
Title Neural Enquirer: Learning To Query Tables In Natural Language

Author(s) YIN, P; Lu, Z; Li, H; Kao, CM

Citation Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, 2016, v. 39 n. 3, p. 63-73

Issued Date 2016

URL http://hdl.handle.net/10722/245816

Rights

Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering. Copyright © IEEE.; ©20xx IEEE. Personal use
of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

; This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

Neural Enquirer: Learning to Query Tables with Natural

Language

Pengcheng Yin†∗ Zhengdong Lu‡ Hang Li‡ Ben Kao†
†Dept. of Computer Science
The University of Hong Kong
{pcyin, kao}@cs.hku.hk

‡Noah’s Ark Lab, Huawei Technologies
{Lu.Zhengdong, HangLi.HL}@huawei.com

Abstract

We proposed Neural Enquirer as a neural network architecture to execute a natu-
ral language (NL) query on a knowledge-base (KB) for answers. Basically, Neural En-
quirer finds the distributed representation of a query and then executes it on knowledge-
base tables to obtain the answer as one of the values in the tables. Unlike similar efforts in
end-to-end training of semantic parsers [11, 9], Neural Enquirer is fully “neuralized”:
it not only gives distributional representation of the query and the knowledge-base, but
also realizes the execution of compositional queries as a series of differentiable operations,
with intermediate results (consisting of annotations of the tables at different levels) saved
on multiple layers of memory. Neural Enquirer can be trained with gradient descent,
with which not only the parameters of the controlling components and semantic parsing
component, but also the embeddings of the tables and query words can be learned from
scratch. The training can be done in an end-to-end fashion, but it can take stronger
guidance, e.g., the step-by-step supervision for complicated queries, and benefit from it.
Neural Enquirer is one step towards building neural network systems which seek to
understand language by executing it on real-world. Our experiments show that Neu-
ral Enquirer can learn to execute fairly complicated NL queries on tables with rich
structures.

1 Introduction

In models for natural language dialogue and question answering, there is ubiquitous need for
querying a knowledge-base [13, 11]. The traditional pipeline is to put the query through a
semantic parser to obtain some “executable” representations, typically logical forms, and then
apply this representation to a knowledge-base for the answer. Both the semantic parsing and
the query execution part can get quite messy for complicated queries like Q̃: “Which city
hosted the longest game before the game in Beijing?” in Figure 1, and need carefully devised
systems with hand-crafted features or rules to derive the correct logical form F̃ (written in
SQL-like style). Partially to overcome this difficulty, there has been effort [11] to “backprop-
agate” the result of query execution to revise the semantic representation of the query, which
actually falls into the thread of work on learning from grounding [5]. One drawback of these

∗Work done when the first author worked as an intern at Noah’s Ark Lab, Huawei Technologies.

1

ar
X

iv
:1

51
2.

00
96

5v
2

 [
cs

.A
I]

 2
1

Ja
n

20
16

Which city hosted the longest Olympic game before the game in Beijing?

query 𝑄
Query Encoder

Executor-1 Memory Layer-1

Executor-2 Memory Layer-2

Executor-3 Memory Layer-3

Executor-4 Memory Layer-4

Executor-5

Athens (probability distribution over entries)

year host_city #_duration #_medals

2000 Sydney 20 2,000

2004 Athens 35 1,500

2008 Beijing 30 2,500

2012 London 40 2,300

query embedding
table embedding

Tab
le En

co
d

er

where year<(select year, where host_city=Beijing),
argmax(host_city, #_duration)

Find row r1 where host_city=Beijing

Select year of r1 as a

Find row sets R where year < a

Find r2 in R with max(#_duration)

Select host_city of r2

logical form 𝐹

Figure 1: An overview of Neural Enquirer with five executors

semantic parsing models is rather symbolic with rule-based features, leaving only a handful
of tunable parameters to cater to the supervision signal from the execution result.

On the other hand, neural network-based models are previously successful mostly on tasks
with direct and strong supervision in natural language processing or related domain, with
examples including machine translation and syntactic parsing. The recent work on learning
to execute simple Python code with LSTM [15] pioneers in the direction on learning to parse
structured objects through executing it in a purely neural way, while the later work on Neural
Turing Machine (NTM) [6] introduces more modeling flexibility by equipping the LSTM with
external memory and various means of interacting with it.

Our work, inspired by above-mentioned threads of research, aims to design a neural net-
work system that can learn to understand the query and execute it on a knowledge-base table
from examples of queries and answers. Our proposed Neural Enquirer encodes queries
and KBs into distributed representations, and executes compositional queries against the KB
through a series of differentiable operations. It can be trained using Query-Answer pairs,
where the distributed representations of queries and the KB are optimized together with
the query execution logic in an end-to-end fashion. We then demonstrates using a synthetic
question-answering task that our proposed Neural Enquirer is capable of learning to exe-
cute compositional natural language queries with complex structures.

2 Overview of Neural Enquirer

Given an NL query Q and a KB table T , Neural Enquirer executes the query against
the table and outputs a ranked list of query answers. The execution is done by first using
Encoders to encode the query and table into distributed representations, which are then sent
to a cascaded pipeline of Executors to derive the answer. Figure 1 gives an illustrative example
(with five executors) of various types of components involved:

2

Query Encoder (Section 3.1), which encodes the query into a distributed representation
that carries the semantic information of the original query. The encoded query embedding
will be sent to various executors to compute its execution result.

Table Encoder (Section 3.2), which encodes entries in the table into distributed vectors.
Table Encoder outputs an embedding vector for each table entry, which retains the two-
dimensional structure of the table.

Executor (Section 3.3), which executes the query against the table and outputs annotations
that encode intermediate execution results, which are stored in the memory of each layer to be
accessed by subsequent executor. Our basic assumption is that complex, compositional queries
can be answered through multiple steps of computation, where each executor models a specific
type of operation conditioned on the query. Figure 1 illustrates the operation each executor
is supposed to perform in answering Q̃. Different from classical semantic parsing approaches
which require a predefined set of all possible logical operations, Neural Enquirer is capable
of learning the logic of executors via end-to-end training using Query-Answer pairs. By
stacking several executors, Neural Enquirer is able to answer complex queries involving
multiple steps of computation.

3 Model

In this section we give a more detailed exposition of different types of components in the
Neural Enquirer model.

3.1 Query Encoder

Given an NL query Q composed of a sequence of words {w1, w2, . . . , wT }, Query Encoder

parses Q into a dQ-dimensional vectorial representation q: Q
encode−−−−→ q ∈ RdQ . In our imple-

mentation of Neural Enquirer, we employ a bidirectional RNN for this mission1. More
specifically, the RNN summarizes the sequence of word embeddings of Q, {x1,x2, . . . ,xT },
into a vector q as the representation of Q, where xt = L[wt], xt ∈ RdW and L is the embedding
matrix. See Appendix A for details.

It is worth noting that our Query Encoder can find the representation of rather general
class of symbol sequences, agnostic to the actual representation of queries (e.g., natural lan-
guage, SQL-like, etc). Neural Enquirer is capable of learning the execution logic expressed
in the input query through end-to-end training, making it a generic model for query execution.

3.2 Table Encoder

DNN0

field embedding value embedding

composite embedding

Table Encoder converts a knowledge-base table T into its distribu-
tional representation as input to Neural Enquirer. Suppose the
table has M rows and N columns, where each column comes with
a field name (e.g., host city), and the value of each table entry is
a word (e.g., Beijing) in our vocabulary, Table Encoder first finds

1Other choices of sentence encoder such as LSTM or even convolutional neural networks are possible too

3

Reader

table embedding
row reading

pooling

Annotator

row annotations

table annotationMemory Layer-(-1)

query embedding Memory Layer-

Figure 2: Overview of an Executor-`

the embedding for field names and values of table, and then it computes the (field, value)
composite embedding for each of the M × N entries in the table. More specifically, for the
entry in the m-th row and n-th column with a value of wmn, Table Encoder computes a
dE -dimensional embedding vector emn by fusing the embedding of the entry value with the
embedding of its corresponding field name as follows:

emn = DNN0([L[wmn]; fn]) = tanh(W · [L[wmn]; fn] + b)

where fn is the embedding of the field name (of the n-th column). W and b denote the weight
matrices, and [·; ·] the concatenation of vectors. The output of Table Encoder is a tensor of
shape M ×N × dE , consisting of M ×N embeddings of length dE for all entries.

Our Table Encoder functions differently from classical knowledge embedding models (e.g.,
TransE [4]), where embeddings of entities (entry values) and relations (field names) are learned
in a unsupervised fashion via minimizing certain reconstruction errors. Embeddings in Neu-
ral Enquirer are optimized via supervised learning towards end-to-end QA tasks. Addi-
tionally, as will shown in the experiments, those embeddings function in a way as indices,
which not necessarily encode the exact semantic meaning of their corresponding words.

3.3 Executor

Neural Enquirer executes an input query on a KB table through layers of execution. Each
layer of executor captures a certain type of operation (e.g., select, where, max, etc.) relevant
to the input query2, and returns intermediate execution results, referred to as annotations,
saved in an external memory of the same layer. A query is executed step-by-step through
a sequence of stacked executors. Such a cascaded architecture enables Neural Enquirer
to answer complex, compositional queries. An illustrative example is given in Figure 1, with
each executor annotated with the operation it is assumed to perform. We will demonstrate in
Section 5 that Neural Enquirer is capable of learning the operation logic of each executor
via end-to-end training.

As illustrated in Figure 2, an executor at Layer-` (denoted as Executor-`) has two major
neural network components: Reader and Annotator. An executor processes a table row-by-
row. For them-th row, withN (field, value) composite embeddingsRm = {em1, em2, . . . , emN},
the Reader fetches a read vector r`m from Rm, which is sent to the Annotator to compute a

2Depending on the query, an executor may perform different operations.

4

row k

year host city # participants # models

DNN1

+

DNN0 DNN0 DNN0 DNN0

year host city # participants # models

query embedding

table annotation

read vector

()

Figure 3: Illustration of the Reader for Executor-`.

row annotation a`m ∈ RdA :

Read Vector: r`m = f `r(Rm,FT ,q,M`−1) (1)

Row Annotation: a`m = f `a(r`m,q,M`−1) (2)

where M`−1 denotes the content in memory Layer-(`−1), and FT = {f1, f2, . . . , fN} is the set
of field name embeddings. Once all row annotations are obtained, Executor-` then generates
the table annotation through the following pooling process:

Table Annotation: g` = fPool(a
`
1,a

`
2, . . . ,a

`
M).

A row annotation captures the local execution result on each row, while a table annotation,
derived from all row annotations, summarizes the global computational result on the whole
table. Both row annotations {a`1,a`2, . . . ,a`M} and table annotation g` are saved in memory
Layer-`: M` = {a`1,a`2, . . . ,a`M ,g`}.

Our design of executor is inspired by Neural Turing Machines [6], where data is fetched
from an external memory using a read head, and subsequently processed by a controller, whose
outputs are flushed back in to memories. An executor functions similarly by reading data
from each row of the table, using a Reader, and then calling an Annotator to calculate inter-
mediate computational results as annotations, which are stored in the executor’s memory. We
assume that row annotations are able to handle operations which require only row-wise, local
information (e.g., select, where), while table annotations can model superlative operations
(e.g., max, min) by aggregating table-wise, global execution results. Therefore, a combination
of row and table annotations enables Neural Enquirer to capture a variety of real-world
query operations.

3.3.1 Reader

As illustrated in Figure 3, an executor at Layer-` reads in a vector r`m for each row m, defined
as the weighted sum of composite embeddings for entries in this row:

r`m = f `r(Rm,FT ,q,M`−1) =

N∑
n=1

ω̃(fn,q,g
`−1)emn

5

where ω̃(·) is the normalized attention weights given by:

ω̃(fn,q,g
`−1) =

exp(ω(fn,q,g
`−1))∑N

n′=1 exp(ω(fn′ ,q,g`−1))
(3)

and ω(·) is modeled as a DNN (denoted as DNN
(`)
1).

Note that the ω̃(·) is agnostic to the values of entries in the row, i.e., in an executor all rows
share the same set of weights ω̃(·). Since each executor models a specific type of computation,
it should only attend to a subset of entries pertain to its execution, which is modeled by the
Reader. This is related to the content-based addressing of Neural Turing Machines [6] and
the attention mechanism in neural machine translation models [2].

3.3.2 Annotator

In Executor-`, the Annotator computes row and table annotations based on the fetched read
vector r`m of the Reader, which are then stored in the `-th memory layer M` accessible to
Executor-(`+1). This process is repeated in intermediate layers, until the executor in the last
layer to finally generate the answer.

Row annotations A row annotation encodes the local computational result on a specific
row. As illustrated in Figure 4, a row annotation for row m in Executor-`, given by

a`m = f `a(r`m,q,M`−1) = DNN
(`)
2 ([r`m;q;a`−1m ;g`−1]). (4)

fuses the corresponding read vector r`m, the results saved in previous memory layer (row and
table annotations a`−1m , g`−1), and the query embedding q. Basically,

• row annotation a`−1m represents the local status of the execution before Layer-`;

• table annotation g`−1 summarizes the global status of the execution before Layer-`;

• read vector r`m stores the value of current attention;

• query embedding q encodes the overall execution agenda,

all of which are combined through DNN
(`)
2 to form the annotation of row m in the current

layer.

DNN2

query embedding

table annotation (layer -1)

row annotation (layer -1)

read vector (layer)

row annotation (layer)
()

thm

thm

Figure 4: Illustration of Annotator for Executor-`.

6

Table annotations Capturing the global execution state, a table annotation is summarized
from all row annotations via a global pooling operation. In our implementation of Neural
Enquirer we employ max pooling:

g` = fPool(a
`
1,a

`
2, . . . ,a

`
M) = [g1, g2, . . . , gdG]> (5)

where gk = max({a`1(k),a`2(k), . . . ,a`M (k)}) is the maximum value among the k-th elements
of all row annotations. It is possible to use other pooling operations (e.g., gated pooling), but
we find max pooling yields the best results.

3.3.3 Last Layer of Executor

Instead of computing annotations based on read vectors, the last executor in Neural En-
quirer directly outputs the probability of the value of each entry in T being the answer:

p(wmn|Q, T) =
exp(f `Ans(emn,q,a

`−1
m ,g`−1))∑M

m′=1

∑N
n′=1 exp(f `Ans(em′n′ ,q,a

`−1
m′ ,g

`−1))
(6)

where f `ans(·) is modeled as a DNN. Note that the last executor, which is devoted to returning
answers, carries out a specific kind of execution using f `Ans(·) based on the entry value, the
query, and annotations from previous layer.

3.4 Handling Multiple Tables

Real-world KBs are often modeled by a schema involving various tables, where each table
stores a specific type of factual information. We present Neural Enquirer-M, adapted
for simultaneously operating on multiple KB tables. A key challenge in this scenario is
that the multiplicity of tables requires modeling interaction between them. For example,
Neural Enquirer-M needs to serve join queries, whose answer is derived by joining fields
in different tables. Details of the modeling and experiments of Neural Enquirer-M are
given in Appendix C.

4 Learning

Neural Enquirer can be trained in an end-to-end (N2N) fashion in Question Answering
tasks. During training, both the representations of queries and table entries, as well as the
execution logic captured by weights of executors are learned. More specifically, given a set of
ND query-table-answer triples D = {(Q(k), T (i), y(i))}, we optimize the model parameters by
maximizing the log-likelihood of gold-standard answers:

LN2N(D) =

ND∑
i=1

log p(y(i) = wmn|Q(i), T (i)) (7)

In end-to-end training, each executor discovers its operation logic from training data in a
purely data-driven manner, which could be difficult for complicated queries requiring four or
five sequential operations.

This can be alleviated by softly guiding the learning process via controlling the attention
weights w̃(·) in Eq. (3). By enforcing w̃(·) to bias towards a field pertain to a specific operation,

7

we can “coerce” the executor to figure out the logic of this particular operation relative to
the field. As an example, for Executor-1 in Figure 1, by biasing the weight of the host city

field towards 1.0, only the value of host city field will be fetched and sent for computing
annotations, in this way we can force the executor to learn to find the row whose host city

is Beijing. This setting will be referred to as step-by-step (SbS) training. Formally, this is
done by introducing additional supervision signal to Eq. (7):

LSbS(D) =

ND∑
i=1

[log p(y(i) = wmn|Q(i), T (i)) + α

L∑
`=1

log w̃(f?k,`, ·, ·)] (8)

where α is a scalar and f?k,` is the embedding of the field name known a priori to be relevant
to the executor at Layer-` in the k-th example.

5 Experiments

In this section we evaluate Neural Enquirer on synthetic QA tasks with queries with vary-
ing compositional depth. We will first briefly describe our synthetic QA task for benchmark
and experimental setup, and then discuss the results under different settings.

5.1 Synthetic QA Task

We present a synthetic QA task to evaluate the performance of Neural Enquirer, where
a large amount of QA examples at various levels of complexity are generated to evaluate the
single table and multiple tables cases of the model. Starting with “artificial” tasks eases the
process of developing novel deep models [14], and has gained increasing popularity in recent
advances of the research on modeling symbolic computation using DNNs [6, 15].

Our synthetic dataset consists of query-table-answer triples {(Q(i), T (i), y(i))}. To generate
such a triple, we first randomly sample a table T (i) of size 10 × 10 from a synthetic schema
of Olympic Games, which has 10 fields, whose values are drawn from a vocabulary of size
240, with 120 country and city names, and 120 numbers. Figure 5 gives an example table
with one row. Next, we generate a query Q(i) using predefined templates associated with its
gold-standard answer y(i) on T (i). Our task consists of four types of natural language queries
as summarized in Table 1, with annotated SQL-like logical forms for easy interpretation. We
generate NL queries at various levels of compositionality to mimic the real world scenario. The
complexity of those queries ranges from simple Select Where queries to more complicated
Nest ones involving multiple steps of computation. Those queries are flexible enough to
involve complex matching between NL phrases and logical constituents, which makes query
understanding and execution nontrivial: (1) the same field is described by different NL phrases
(e.g., “How big is the country ...” and “What is the size of the country ...” for country size

field); (2) different fields may be referred to by the same NL pattern (e.g, “in China” for
country and “in Beijing” for host city); (3) simple NL constituents may be grounded to
complex logical operations (e.g., “after the game in Beijing” implies comparing between year

fields). In our experiments we use the above procedure to generate benchmark datasets
consisting of different types of queries. To make the artificial task harder, we enforce that all
queries in the testing set do not appear in the training set.

To simulate the read-world scenario where queries of various types are issued to the model,
we constructed two Mixtured datasets for our main experiments, with 25K and 100K

8

year host city # participants # medals # duration # audience host country GDP country size population
2008 Beijing 4,200 2,500 30 67,000 China 2,300 960 130

Figure 5: An example table in the synthetic QA task (only show one row)

Query Type Example Queries with Annotated SQL-like Logical Forms

Select Where

. Q1: How many people participated in the game in Beijing?
F1: select # participants, where host city = Beijing

. Q2: In which country was the game hosted in 2012?
F2: select host country, where year = 2012

Superlative

. Q3: When was the lastest game hosted?
F3: argmax(host city, year)

. Q4: How big is the country which hosted the shortest game?
F4: argmin(country size, # duration)

Where Superlative

. Q5: How long is the game with the most medals that has fewer than 3,000 participants?
F5: where # participants < 3,000, argmax(# duration, # medals)

. Q6: How many medals are in the first game after 2008?
F6: where # year > 2008, argmin(# medals, # year)

Nest

. Q7: Which country hosted the longest game before the game in Athens?
F7: where year<(select year,where host city=Athens),argmax(host country,# duration)

. Q8: How many people watched the earliest game that lasts for more days than the game in 1956?
F8: where # duration<(select # duration,where year=1956),argmin(# audience,# year)

Table 1: Example queries in our synthetic QA task

training examples respectively, where four types of quires are sampled with the ratio 1 :
1 : 1 : 2. Both datasets share the same testing set of 20K examples, 5K for each type of
query.

5.2 Setup

[Tuning] We use a Neural Enquirer with five executors. The number of layers for DNN
(`)
1

and DNN
(`)
2 are set to 2 and 3, respectively. We set the dimensionality of word/entity em-

beddings and row/table annotations to 20, hidden layers to 50, and the hidden states of the
GRU in query encoder to 150. α in Eq. (8) is set to 0.2. We pad the beginning of all input
queries to a fixed size.

Neural Enquirer is trained via standard back-propagation. Objective functions are op-
timized using SGD in a mini-batch of size 100 with adaptive learning rates (AdaDelta [16]).
The model converges fast within 100 epochs.
[Baseline] We compare our model with Sempre [11], a state-of-the-art semantic parser.
[Metric] We evaluate the performance of Neural Enquirer and Sempre (baseline) in
terms of accuracy, defined as the fraction of correctly answered queries.

5.3 Main Results

Table 2 summarizes the results of Sempre (baseline) and our Neural Enquirer under end-
to-end (N2N) and step-by-step (SbS) settings. We show both the individual performance for
each type of query and the overall accuracy. We evaluate Sempre only on Mixtured-25K
because of its long training time even on the smaller Mixtured-25K (> 3 days). We give
discussion of efficiency issues in Appendix B.

We first discuss Neural Enquirer’s performance under end-to-end (N2N) training set-
ting (the 3rd and 6th column in Table 2), and defer the discussion for SbS setting to Sec-

9

Mixtured-25K Mixtured-100K
Sempre N2N SbS N2N - OOV N2N SbS N2N - OOV

Select Where 93.8% 96.2% 99.7% 90.3% 99.3% 100.0% 97.6%
Superlative 97.8% 98.9% 99.5% 98.2% 99.9% 100.0% 99.7%
Where Superlative 34.8% 80.4% 94.3% 79.1% 98.5% 99.8% 98.0%
Nest 34.4% 60.5% 92.1% 57.7% 64.7% 99.7% 63.9%
Overall Acc. 65.2% 84.0% 96.4% 81.3% 90.6% 99.9% 89.8%

Table 2: Accuracies on Mixtured datasets

Q5: How long is the game with the most medals that has fewer than 3,000 participants?

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-1

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-2

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-3

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-4

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n

Executor-5

Figure 6: Weights visualization of query Q5

tion 5.4. On Mixtured-25K, our model outperforms Sempre on all types of queries, with a
marginal gain on simple queries (Select Where, Superlative), and significant improve-
ment on complex ones (Where Superlative, Nest). When the size of training set grows
(Mixtured-100K), Neural Enquirer achieves near 100% accuracy for the first three types
of queries, while registering a decent overall accuracy of 90.6%. These results suggest that our
model is very effective in answering compositional natural language queries, especially those
with complex semantic structures compared with the state-of-the-art system.

To further understand why our model is capable of handling compositional queries, we
study the attention weights w̃(·) of Readers (Eq. 3) for executors in intermediate layers, and
the answer probability (Eq. 6) the last executor outputs for each entry in the table. Those
statistics are obtained from the model trained on Mixtured-100K. We sampled two queries
(Q5 and Q7 in Table 1) in the dataset that our model answers correctly and visualized their
corresponding values, as illustrated in Figure 6 and 7, respectively. We find that each executor
actually learns its execution logic from just the correct answers in end-to-end training, which
corresponds with our assumption. For Q5, the model executes the query in three steps,
with each of the last three executors performs a specific type of operation. For each row,
Executor-3 takes the value of the # participants field as input and computes intermediate
annotations, while Executor-4 focuses on the # medals field. Finally, the last executor outputs
high probability for the # duration field (the 5-th column) in the 3-rd row. The attention
weights for Executor-1 and Executor-2 appear to be meaningless because Q5 requires only three
steps of execution, and the model learns to defer the meaningful execution to the last three
executors. We can guess confidently that in executing Q5, Executor-3 performs the conditional
filtering operation (where clause in F5), and Executor-4 performs the first part of argmax

(finding the maximum value of # medals), while the last executor finishes the execution by
assigning high probability for the # duration field of the row with the maximum value of
medals.

Compared with the relatively simple Q5, Q7 is more complicated, whose logical form F7

involves a nest sub-query, and requires five steps of execution. From the weights visualized in
figure 7, we can find that the last three executors function similarly as the case in answering

10

Q7: Which country hosted the longest game before the game in Athens?

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-1

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-2

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-3

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-4

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n

Executor-5

Figure 7: Weights visualization of query Q7

Q8: How many people watched the earliest game that lasts for more days than the game in 1956?

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-1

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-2

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-3

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-4

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n

Executor-5

Figure 8: Weights visualization of query Q8 (an incorrectly answered query)

Q5, yet the execution logic for the first two executors is a bit obscure. We posit that this is
because during end-to-end training, the supervision signal propagated from the top layer has
decayed along the long path down to the first two executors, which causes vanishing gradient
problem.

We also investigate the case where our model fails to deliver the correct answer for compli-
cated queries. Figure 8 gives such a query Q8 in Table 1 together with its visualized weights.
Similar as Q7, Q8 requires five steps of execution. Besides messing up the weights in the
first two executors, the last executor, Executor-5, predicts a wrong entry as the query answer,
instead of the highlighted (in red rectangle) correct entry.

5.4 With Additional Step-by-Step Supervision

To alleviate the vanishing gradient problem when training on complex queries as described
in Section 5.3, in our next set of experiments we trained our Neural Enquirer model
using step-by-step (SbS) training (Eq. 8), where we encourage each executor to attend to
a specific field that is known a priori to be relevant to its execution logic. The results are
shown in the 4-rd and 7-th columns of Table 2. With stronger supervision signal, the model
significantly outperforms the results in end-to-end setting, and achieves near 100% accuracy on
all types of queries, which shows that our proposed Neural Enquirer is capable of leveraging
the additional supervision signal given to intermediate layers in SbS training setting, and
answering complex and compositional queries with perfect accuracy.

Let us revisit the query Q7 in SbS setting with the weights visualization in Figure 9. In
contrast to the result in N2N setting (Figure 7) where the attention weights for the first two
executors are obscure, the weights in every executor are perfectly skewed towards the actual
field pertain to each layer of execution (with a weight 1.0). Quite interestingly, the attention
weights for Executor-3 and Executor-4 are exactly the same with the result in N2N setting,
while the weights for Executor-1 and Executor-2 are significantly different, suggesting Neural
Enquirer learned a different execution logic in the SbS setting.

11

Q7: Which country hosted the longest game before the game in Athens?

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-1

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-2

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-3

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-4

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n

Executor-5

Figure 9: Weights visualization of query Q7 in step-by-step training setting

5.5 Dealing with Out-Of-Vocabulary Words

Q9: How many people watched the game in Macau?

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-1

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-2

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-3

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

Executor-4

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n

Executor-5

Figure 10: Weights visualization of query Q9

One of the major challenges for applying neural network models to NLP applications is to
deal with Out-Of-Vocabulary (OOV) words, which is particularly severe for QA. It is hard to
cover existing tail entities, while at the same time new entities appear in user-issued queries
and back-end KBs everyday. Quite interestingly, we find that a simple variation of Neural
Enquirer is able to handle unseen entities almost without any loss of accuracy.

Basically, we divide words in the vocabulary into entity words and operation words. Em-
beddings of entity words (e.g., Beijing, China) function in a way as index to facilitate the
matching between entities in queries and tables during the layer-by-layer execution, and do
not need to be updated once initialized; while those of operation words, i.e., all non-entity
words (e.g., numbers, longest, before, etc) carry semantic meanings relevant to execution and
should be optimized during training. Therefore, after randomly initializing the embedding
matrix L, we only update the embeddings of operation words in training, while keeping those
of entity words unchanged.

To test the model’s performance with OOV words, we modify queries in the testing portion
of the Mixtured dataset to replace all entity words (i.e., all country and city names) with
OOV ones3 unseen in the training set. Results obtained using N2N training are summarized
in the 5th and 8th columns of Table 2. As it shows Neural Enquirer training in this
OOV setting yields performance comparable to that in the non-OOV setting, indicating that
operation words and entity words play different roles in query execution.

An interesting question to investigate in this OOV setting is how Neural Enquirer
distinguishes between different types of entity words (i.e., cities and countries) in queries,
since their embeddings are randomly initialized and fixed thereafter. An example query is
Q9 : “How many people watched the game in Macau?”, where Macau is an OOV entity. To

3They also have embeddings in L.

12

Query Type Select Where Superlative Where Superlative Overall

Accuracy 68.2% 84.8% 80.2% 77.7%

Table 3: Accuracies for large knowledge source simulation

#_audience host_city

75,000 Beijing

year #_participants

2008 2,500

How many audience members are in Beijing?

When was the game with 2,500 participants?

#_audience host_city year #_participants

65,000 Beijing 2008 2,000

… When was the game in Beijing?

Training Testing

#_audience host_city year #_participants

50,000 London 2012 3,000

How many people watched the game with 3,000 participants?
…

Figure 11: Large knowledge source simulation

help understand how the model knows Macau is a city, we give its weights visualization in
Figure 10. Interestingly, the model first checks the host city field in Executor-3, and then
host country in Executor-4, which suggests that the model learns to scan all possible fields
where the OOV entity may belong to.

5.6 Simulating Large Knowledge Source

An important direction in semantic parsing research is to scale to large knowledge source [3,
11]. In this set of experiments we simulate a test case to evaluate Neural Enquirer’s
ability to generalize to large knowledge source. We train a model on tables whose field sets
are either F1,F2, . . . ,F5, where Fi (with |Fi| = 5) is a subset of the entire set FT . We then
test the model on tables with all fields FT and queries whose fields span multiple subsets
Fi. Figure 11 illustrates the setting. Note that all testing queries exhibit field combinations
unseen in the training data, to mimic the difficulty the system often encounter when scaling to
large knowledge source, which usually poses great challenge on model’s generalization ability.
We then train and test the model only on a new dataset of the first three types of relatively
simple queries (namely Select Where, Superlative and Where Superlative). The
sizes of training/testing splits are 75,000 and 30,000, with equal numbers for different query
types. Table 3 lists the results. Neural Enquirer still maintains a reasonable performance
even when the compositionality of testing queries is previously unseen, showing the model’s
generalization ability in tackling unseen query patterns through composition of familiar ones,
and hence the potential to scale to larger and unseen knowledge sources.

6 Related Work

Our work falls into the research area of Semantic Parsing, where the key problem is to parse
Natural Language queries into logical forms executable on KBs. Classical approaches for
Semantic Parsing can be broadly divided into two categories. The first line of research resorts
to the power of grammatical formalisms (e.g., Combinatory Categorial Grammar) to parse
NL queries and generate corresponding logical forms, which requires curated/learned lexicons
defining the correspondence between NL phrases and symbolic constituents [17, 7, 1, 18]. The

13

model is tuned with annotated logical forms, and is capable of recovering complex semantics
from data, but often constrained on a specific domain due to scalability issues brought by
the crisp grammars and the lack of annotated training data. Another line of research takes a
semi-supervised learning approach, and adopts the results of query execution (i.e., answers)
as supervision signal [5, 3, 10, 11, 12]. The parsers, designed towards this new learning
paradigm, take different types of forms, ranging from generic chart parsers [3, 11] to more
specifically engineered, task-oriented ones [12, 8]. Semantic parsers in this category often scale
to open domain knowledge sources, but lack the ability of understanding compositional queries
because of the intractable search space incurred by the flexibility of parsing algorithms. Our
work follows this line of research in using query answers as indirect supervision to facilitate
end-to-end training using QA tasks, but performs semantic parsing in distributional spaces,
where logical forms are “neuralized” to an executable distributed representation.

Our work is also related to the recent advances of modeling symbolic computation using
Deep Neural Networks. Pioneered by the development of Neural Turing Machines (NTMs) [6],
this line of research studies the problem of using differentiable neural networks to perform
“hard” symbolic execution. As an independent line of research with similar flavor, Zaremba
et al. [15] designed a LSTM-RNN to execute simple Python programs, where the parameters
are learned by comparing the neural network output and the correct answer. Our work is
related to both lines of work, in that like NTM, we heavily use external memory and flexible
way of processing (e.g., the attention-based reading in the operations in Reader) and like [15],
Neural Enquirer learns to execute a sequence with complicated structure, and the model
is tuned from the executing them. As a highlight and difference from the previous work, we
have a deep architecture with multiple layer of external memory, with the neural network
operations highly customized to querying KB tables.

Perhaps the most related work to date is the recently published Neural Programmer
proposed by Neelakantan et al. [9], which studies the same task of executing queries on tables
with Deep Neural Networks. Neural Programmer uses a neural network model to select
operations during query processing. While the query planning (i.e., which operation to execute
at each time step) phase is modeled softly using neural networks, the symbolic operations are
predefined by users. In contrast Neural Enquirer is fully distributional: it models both the
query planning and the operations with neural networks, which are jointly optimized via end-
to-end training. Our Neural Enquirer model learns symbolic operations using data-driven
approach, and demonstrates that a fully neural, end-to-end differentiable system is capable
of modeling and executing compositional arithmetic and logic operations upto certain level of
complexity.

7 Conclusion and Future Work

In this paper we propose Neural Enquirer, a fully neural, end-to-end differentiable network
that learns to execute queries on tables. We present results on a set of synthetic QA tasks
to demonstrate the ability of Neural Enquirer to answer fairly complicated compositional
queries across multiple tables. In the future we plan to advance this work in the following
directions. First we will apply Neural Enquirer to natural language questions and natural
language answers, where both the input query and the output supervision are noisier and
less informative. Second, we are going to scale to real world QA task as in [11], for which
we have to deal with a large vocabulary and novel predicates. Third, we are going to work

14

on the computational efficiency issue in query execution by heavily borrowing the symbolic
operation.

References

[1] Y. Artzi, K. Lee, and L. Zettlemoyer. Broad-coverage ccg semantic parsing with amr. In EMNLP,
pages 1699–1710, 2015.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align
and translate. ICLR, 2015.

[3] J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic parsing on freebase from question-answer
pairs. In EMNLP, pages 1533–1544, 2013.

[4] A. Bordes, N. Usunier, A. Garca-Durn, J. Weston, and O. Yakhnenko. Translating embeddings
for modeling multi-relational data. In NIPS, pages 2787–2795, 2013.

[5] D. L. Chen and R. J. Mooney. Learning to sportscast: a test of grounded language acquisition.
In ICML, pages 128–135, 2008.

[6] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. CoRR, abs/1410.5401, 2014.

[7] T. Kwiatkowski, E. Choi, Y. Artzi, and L. S. Zettlemoyer. Scaling semantic parsers with on-the-fly
ontology matching. In EMNLP, pages 1545–1556, 2013.

[8] D. K. Misra, K. Tao, P. Liang, and A. Saxena. Environment-driven lexicon induction for high-level
instructions. In ACL (1), pages 992–1002, 2015.

[9] A. Neelakantan, Q. V. Le, and I. Sutskever. Neural Programmer: Inducing Latent Programs with
Gradient Descent. ArXiv e-prints, Nov. 2015.

[10] P. Pasupat and P. Liang. Zero-shot entity extraction from web pages. In ACL (1), pages 391–401,
2014.

[11] P. Pasupat and P. Liang. Compositional semantic parsing on semi-structured tables. In ACL (1),
pages 1470–1480, 2015.

[12] W. tau Yih, M.-W. Chang, X. He, and J. Gao. Semantic parsing via staged query graph generation:
Question answering with knowledge base. In ACL (1), pages 1321–1331, 2015.

[13] T.-H. Wen, M. Gasic, N. Mrksic, P. hao Su, D. Vandyke, and S. J. Young. Semantically conditioned
lstm-based natural language generation for spoken dialogue systems. In EMNLP, pages 1711–1721,
2015.

[14] J. Weston, A. Bordes, S. Chopra, and T. Mikolov. Towards ai-complete question answering: A
set of prerequisite toy tasks. CoRR, abs/1502.05698, 2015.

[15] W. Zaremba and I. Sutskever. Learning to execute. CoRR, abs/1410.4615, 2014.

[16] M. D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701, 2012.

[17] L. S. Zettlemoyer and M. Collins. Learning to map sentences to logical form: Structured classifi-
cation with probabilistic categorial grammars. In UAI, pages 658–666, 2005.

[18] L. S. Zettlemoyer and M. Collins. Online learning of relaxed ccg grammars for parsing to logical
form. In EMNLP-CoNLL, pages 678–687, 2007.

15

A Computation of Query Encoder

We use a bidirectional RNN as the Query Encoder, which consists of a forward GRU and a backward
GRU. Given the sequence of word embeddings of Q: {x1,x2, . . . ,xT }, at each time step t, the forward
GRU computes the hidden state ht as follows:

ht = ztht−1 + (1− zt)h̃t

h̃t = tanh(Wxt + U(rt ◦ ht−1))

zt = σ(Wzxt + Uzht−1)

rt = σ(Wrxt + Urht−1)

where W, Wz, Wr, U, Uz, Ur are parametric matrices, 1 the column vector of all ones, and ◦
element-wise multiplication. The backward GRU reads the sequence in reverse order. We concatenate
the last hidden states given by the two GRUs as the vectorial representation q of the query.

B Efficiency of Model Learning

We compared the efficiency of Neural Enquirer and Sempre (baseline) in training by plotting
the accuracy on testing data by training time. Figure 12 illustrates the results. We train Neural
Enquirer-CPU and Sempre on a machine with Intel Core i7-3770@3.40GHz and 16GB memory,
while Neural Enquirer-GPU is tuned on Nvidia Tesla K40. Neural Enquirer-CPU is 10 times
faster than Sempre, and Neural Enquirer-GPU is 100 times faster.

101 102 103 104 105 106

Training Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy
 o

n
 T

e
st

in
g
 D

a
ta

Neural Enquirer-CPU
Neural Enquirer-GPU
Sempre-CPU

Figure 12: Accuracy on Testing by Training Time

C Handling Multiple Tables

C.1 Neural Enquirer-M Model

Basically, Neural Enquirer-M assigns an executor to each table Tk in every execution layer `,
denoted as Executor-(`, k). Figure 13 pictorially illustrates Executor-(`, 1) and Executor-(`,K) working
on Table-1 and Table-K respectively. Within each executor, the Reader is designed the same way as
single table case, while we modify the Annotator to let in the information from other tables. More
specifically, for Executor-(`, k), we modify its Annotator by extending Eq. (4) to leverage computational

16

Reader

Embedding of Table-1
read vectors

pooling

Annotator

row annotations

Memory Layer-(-1)

Memory Layer-
query embedding

Reader

read vectors

Annotator

Embedding of Table-K

pooling

… …

…

Figure 13: Executor-(`, 1) and Executor-(`,K) in multiple tables case

results from other tables when computing the annotation for the m-th row:

a`k,m = f `a(r`k,m,q,a
`−1
k,m,g

`−1
k , â`−1k,m, ĝ

`−1
k)

= DNN
(`)
2 ([r`k,m;q;a`−1k,m;g`−1

k ; â`−1k,m; ĝ`−1
k])

This process is illustrated in Figure 14. Note that we add subscripts k ∈ [1,K] to the notations to
index tables. To model the interaction between tables, the Annotator incorporates the “relevant”
row annotation, â`−1k,m, and the “relevant” table annotation, ĝ`−1

k derived from the previous execution
results of other tables when computing the current row annotation.

A relevant row annotation stores the data fetched from row annotations of other tables, while
a relevant table annotation summarizes the table-wise execution results from other tables. We now
describe how to compute those annotations. First, for each table Tk′ , k′ 6= k, we fetch a relevant row
annotation ā`−1k,k′,m from all row annotations {a`−1k′,m′} of Tk′ via attentive reading:

ā`−1k,k′,m =

Mk′∑
m′=1

exp(γ(r`k,m,q,a
`−1
k,m,a

`−1
k′,m′ ,g

`−1
k ,g`−1

k′))∑Mk′
m′′=1 exp(γ(r`k,m,q,a

`−1
k,m,a

`−1
k′,m′′ ,g

`−1
k ,g`−1

k′))
a`−1k′,m′ .

Intuitively, the attention weight γ(·) (modeled by a DNN) captures how important the m′-th row
annotation from table Tk′ , a`−1k′,m′ is with respect to the current step of execution. After getting the set

of row annotations fetched from all other tables, {ā`−1k,k′,m}Kk′=1,k′ 6=k, we then compute â`−1k,m and ĝ`−1
k

via a pooling operation4 on {ā`−1k,k′,m}Kk′=1,k′ 6=k and {g`−1
k′ }Kk′=1,k′ 6=k:

〈â`−1k,m, ĝ
`−1
k 〉 = f̂Pool({ā`−1k,1,m, ā

`−1
k,2,m, . . . , ā

`−1
k,K,m}; {g

`−1
1 ,g`−1

2 , . . . ,g`−1
K }).

In summary, relevant row and table annotations encode the local and global computational results
from other tables. By incorporating them into calculating row annotations, Neural Enquirer-M is
capable of answering queries that involve interaction between multiple tables.

Finally, Neural Enquirer-M outputs the ranked list of answer probabilities by normalizing the
value of g(·) in Eq. (6) over each entry for very table.

4This operation is trivial in our experiments on two tables.

17

DNN2

query embedding

row annotation (layer)
table annotation (layer -1)

read vector (layer)

()
row annotation (layer -1)

thm
thm

…

Attentive Reading

Memory Layer-(-1) for Table-1

…

Attentive Reading

Memory Layer-(-1) for Table-K

“relevant” table annotation from other tables

“relevant” row annotation from other tables

pooling

…

…

Figure 14: Illustration of Annotator for multiple tables case

Table-1
country year host city # participants # medals # duration # audience

China 2008 Beijing 3,500 4,200 30 67,000

Table-2
country continent population country size

China Asia 130 960

Figure 15: Multiple tables example in the synthetic QA task (only show one row)

C.2 Experimental Results

We present preliminarily results for Neural Enquirer-M, which we evaluated on SQL-like Se-
lect Where logical forms (like F1, F2 in Table 1). We sampled a dataset of 100K examples, with
each example having two tables as in Figure 15. Out of all Select Where queries, roughly half of the
queries (denoted as “Join”) require joining the two tables to derive answers. We tested on a model with
three executors. Table 4 lists the results. The accuracy of join queries is lower than that of non-join
queries, which is caused by additional interaction between the two tables involved in answering join
queries.

Query Type Non-Join Join Overall

Accuracy 99.7% 81.5% 91.3%

Table 4: Accuracies of Select Where queries on two tables

We find that Neural Enquirer-M is capable of identifying that the country field is the foreign
key linking the two tables. Figure 16 illustrates the attention weights for a correctly answered join

18

Q9: select country size, where year = 2012

co
un

try
ye

ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e
0.0

0.2

0.4

0.6

0.8

1.0

Executor-(1, 1)

co
un

try

co
nt

in
en

t

po
pu

la
tio

n

co
un

try
_s

ize
0.0

0.2

0.4

0.6

0.8

1.0

Executor-(1, 2)

co
un

try
ye

ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e
0.0

0.2

0.4

0.6

0.8

1.0

Executor-(2, 1)

co
un

try

co
nt

in
en

t

po
pu

la
tio

n

co
un

try
_s

ize
0.0

0.2

0.4

0.6

0.8

1.0

Executor-(2, 2)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

Executor-(3, 1)

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

Executor-(3, 2)

Figure 16: Weights visualization of query Q9

query Q9. Although the query does not contain any hints for the foreign key (country field), Executor-
(1, 1) (the executor at Layer-1 on Table-1) operates on an ensemble of embeddings of the country and
year fields, whose outputting row annotations (contain information of both the key country and the
value year) are sent to Executor-(2, 2) to compare with the country field in Table-2. We posit that the
result of comparison is stored in the row annotations of Executor-(2, 2) and subsequently sent to the
executors at Layer-3 for computing the answer probability for each entry in the two tables.

19

	1 Introduction
	2 Overview of Neural Enquirer
	3 Model
	3.1 Query Encoder
	3.2 Table Encoder
	3.3 Executor
	3.3.1 Reader
	3.3.2 Annotator
	3.3.3 Last Layer of Executor

	3.4 Handling Multiple Tables

	4 Learning
	5 Experiments
	5.1 Synthetic QA Task
	5.2 Setup
	5.3 Main Results
	5.4 With Additional Step-by-Step Supervision
	5.5 Dealing with Out-Of-Vocabulary Words
	5.6 Simulating Large Knowledge Source

	6 Related Work
	7 Conclusion and Future Work
	A Computation of Query Encoder
	B Efficiency of Model Learning
	C Handling Multiple Tables
	C.1 Neural Enquirer-M Model
	C.2 Experimental Results

