψ(xi))− H̃[S(xi), ψ](xi, ψ(xi))| ≤
C1

ε
hmax. (48)

It will be shown (47) and (48) cannot simultaneously be true, implying xi ∈ X0 ∩ Ωc. If
(47) is true, then by (46), H̃[S(xi), ψ](xi, ψ(xi)) ≥ 0. By (45),

H(xi,∇ψ(xi))− H̃[S(xi), ψ](xi, ψ(xi)) < −
C1

ε
hmax.

Therefore (48) is false.
Otherwise, if (48) were true, using (45),

H(xi,∇ψ(xi))− H̃[S(xi), ψ](xi, ψ(xi)) ≥ −
C1

ε
hmax > H(xi,∇ψ(xi)).

Hence with (46),

H̃[NF(xi), Ṽ ](xi, Ṽ (xi)) = H̃[S(xi), Ṽ ](xi, Ṽ (xi)) ≤ H̃[S(xi), ψ](xi, ψ(xi)) < 0.

Therefore (47) is false. Hence xi ∈ X0 ∩ Ωc.
Case 2: If xi ∈ X0 ∩ Ω, from Theorem 5.13,

H̃[S(xi), ψ](xi, ψ(xi))−H(xi,∇ψ(xi)) ≤
C1

ε
hmax. (49)

From (46), Definition 5.6 and Ṽ is a supersolution of the numerical HJB (23) (Definition
6.12),

H̃[S(xi), ψ](xi, ψ(xi)) ≥ H̃[S(xi), Ṽ ](xi, Ṽ (xi)) = H̃[NF(xi), Ṽ ](xi, Ṽ (xi)) ≥ 0.

From (44) and (49),

C1

ε
hmax + H̃[S(xi), ψ](xi, ψ(xi))− λH(x,∇φ(x)) <

C1

ε
hmax. (50)

Since xi ∈ X0 ∩ Ω, H̃[S(xi), ψ](xi, ψ(xi)) ≥ 0, from (50), and 0 < λ < 1,

H(x,∇φ(x)) > 0,

which implies by Definition 2.9 of the viscosity subsolution, x ∈ ∂Ω. Hence at most one of
maximizers of Mε,λ, x and xi can belong to Ω.
Step 2: An upper bound on Mε,λ (36) will be found.
Case 1: x ∈ Ω, xi ∈ X0 ∩ Ωc.

Let x̌ = arg minx∈∂Ω ‖xi − x‖. Let xi be the point on the line from x and xi inter-
secting ∂Ω . For x ∈ ∂Ω, xi = x. Since Ω is convex, by Lemma 6.1, the angle between
vectors xi − x̌ and xi − x̌ is nonacute. Using the cosine law,

‖xi − xi‖2 = ‖xi − x̌‖2 + ‖xi − x̌‖2 − 2(xi − x̌) · (xi − x̌),

≥ ‖xi − x̌‖2 ,
‖xi − xi‖ ≥ ‖xi − x̌‖ .
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Since xi is on the line segment from x to xi, ‖x− xi‖ = ‖x− xi‖ + ‖xi − xi‖. With the
triangle inequality,

‖x− xi‖+ ‖xi − xi‖ ≥ ‖x− xi‖+ ‖xi − x̌‖ ,
‖x− xi‖ ≥ ‖x− x̌‖ . (51)

By the Lipschitz-continuity of V with constant C0, 0 < λ < 1, |Ṽ | ≤ C0, and since Ṽ is a
supersolution to the numerical HJB equation (23), Ṽ (xi) ≥ q(x̌),

Mε,λ = λV (x)− Ṽ (xi)−
‖x− xi‖2

2ε
,

= λ(V (x)− Ṽ (xi))− (1− λ)Ṽ (xi)−
‖x− xi‖2

2ε
,

≤ λ(V (x)− q(x̌)) + (1− λ)C0 −
‖x− xi‖2

2ε
, (52)

If x ∈ Ω, V (x̌) ≤ q(x̌), from (52),

Mε,λ ≤ λ(V (x)− V (x̌)) + (1− λ)C0 −
‖x− xi‖2

2ε
. (53)

Otherwise x ∈ ∂Ω, and V (x) ≤ q(x), from (52),

Mε,λ ≤ λ(q(x)− q(x̌)) + (1− λ)C0 −
‖x− xi‖2

2ε
. (54)

The Lipschitz continuity of both q and V with constant C0 in (53) and (54) and ‖x− xi‖ ≥
‖x− x̌‖ from (51), along with 0 < λ < 1 yield

Mε,λ ≤ C0 ‖x− x̌‖+ (1− λ)C0 −
‖x− x̌‖2

2ε
, (55)

which is quadratic in ‖x− x̌‖. The quadratic is maximized with ‖x− x̌‖ = C0ε. Thus,

Mε,λ ≤ (1− λ)C0 +
C2

0ε

2
. (56)

Case 2: x ∈ ∂Ω, xi ∈ X0 ∩ Ω.
From Lemma 6.6, there exists x̂i ∈ X0 ∩ Ωc such that

‖x− x̂i‖ ≤ hmax. (57)
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Let x̃ = arg minx∈∂Ω ‖x̂i − x‖. Using 0 < λ < 1, Ṽ (x̂i) ≥ q(x̃), V (x) ≤ q(x), Lipschitz-

continuity of q and Ṽ both with constant C0,

Mε,λ = λV (x)− Ṽ (xi)−
‖x− xi‖2

2ε
,

= λ(V (x)− Ṽ (xi))− (1− λ)Ṽ (xi)−
‖x− xi‖2

2ε
,

≤ λ(q(x)− q(x̃) + q(x̃)− Ṽ (xi)) + (1− λ)C0 −
‖x− xi‖2

2ε
,

≤ λC0 ‖x− x̃‖+ λ(Ṽ (x̂i)− Ṽ (xi)) + (1− λ)C0 −
‖x− xi‖2

2ε
,

≤ C0(‖x− x̃‖+ ‖x̂i − xi‖) + (1− λ)C0 −
‖x− xi‖2

2ε
,

Using the triangle inequality, ‖x̂i − xi‖ ≤ ‖x̂i − x̃‖+ ‖x̃− x‖+ ‖x− xi‖, hence

Mε,λ ≤ (1− λ)C0 + C0(‖x− x̃‖+ ‖x̂i − x̃‖+ ‖x̃− x‖+ ‖x− xi‖)−
‖x− xi‖2

2ε
.

By Lemma 6.1, and the cosine law, ‖x− x̃‖ ≤ ‖x− x̂i‖. From the definition of x̃, ‖x̂i − x̃‖ ≤
‖x− x̂i‖. Therefore,

Mε,λ ≤ (1− λ)C0 + 3C0 ‖x− x̂i‖+ C0 ‖x− xi‖ −
‖x− xi‖2

2ε
.

From (57) and maximizing over the quadratic ‖x− xi‖ with ‖x− xi‖ = C0ε,

Mε,λ ≤ (1− λ)C0 + 3C0hmax +
C2

0ε

2
. (58)

Step 3: The upper bound of Mε,λ in (58) is larger than (56). From (37),

V (xi)− Ṽ (xi) ≤ C0(1− λ) +Mε,λ,

≤ 2C0(1− λ) + 3C0hmax +
C2

0ε

2
,

≤ 2C0
2

Gmin

(
C1

ε
hmax + C0Lgε

)
+ 3C0hmax +

C2
0ε

2
,

≤
(

4C0C1

Gmin
+

4C2
0Lg

Gmin
+
C2

0

2

)(
hmax
ε

+ ε

)
+ 3C0hmax,

Since ε =
√
hmax is a global minimum of (hmax

ε + ε), and setting

C = 2
(

4C0C1
Gmin

+
4C2

0Lg

Gmin
+

C2
0

2 + 3C0

)
, for hmax < h0 = min{ G2

min
4(C1+C0Lg)2

, 1},

V (xi)− Ṽ (xi) ≤ C
√
hmax. (59)

Finally, a symmetrical argument using V a viscosity supersolution of (12) (Definition 2.10),
and Ṽ a subsolution of the numerical HJB equation (23) (Definition 6.11) can show (59)
with V (xi) and Ṽ (xi) reversed. Hence for hmax < h0,

max
xi∈X0

|Ṽ (xi)− V (xi)| ≤ C
√
hmax.�
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Theorem 6.14 will now be extended to ΩX . Define V̂ : ΩX → R

V̂ (x) =
n∑
j=0

ζjV (xs
j) for x =

n∑
j=0

ζjx
s
j .

On xi ∈ X0, V (xi) = V̂ (xi) are equal.

Lemma 6.15. There exists D1 > 0 for all x ∈ ΩX , such that

|V (x)− V̂ (x)| ≤ D1hmax. (60)

Proof. Let ζ ∈ Ξn and x ∈ s such that x =
∑n

j=0 ζjx
s
j . Using V (xi) = V̂ (xi) for all vertices

xi ∈ X0,
∑n

j=0 ζj = 1, Lemma 6.2, with Lipschitz constant LV = 2Gmax,

|V (x)− V̂ (x)| ≤
n∑
j=0

ζj |V (x)− V (xj)| ≤ 2Gmaxhmax.�

Corollary 6.16. There exists D2 > 0 for all x ∈ ΩX such that

|V (x)− Ṽ (x)| ≤ D2

√
hmax, (61)

for hmax < h0 as described in Theorem 6.14.

Proof. Let ζ ∈ Ξn and x ∈ s such that x =
∑n

j=0 ζjx
s
j . For x ∈ ΩX , Ṽ (x) =

∑n
j=0 ζj Ṽ (xs

j).
From Lemma 6.15 and Theorem 6.14,

V (x)− Ṽ (x) ≤ D1hmax + V̂ (x)− Ṽ (x)

= D1hmax +
n∑
j=0

ζj(V̂ (xs
j)− Ṽ (xs

j))

≤ (D1 + C)
√
hmax,

for hmax < h0. The proof for Ṽ (x)− V (x) is symmetrical. Hence D2 = D1 + C.�

7 Numerical Convergence of OUM Example

An example of the error computed using OUM for the boundary value problem is given.
The OUM algorithm was programmed in MATLAB R© on an ASUS X550L Laptop with
Intel R© Core TM i5 -4210U CPU Processor (1.7 GHz/2.4GHz) with 4GB RAM. As in [21],
the update for the OUM algorithm (19) was solved using the golden section search. For
Ω = [−500, 500]× [−500, 500], ∂Ω = {(x, y) ∈ Ω||x| = 500 or |y| = 500}, the weight g used
corresponded to a rectangular speed profile (Definition 2.6) centred about x with dimensions
6 in the x-direction and 2 in the y-direction. See Figure 5a. The boundary function was
q(x) = 0 for x ∈ ∂Ω. The same speed profile was used for all x ∈ Ω. The analytic solution
is made up of the concatenation of 4 planes: y + z = 500, x+ 3z = 500, −y + z = 500 and
−x+ 3z = 500 within Ω. See Figure 5b.
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(a) Rectangular speed profile Ug(x)
with length 6 in the x-direction and
2 in the y-direction.

(b) The exact solution V : a three-
dimensional view.

(c) The error between Ṽ and V
(viewed from above) is greatest at
points where ∇V is not defined.

Figure 5: A numerical example: a) speed profile, b) true solution V , c) error.

Vertices Triangles hmax Avg Error ravg Max Error rmax
4289 8256 24.07 0.3746 - 10.54 -

16765 32888 11.99 0.1914 0.9634 7.48 0.4931

66291 131300 6.438 0.0979 1.0779 5.38 0.5289

263597 524632 3.483 0.0499 1.0968 3.80 0.5643

1051261 2097400 1.785 0.0255 1.0062 2.74 0.4900

Table 1: Accuracy of OUM for a Boundary Value Problem - The OUM was used to solve
the static HJB problem with a rectangular profile on five meshes. Both average error across
the vertices and maximum vertex error are reported. The incremental rates of convergence
are also shown.
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Figure 6: Average and maximum error for OUM Convergence Example - average error
shown in red (below), maximum error shown in black (above). The overall convergence
rates measured were ravg = 1.043 and rmax = 0.523.

Given a set of boundary points, meshes with uneven triangles were generated using
Mesh2D [12]. The error values are given in Table 1 and a plot is provided in Figure 6. Using
polyfit in MATLAB with the data provided in Table 1, affine approximations of the log-log
slope fit using least squares were found. Using all 5 data points, overall rates of convergence
of ravg = 1.043 and rmax = 0.523 were obtained for average error and maximum error across
the vertices respectively. The convergence rate for maximum error in this example matches
closely to the theoretical results shown earlier. In average error, the OUM algorithm is at
most first-order accurate (as described in [21]) since the update formula (19) is a first-order
approximation. Since V is Lipschitz continuous, from Rademacher’s theorem, ∇V can only
be undefined on a set of measure zero. The error for all discretiztaions had the same general
shape, appearing greatest near where ∇V was undefined. See Figure 5c. Characteristics
flow into, but not out of such points where ∇V is undefined, preventing the error from being
propagated further [19], hence the expected first-order convergence rate in average error.

8 Conclusions and Future Work

It was proven in this paper that the rate of convergence of the approximate solution provided
by OUM to the viscosity solution of the HJB for prescribed boundary values is at least
O(
√
hmax) in maximum error. The basic idea of the proof is an extension of a similar proof

for FMM in [20]. A key step was to show the existence of a directionally complete stencil.
This implied from existing results that the numerical Hamiltonian for the OUM is both
consistent and monotonic.

An extension of this work would be to provide a convergence rate proof for OUM
in the single-source point formulation of the static HJB. This will extend the applicability
of the result shown here to point-to-point path planning problems, such as for rovers [22]
and other robots [24]. Constructing a directionally complete stencil as done here may be
difficult near the source point.

Another direction of research could be to prove that the convergence in average error
of OUM is at a rate of O(hmax) as was the case in the example in this paper. This could
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follow because OUM is a first-order method, with V generally not differentiable only on a set
of measure zero. Additional assumptions of regularity, such as a continuously differentiable
speed profile, may lead to a proof for first-order convergence in average error applicable to
many problems.
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[24] Valero-Gómez, A., Gómez, J.V., Garrido, S., Moreno, L.: The path to efficiency: Fast
Marching Method for safer, more efficient mobile robot trajectories. IEEE Robotics
and Automation Magazine. 20(4), 111–120 (2013)

[25] Vladimirsky, A.: Fast methods for static Hamilton-Jacobi partial differential equations.
Ph.D. thesis, University of Califoria, Berkeley (2001)

27


	1 Introduction
	2 Problem Formulation
	3 Simplicial Meshes
	4 Review of the Ordered Upwind Method
	5 Properties of the Approximated Value Function and Numerical Hamiltonian
	6 OUM Error Bound
	7 Numerical Convergence of OUM Example
	8 Conclusions and Future Work

