
Title A simple and economical method for improving whole genome
alignment

Author(s) MAI, H; Lam, TW; Ting, HF

Citation BMC Genomics, 2017, v. 18 n. suppl. 4, p. 362

Issued Date 2017

URL http://hdl.handle.net/10722/245817

Rights
BMC Genomics. Copyright © BioMed Central Ltd.; This work is
licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

The Author(s) BMCGenomics 2017, 18(Suppl 4):362
DOI 10.1186/s12864-017-3734-2

RESEARCH Open Access

A simple and economical method for
improving whole genome alignment
Huijun Mai, Tak-Wah Lam and Hing-Fung Ting*

From Fifth IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS 2015)
Miami, FL, USA. 15-17 October 2015

Abstract

Background: The recent advancement of whole genome alignment software has made it possible to align two
genomes very efficiently and with only a small sacrifice in sensitivity. Yet it becomes very slow if the extra sensitivity is
needed. This paper proposes a simple but effective method to improve the sensitivity of existing whole-genome
alignment software without paying much extra running time.

Results and conclusions: We have applied our method to a popular whole genome alignment tool LAST, and we
called the resulting tool LASTM. Experimental results showed that LASTM could find more high quality alignments
with a little extra running time. For example, when comparing human and mouse genomes, to produce the similar
number of alignments with similar average length and similarity, LASTM was about three times faster than LAST. We
conclude that our method can be used to improve the sensitivity, and the extra time it takes is small, and thus it is
worthwhile to be implemented in existing tools.

Keywords: Whole genome aligment, Seed-and-extend heuristic, Sensitivity

Background
Because of the recent advances in sequencing technol-
ogy and genome assembly software, it is now feasible to
sequence the whole genome of many species in nature. To
elicit useful information from these multi-gigabase long
sequences of As, Cs, Gs and Ts, one common approach
is to make connections by comparing them to each other.
Whole genome alignment is the computational problem
of finding similar regions between two different genomes.
Current genome alignment software tools are able to

align two genomes very efficiently and with only a small
sacrifice in sensitivity [1–9]. Yet, it becomes very slow
if the extra sensitivity is needed. This paper proposes
a simple but effective method to improve the sensitiv-
ity of existing whole-genome alignment software without
paying much extra running time.

*Correspondence: hfting@cs.hku.hk
Computer Science Department, University of Hong Kong, Pokfulam road,
Hong Kong, China

Methods
The input of the whole genome alignment problem is two
multi-gigabase long DNA sequences A[1..n] and B[1..m],
and it asks for finding those pairs of subsequences A[i..j]
and B[k..�] such thatA[i..j] and B[k..�] are similar.We use
the alignment of A[i..j] and B[k..�] to measure their simi-
larity. To get an alignment of A[i..j] and B[k..�], we insert
spaces into the two subsequences to make their length
equal, and put one subsequence on top of the other. We
assign a score to each column of the alignment depend-
ing on whether the characters in that column are match,
mismatch, or any of them is space, and the score of an
alignment is the sum of the scores assigned to its columns.
The similarity of A[i..j] and B[k..�] is measured by the
highest score given by their best alignment. Our task is to
find all subsequences of A and B whose alignment scores
are no less than some score threshold.

Seed-and-extend
Most existing software tools for whole genome alignment
use the "seed-and-extend" heuristic [5]. To explain this
heuristic, we first note that a simple approach to solve

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-017-3734-2&domain=pdf
mailto: hfting@cs.hku.hk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

The Author(s) BMCGenomics 2017, 18(Suppl 4):362 Page 30 of 55

the problem for the whole genomes A[1..n] and B[1..m]
is to use dynamic programming to find, for each posi-
tions 1 ≤ i ≤ n and 1 ≤ j ≤ m, whether there is an
alignment around A[i] and B[j] with score no less than
the score threshold. Obviously, this approach is too slow.
The idea of the “seed-and-extend” heuristic is to use an
efficient method to find a set of promising position pairs
such that for those not in this set, it is very likely that
there are no similar regions around them. Then, it uses
dynamic programming to find, for each promising posi-
tion pair, whether there is an alignment around them with
high enough score. Below, we briefly describe the basic
steps of “seed-and-extend”.

(i) Index building: We distinguish the two input
sequences such that one is the reference sequence
and the other is the query sequence. We first build an
indexing structure such as suffix array, hash table or
BWT [10] for the reference sequence, and the index
will enable us to find efficiently, for every short
subsequence of the query, all the matching
subsequences in the reference.

(ii) Seeds finding: Use the index to find all the short
matching subsequence pairs of A and B. These
matching pairs, which we called seeds, suggest a
much smaller set of positions from which we find the
promising positions. (Note that there are some other
seeding methods such as spaced-seeds [8], adaptive
seeds [5], and subset seeds [11], but in essence, they
all use the index to find efficiently short matching
subsequences with good scores.)

(iii) Gapless extension: The set of seeds found in the
previous step suggests a much smaller set of
positions for us to find similar regions. However,
they are still too large for us to handle each of them
using dynamic programming. This step further
reduces its size as follows: for each seed, we extend it
at both ends by repeatedly adding the next characters
in both sequences to the alignment. Note that we will
not introduce any gap in the extension, and thus this
step is very fast. During the extension process, we
will remember the maximum score seen so far, and if
the current score is much lower than this maximum
score, it means that we have gone too far, and we
stop and return the alignment with the maximum
score seen so far.
To reduce the number of promising positions, we
examine the set of gapless alignments returned by
this step, and discard those whose score are smaller
than some pre-defined threshold D.

(iv) Gap extension: For each of the remaining gapless
alignment, we use dynamic programming to find
whether there is an alignment around its starting
positions with high enough scores.

The problem of choosing the threshold D
It is obvious that the threshold D has critical effect on
the efficiency and sensitivity: a low threshold allows more
promising position pairs to be checked, and thus it is
likely to find more similar regions, but we will also waste
more time in checking more gapless alignments that do
not lead to any similar regions. To demonstrate this effect,
we have used the popular whole-genome alignment tool
LAST [5] to align the human and mouse genome with
three different thresholds, namely the default threshold
D, and two smaller thresholds 0.9D and 0.85D. For exam-
ple, as shown in the first sub-table of Table 1, by reducing
the threshold from D to 0.85D, LAST can find 144,000
more alignments, but the time required is more than
tripled.

Filtering
This paper proposes a simple method for increasing the
sensitivity of whole genome alignment without paying
much extra processing time. To justify our method, we
have applied it to improve LAST, and our results show that
it can increase the number of LAST’s reported alignments
to the one that LAST gets with threshold 0.85D, but using
time similar to that LAST uses with threshold D.
The idea of our method is to use a lower thresh-

old, say 0.7D and thus we will have a larger number
of gapless alignments. However, we will not pass all of
them to the gap extension step. Those with score no
less than D will be passed as usual. But for those with
score between 0.7D and D, we do not have enough confi-
dence in them, and they need to go through another test
first.
We use Fig. 1 to explain the motivation of our test.

The figure shows a pair of similar regions. Note that
if we remove the insertion GCCG in the middle of the
input sequence A, the two subsequences will be identical
and will give a gapless extension with high score. How-
ever, the insertion breaks the upper sequence and the
gapless extension step would stop at the first eight char-
acters ATGCCGTA. Thus, unless we set a low enough
threshold, this gapless alignment will be discarded with-
out further examination, which is not correct because it
is easy for dynamic programming to remove the insertion
GCCG to find the similar regions. However, our example
has some property that other useless gapless alignments
miss; there is another gapless alignment (the one with
the nine characters AATGCCGTA) follows closely. Hence,
two close gapless alignments suggests the possibility that
they may come from the same similar regions, and they
should be passed to the gap extension step for further
checking.
We now explain how to make use of this idea to

increase the sensitivity without much extra processing
time. Let A be the query sequence and B be the reference

The Author(s) BMCGenomics 2017, 18(Suppl 4):362 Page 31 of 55

Table 1 Comparison of LAST and LASTM

Human vs mouse

Alignment Time No. of Ave length Ave
method (hours) alignments similarity

LAST with D 3.04 2,521,923 842 61.29%

LAST with 0.9D 6.19 2,616,550 837 61.03%

LAST with 0.85D 11.85 2,665,216 834 60.95%

Our method 3.72 2,642,403 838 60.99%

Human vs dog

Alignment Time No. of Ave length Ave
method (hours) alignments similarity

LAST with D 3.18 4,533,937 905 62.99%

LAST with 0.9D 6.65 4,640,443 898 62.85%

LAST with 0.85D 12.30 4,640,877 895 62.78%

Our method 3.87 4,657,968 899 62.84%

Human vs cat

Alignment Time No. of Ave length Ave
method (hours) alignments similarity

LAST with D 4.36 4,431,635 908 62.62%

LAST with 0.9D 7.84 4,526,245 901 62.51%

LAST with 0.85D 13.26 4,571,706 899 62.46%

Our method 5.29 4,541,363 902 62.51%

Human vs cow

Alignment Time No. of Ave length Ave
method (hours) alignments similarity

LAST with D 4.59 6,437,907 785 61.65%

LAST with 0.9D 7.83 6,724,264 775 61.47%

LAST with 0.85D 12.78 6,875,343 770 61.38%

Our method 5.34 6,770,810 778 61.44%

Human vs rat

Alignment Time No. of Ave length Ave
method (hours) alignments similarity

LAST with D 4.16 8,055,476 505 62.29%

LAST with 0.9D 7.78 8,563,474 504 62.07%

LAST with 0.85D 13.27 8,836,291 503 61.96%

Our method 4.86 8,595,871 509 62.07%

Both LAST and LASTM use the HOXD70 [4] scoring scheme, and their gap existence
and extension penalties are -400 and -30 respectively. Their minimum score of
gapped alignments is 4500. For LAST, its default minimum score of gapless
alignments is D = 962, and for LASTM, it is 674 (≈ 0.7D). The distance d for the
filtering step of LASTM is 2000

sequence. For ease of discussion, we use the notation
(A[i..j] ,B[k..�]) to denote the best alignment of the two
subsequences A[i..j] and B[k..�]. We use LAST as an
example. We will insert the following filtering step
between LAST’s gapless extension step and gap extension
step, and run LAST using a lower threshold εD, where
0 < ε < 1 and D is LAST’s default threshold:

Let S be the set of gapless alignments with score
between εD and D. For each alignment
(A[io..jo] ,B[ko..�o]) ∈ S, we will remove it from S if (i)
there is no following gapless alignment within a
distance of d from it (i.e., there is no alignment
(A[i..j] ,B[k..�]) following with i − jo ≤ d and
k − �o ≤ d), and (ii) there is no preceding alignment
within a distance of d from it (i.e., there is no
alignment (A[i..j] ,B[k..�]) preceding with io − j ≤ d
and ko − � ≤ d).

Then, those gapless alignments with threshold no less
than D, together with those still in S will be passed to the
gap extension step.
Note that the set of gapless alignments found by our

method is not smaller than that found by LAST with
threshold D, and our method will not introduce any error
because all gapless alignment will be further checked by
the gap extension step. As shown below, the filtering step
of our method is efficient and easy to implement.

Step 1: Select the set So of gapless alignments with score
greater than or equal to D, and select the set S of
gapless alignments with score between εD and D.

Step 2: Radix sort the gapless alignments
(A[i..j] ,B[k..�]) ∈ So ∪ S in ascending order of i, the
starting position of A[i..j].

Step 3: Scanned the sorted list, and for each alignment
(A[i..j] ,B[k..�]) ∈ S scanned, check if there is any
gapless alignment So ∪ S following in the list within
distance d, and if yes, move it to So. (Note that the
checking for (A[i..j] ,B[k..�]) can stop as soon as we
reach an alignment (A[i′..j′] ,B[k′..�′]) with i′ > j +
d.)

Step 4: Radix sort the gapless alignments
(A[i..j] ,B[k..�]) ∈ So ∪ S in descending order of j,
the ending position of A[i..j].

Step 5: Scanned the sorted list, and for each alignment
(A[i..j] ,B[k..�]) ∈ S scanned, check if there is any
gapless alignment So ∪ S following in the list within
distance d, and if yes, move it to So.

Step 6: Pass So to the gap extension step.

Results and discussion
To justify our method, we have modified LAST as
described in the previous section, and used it to align the
human genome (≈ 3G) to the genome of mouse (≈ 2.8G),
of dog (≈ 2.4G), of cat (≈ 2.5G), of cow (≈ 2.7G), and of
rat (≈ 2.8G). We use the human genome as the reference,
and LAST will build an index for it. These genomes were
all downloaded from [12].
Our experiments are run on the Intel Core i7-

3930K 3.2 GHz processor, and we use 6 cores with 12
threads. For verification of our results, our program can

The Author(s) BMCGenomics 2017, 18(Suppl 4):362 Page 32 of 55

Fig. 1 A pair of similar regions with insertion

be downloaded via the link https://github.com/
Maihj/LASTM.
To evaluate the sensitivity of LAST (version 588) and

our modification LASTM, we compared the number of
alignments produced by each software andmeasured their
quality based on the length and similarity. We suppose
that the more alignments with similar quality produced,
the higher the sensitivity.
Table 1 compares LAST’s performance (with different

threshold on the minimum score of gapless alignments)
with that of our method with threshold is set to 0.7D,
and the distance d for the filtering step is set to 2000.
The table shows that our method runs in time similar to
that of LAST with threshold D, but the number of align-
ments reported is significantly larger, which is close to that
reported by LAST with threshold 0.85D. Also, the table
shows that the quality of the alignments returned by our
method is similar to that returned by LAST; they have
similar average length, and similar average similarity (i.e.,
the percentage of identical columns over the length of the
alignments).
Furthermore, Table 2 showed the number of reported

alignments that fall in some gene regions downloaded
from [12] (i.e., at least 50% of each of the subsequences
in the alignment overlaps with some gene regions of the
corresponding input sequences). We find that our method
has similar increase in output alignments when we focus
on gene regions.

Conclusions
This paper proposes a method to increase the sensitivity
of whole genome alignment tools that use the "seed-
and-extend" heuristic. Our method is simple and easy to
implement, and the extra time it takes is small, and thus it
is worthwhile to be implemented in existing tools.

Table 2 No. of reported alignments falling in some gene regions

Alignment method Mouse Dog Cat Cow Rat

LAST with D 1,078,259 72,651 10,854 1,154,227 1,557,117

LAST with 0.9D 1,107,882 73,829 11,017 1,187,743 1,636,078

LAST with 0.85D 1,122,373 74,470 11,101 1,205,915 1,678,187

Our method 1,119,804 74,005 11,024 1,196,821 1,647,855

Acknowledgements
Lam was partially supported by GRF Grant HKU-716412E. Ting was partially
supported by GRF Grant HKU-713512E.

Funding
Publication costs for this article were funded by the authors’ departmental
resources.

Availability of data andmaterials
LASTM can be accessed via https://github.com/Maihj/LASTM and
the data for experiments is available on request.

Authors’ contributions
HFT conceived the project, HJM, TWL and HFT designed the project, and HJM
implemented the project. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

About this supplement
This article has been published as part of BMC Genomics Volume 18
Supplement 4, 2017: Selected articles from the Fifth IEEE International
Conference on Computational Advances in Bio and Medical Sciences (ICCABS
2015): Genomics. The full contents of the supplement are available online at
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-18-
supplement-4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Published: 24 May 2017

References
1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,

Lipman DJ. Gapped BLAST and PSIBLAST: A new generation of protein
database search programs. Nucleic Acids Res. 1997;25:3389–402.

2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local
alignment search tool. Mol Biol. 1990;215:403–10.

3. Cameron M, Williams HE, Cannane A. Improved gapped alignment in
blast. IEEE/ACM Trans Comput Biol Bioinformatics. 2004;1:116–29.

4. Frith MC, Noe L. Improved search heuristics find 20000 new alignments
between human and mourse genomes. Nucleic Acids Res. 2014;42(7):e59.

5. Kielbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame
genomic sequence comparison. Genome Res. 2011;21:487–93.

6. Kent WJ. Blat-the blast-like alignment tool. Genome Res. 2002;12:656–64.
7. Kurtz S, Phillippy A, Delcher A, Smoot M, Shumway M, Antonescu C,

Salzberg S. Versatile and open software for comparing large genomes.
Genome Biol. 2004;5(2):R12.

8. Ma B, Tromp J, Li M. PatternHunter: faster and more sensitive homology
search. Bioinformatics. 2002;18:440–5.

https://github.com/Maihj/LASTM
https://github.com/Maihj/LASTM
https://github.com/Maihj/LASTM
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-18-supplement-4
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-18-supplement-4

The Author(s) BMCGenomics 2017, 18(Suppl 4):362 Page 33 of 55

9. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC,
Haussler D, MillerHuman W. Human-mouse alignments with blastz.
Genome Res. 2003;13:103–7.

10. Lam TW, Sung WK, Tam SL, Wong CK, Yiu SM. Compressed indexing
and local alignment of DNA. Bioinformatics. 2008;24(6):791–7.

11. Kucherov G, Noe L, Roytberg M. A unifying framework for seed sensitivity
and its application to subset seeds. J Bioinform Comput Bio. 2006;4:
553–69.

12. UCSC Gemone Browser. http://hgdownload.soe.ucsc.edu/downloads.
html (accessed on March 2015).

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://hgdownload.soe.ucsc.edu/downloads.html
http://hgdownload.soe.ucsc.edu/downloads.html

	Abstract
	Background
	Results and conclusions
	Keywords

	Background
	Methods
	Seed-and-extend
	The problem of choosing the threshold D
	Filtering

	Results and discussion
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	About this supplement
	Publisher's Note
	References

