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A new multivariate CUSUM chart using principal

components with a revision of Crosier’s chart

Jiaqi Chen1, Hualong Yang2 and Jianfeng Yao2

1Department of Mathematics, Harbin Institute of Technology

2Department of Statistics and Actuarial Science, University of Hong Kong

Abstract

In this paper, we introduce a new multivariate cumulative sum chart where the target shift

mean is assumed to be a weighted sum of principal directions of the population covariance

matrix. This chart provides an attractive performance in term of average run length (ARL)

for large-dimensional data and it also compares favourably to existing multivariate charts

including Crosier’s benchmark chart with updated values of the upper control limit and the

associated ARL function. In addition, Monte Carlo simulations are conducted to assess the

accuracy of the well known Siegmund’s approximation of the average ARL function when

observations are normal distributed. As a byproduct of the paper, we provide updated values

of upper control limits and the associated ARL function for Crosier’s multivariate CUSUM

chart.

KEY WORDS: Average run length; Multivariate CUSUM; Multivariate statistical pro-

cess control, Crosier’s multivariate CUSUM chart.
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1 Introduction

Cumulative sum (CUSUM) procedures are traditional sequential procedures for detecting a mean

shift in a process. Contributions to its theory have been continuously developed since their

original introduction by Page (1954). Recent interests include their extension to control charts

that monitor multivariate observations leading to multivariate CUSUM (MCUSUM for short)

procedures, see Runger and Testik (2004) and the review paper of Bersimis et al. (2007, Section

3).

More precisely, Healy (1987) developed a procedure using the theory of sequential ratio tests

(SRT, actually already mentioned in Page’s original paper). This procedure assumes that the

direction of the shift is explicitly known. Crosier (1988) introduced a special MCUSUM proce-

dure where a clever definition was given to the positive part of a vector. This procedure, hereafter

referred as MC0, has the advantage that the average run lengths (ARL) depend only on the non-

central parameter (instead of on- and off-target means and the population covariance matrix).

This procedure was proved to outperform both the so-called COT procedure, also introduced

in Crosier (1988), where sums of Hotelling’s T (not T 2) are accumulated and the procedure in

Woodall and Ncube (1985) which combines several univariate CUSUM charts. Pignatiello and

Runger (1990) introduced two other MCUSUM procedures (MC1 and MC2) which are indeed

very close, both in spirit and in performance, to the MC0 and COT procedures, respectively.

Lastly, in a recent paper Golosnoy et al. (2009), several enhanced versions of the MC1 procedure

have been introduced.

In this paper, we first re-examine the problem of detection of a mean shift of a multivariate

normal distribution and the MCUSUM procedures discussed above. Then, we propose a new

MCUSUM procedure based on the SRT scheme as in Healy (1987) but without assuming a rigid

direction for the shift in the mean. Indeed, we do not assume that such direction is available;

rather, we will assume that possible direction for the shift is distributed as a weighted sum of
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principal component directions. This new procedure is shown to outperform Crosier’s MCUSUM

procedure. It also compares favourably to the improved versions of the MC1 procedure given in

Golosnoy et al. (2009).

2 Revision of Crosier’s MCUSUM procedure

Crosier’s multivariate CUSUM chart has been for long time a benchmark in multivariate process

control. Recall first the n-th step of a classic univariate CUSUM chart: the accumulated sum is

Sn = max{0,Sn−1 +(Xn−µ0)− kσ} ,

where Xn is the observation following an univariate normal distribution, µ0 the on-target (in

control) mean of the process, σ the standard deviation of the process and k is a positive parameter

specific to the CUSUM chart. For multivariate observations (xn) of dimension p with covariance

matrix Σ and on-target mean µ0, a similar formula sn = max{0,sn−1 +(xn−µ0)−k} taking the

maximum of two vectors would be ill-defined. The solution provided in Crosier (1988) is the

following: set s0 = 0 and for n≥ 1, first compute the length

Cn =
[
(sn−1 +xn−µ0)

T
Σ
−1 (sn−1 +xn−µ0)

] 1
2
.

Then, use the rule

sn =


0, If Cn 6 k,

(sn−1 +xn−µ0)
(

1− k
Cn

)
, If Cn > k.

Here k is a scalar parameter playing a similar role as in the univariate CUSUM procedure. Indeed,

by mimicking the univariate case, this constant k is always fixed to be k = 1
2 . This chart will alarm
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when the length of sn exceeds a control limit H i.e. Ln =
(
sn

T Σ−1sn
) 1

2 > H. It has also been

proved that the distribution of the test statistic Ln depends only on the value of the non-centrality

parameter d2 = (µ−µ0)
T Σ
−1(µ−µ0) where µ is the off-target mean of the process. It follows

that the function of the average run length (ARL) of this control chart also depends on d only.

Note that the multivariate CUSUM MC1 in Pignatiello and Runger (1990) is very close to

this benchmark procedure. Next, this MC1 chart has been modified further in Golosnoy et al.

(2009) where some enhancements have been added. We will present a comparison to these charts

in next section.

As Crosier’s paper was published nearly 25 years ago, we have found interesting to check

whether the original values given by Crosier are still accurate enough given that nowadays we

have much more powerful computing facilities. First, we compute by simulations the values of

the upper control limit (UCL) H. Recall that H is fixed so that ARL0, the ARL when the process

is under control, equals a given value. Simulations are done for ARL0 = 200 and ARL0 = 500

using 10000 independent replications. These values are given in Table 1. When ARL0 = 200,

the newly revised values are very close to the original values given by Crosier with an exception

for the dimension p = 5. However, when ARL0 = 500, most of revised values are significantly

different from the original ones. As mentioned earlier, we believe that such discrepancy is due

to differences in computing accuracy of the software Crosier and we used respectively.

Table 1: Values of the UCL H for different dimensions p and ARL0 = 200 or 500.

p 2 5 10 20
ARL0 = 200 original H 5.50 9.46 14.90 24.70

revised H 5.49 9.38 14.92 24.70

ARL0 = 500 original H 6.65 10.90 17.20 28.00
revised H 6.56 10.90 17.09 28.11

Secondly, using these revised values of H, we have also determined the empirical ARL func-

tions for different dimensions. Note that in Crosier’s original paper, these functions are plotted

4



only and their explicit values are unknown. These values are now available from this paper, they

are believed to be more accurate with modern computing facilities. As for the off-target scenario,

we have considered two scenarios for the off-target mean µ:

1. µ = (d,0, . . . ,0), Σ = I .

2. µ = ( d√
p ,

d√
p , . . . ,

d√
p), Σ = I.

Both situations share a same value of non-centrality parameter d. The revised values are

given in Table 2 for both values of ARL0 = 200 and ARL0 = 500. As predicted by the theory,

the ARL function is the same under the two scenarios, and its values quickly decrease as the

off-target distance d grows from 0 (in-control) to the value of 4.

Table 2: Empirical ARL values for two off-target means when ARL0 = 200 (upper block) and
ARL0 = 200 (lower block).

p = 2 p = 5 p = 10 p = 20

d 1 2 1 2 1 2 1 2

0 200.855 197.886 199.863 202.578 199.431 201.147 200.673 198.615
0.5 29.539 29.776 34.937 35.047 42.647 43.108 56.327 55.949
1 9.865 9.840 13.527 13.587 18.662 18.697 27.259 27.120

1.5 5.781 5.777 8.426 8.364 11.945 11.963 17.989 17.995
2 4.112 4.134 6.098 6.133 8.825 8.851 13.458 13.487

2.5 3.241 3.234 4.828 4.835 7.038 7.016 10.790 10.798
3 2.691 2.687 4.003 4.022 5.870 5.863 9.042 9.042

3.5 2.325 2.326 3.483 3.466 5.052 5.046 7.787 7.796
4 2.097 2.101 3.075 3.079 4.455 4.446 6.682 6.856

0 498.504 496.057 500.075 504.420 500.700 494.300 497.197 499.702
0.5 39.471 40.023 46.970 46.847 56.231 56.263 73.384 73.440
1 11.937 11.743 16.262 16.303 22.356 22.346 32.646 32.710

1.5 6.866 6.807 9.828 9.860 13.945 13.922 21.082 21.131
2 4.835 4.803 7.059 7.112 10.193 10.231 15.631 15.645

2.5 3.766 3.769 5.564 5.579 8.072 8.065 12.453 12.452
3 3.127 3.125 4.652 4.634 6.708 6.710 10.363 10.369

3.5 2.685 2.677 3.983 3.973 5.771 5.765 8.908 8.921
4 2.347 2.350 3.480 3.494 5.069 5.065 7.819 7.825
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3 A new MCUSUM chart based on principal components

In this section we introduce a new MCUSUM procedure inspired by a combination of advantages

from the methodology of sequential ratio tests and the popular method of principal components

analysis. Let (xk) be a sequence of p dimensional and independent observation vectors following

a normal distribution with known covariance matrix Σ, and on-target mean vector µ0 and off-

target mean vector µ1. To start with and similarly to Healy (1987), consider the sequence of

log-likelihood ratios, i.e. ratios of off-target likelihoods over on-target likelihoods

sn = ln
fµ1 (xn)

fµ0 (xn)

= (µ1−µ0)
T

Σ
−1
(

xn−
µ1 +µ0

2

)
= (µ1−µ0)

T
Σ
−1 (xn−µ0)−

1
2

d2, (1)

where fµ (x) is the density function of x with mean µ and

d2 = (µ1−µ0)
T

Σ
−1 (µ1−µ0) ,

is the Mahahanobis distance between the on-target and off-target distributions (non-centrality

parameter).

In Healy’s procedure, the direction of shift in the mean µ1−µ0 is assumed known explicitly

so that by letting a= Σ
−1(µ1−µ0), a computable quantity, the above likelihood ratios are simply

sn = aT xn−
1
2

d2.

Therefore once d is given to a pre-specified value (say 1), one can determine the remaining

parameter, namely the UCL H according to an assigned value of ARL0 (ARL under the on-target

condition).
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It is well-known that in real statistical process control, it is extremely rare that such a di-

rection in a future mean shift is known explicitly in advance. For this reason and despite a real

application described in Healy’s paper, it seems that his approach has not been much followed

by other practitioners and researchers. However, sequential ratio tests have been proved to be an

efficient procedure in other statistical problems; they are even optimal when data have a normal

distribution, see Wald (2004) and Siegmund (1985). The MCUSUM procedure introduced be-

low is aimed at developing a ratio tests based procedure while relaxing the restrictive direction

of shift adopted in Healy (1987).

We thus assume that no prior information on directions of future shifts of the process mean is

available. Our procedure will rely heavily on the spectral structure of the population covariance

matrix Σ. To start with, assume for a moment that Σ is diagonal,

Σ =



σ2
1 0 · · · 0

0 σ2
2 · · · 0

0 0 . . . 0

0 · · · 0 σ2
p


.

It is then natural to consider a shift of mean of the form

µ1−µ0 = α (σ1,σ2, · · · ,σn)
T , (2)

where α is a positive parameter controlling the overall scale. In other words, we focus on di-

rections of shift where each coordinate will shift proportionally to their standard deviation in

absence of any prior information.

How we can then adapt this idea to a general covariance matrix? Let be the spectral decom-

position of Σ

Σ = σ
2
1 u1uT

1 + · · ·+σ
2
pupuT

p , (3)
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where {σ2
i } and {ui} are the eigenvalues and the eigenvectors of Σ, respectively. We will then

consider directions of shift of the following form:

µ1−µ0 = α (σ1u1 +σ2u2 + · · ·+σpup) , (4)

with some scale parameter α . The role of this scale parameter will be described in details below.

Note already that directions in (4) reduce to those of (2) for a diagonal covariance matrix Σ. In

this sense, (4) is a natural extension of the intuitive idea in (2).

Therefore, for our MCUSUM procedure, we have

d2 = (µ1−µ0)
T

Σ
−1 (µ1−µ0) = α

2 p. (5)

By (1), the likelihood ratios have the form

sn = (µ1−µ0)
T

Σ
−1 (xn−µ0)−

1
2

α
2 p

= α

(
1

σ1
u1 +

1
σ2

u2 + . . .+
1

σp
up

)T

(xn−µ0)−
1
2

α
2 p

= α

(
1

σ1
c1

n +
1

σ2
c2

n + . . .
1

σp
cp

n

)
− 1

2
α

2 p (k =
1
2

α
2 p), (6)

where the (c j
n) are the coordinates of the new observation xn on the principal directions (uj):

c j
n = uj

T (xn−µ0), j = 1, . . . , p. (7)

The relationship between our procedure and the principal component analysis based on the spec-

tral structure of Σ is thus visible.
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Finally, our MCUSUM has the form

S0 = 0,

Sn = max{Sk−1 + sn, 0}

= max
{

Sk−1 +α

(
1

σ1
c1

n +
1

σ2
c2

n + . . .
1

σp
cp

n

)
− 1

2
α

2 p, 0
}
. (8)

We thus accumulate the sum Sn for sample vectors xn’s until it exceeds a control limit H (i.e.

when Sn > H) where an alarm is then issued. As usual, the UCL H will be determined according

to some pre-specified value ARL0 of on-target ARL (for example 200).

4 Determination of the scale parameter α

From Equation (5), it is clear that the parameter α2 will control the scale of the mean shift at

which the designed chart is aimed. Here we specify two standard choices of this parameter by

following common practice employed in existing MCUSUM procedures.

a). Chart for overall unit shifts of the mean vector

We first consider the scale α = 1√
p . In this case, d2 = 1 for the non-centrality parameter. In

a sense, whatever the dimension p is, the chart is aimed at detecting an overall unit shift of the

mean. This setting is the one used in all the existing literature, such as Crosier (1988); Pignatiello

and Runger (1990); Golosnoy et al. (2009).

In this case, our MCUSUM procedure has the form

S0 = 0,

Sn = max{Sn−1 + sn, 0}

= max
{

Sn−1 +
1
√

p

(
1

σ1
c1

n +
1

σ2
c2

n + . . .
1

σp
cp

n

)
− 1

2
, 0
}
. (9)
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This chart will have a better performance when possible shifts of the mean are around the

unit value 1, e.g. d = 0,0.5,1.5, . . . ,n for some small integer n. Since these values are indepen-

dent from the dimension p, target shifts of the mean are those parallel to one or few principal

directions u j.

b). Chart for unit shifts of the mean vector in all principal directions

Next we develop a chart where the target shifts can happen simultaneously in all the principal

directions {u j}. Thus we consider a situation where α = 1 and the non-centrality parameter

becomes d2 = p. Here the target shifts as well as the resulting MCUSUM procedure will depend

on the dimension p. A possible scenario for this scheme is that shifts happen in all principal

directions {u j} at scales which are proportional to their associated variances (or inertia), i.e.

µ1−µ0 = σ1u1 + · · ·+σpup.

In this case, our MCUSUM procedure has the form

S0 = 0,

Sn = max{Sn−1 + sn, 0}

= max
{

Sn−1 +
1

σ1
c1

n +
1

σ2
c2

n + . . .
1

σp
cp

n −
p
2
, 0
}
. (10)

This chart will have a best performance when possible shifts of the mean are around the

dimension p, e.g. d = 0,0.5p,1.5p, . . . ,mp for some small integer m.

5 Analytic computation of the ARL function

In order to compare the performance of the new CUSUM charts to existing MCUSUM charts,

we will focus on the chart given in (9) because this chart has an order of magnitude for target

shifts of the mean identical to the one used in the references. This chart will be hereafter referred
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as MCn chart. Note however that the analytic development below for this chart can be carried

out in a similar way for the other chart given in (10).

As quantities we are accumulating have a normal distribution, one analysis of the ARL func-

tion will be based on the approximation formula established in Siegmund (1985). These ap-

proximation are helpful since they avoid the use of intensive Monte-Carlo simulation which is

time-consuming. Siegmund’s formula for the ARL function from normal sequential ratio tests

are [see formula (5.5.9)-(5.5.10) in Basseville et al. (1993)]:

ARL(µ ′=0) =

(
H
σ ′

+1.166
)

2, (11)

ARL(µ ′ 6=0) =
σ ′2

2µ ′2

[
e−2

(
µ ′H
σ ′2

+1.166· µ
′

σ ′

)
+2
(

µ ′H
σ ′2

+1.166 · µ
′

σ ′

)
−1
]
, (12)

where µ ′ = E(sn) and σ ′2 = Var(sn). For our MCUSUM procedure, the likelihood ratios have

the form

sn =
1
√

p

(
1

σ1
c1

n +
1

σ2
c2

n + . . .
1

σp
cp

n

)
− 1

2
, (13)

and the associated ARL formula are

ARL(d= 1
2 )
= (H +1.166)2 , (14)

ARL(d 6= 1
2 )
=

1

2(d−0.5)2 {exp [−(H +1.166) · (2d−1)]−1+(H +1.166) · (2d−1)} . (15)

The derivation of these formula is given in Appendix A. Afterwards, we compute the H making

sure that ARL0 equals the given value (200 or 500) and then get ARLs for different distance.

These values are given in Table 3.
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Table 3: Siegmund’s ARL approximation when ARL0 = 200 or ARL0 = 500.

ARL0 = 200

d 0 0.5 1 1.5 2 2.5 3 3.5
ARL(d) 200.01 21.72 7.34 4.16 2.88 2.21 1.78 1.50

ARL0 = 500

d 0 0.5 1 1.5 2 2.5 3 3.5
ARL(d) 498.96 30.75 9.10 5.05 3.47 2.65 2.14 1.79

Finally, we have conducted an extensive simulation experiment to assess the accuracy of

Siegmund’s approximations (14)-(15). The results are reported in Appendix B.

6 Comparison between the new MCUSUM chart and previ-

ous methods

First, we compare the new MCUSUM chart MCn to Crosier’s MC0 chart. The empirical ARLs

and their standard errors (in bracket) are reported in Table 4 for both values of ARL0 = 200 and

ARL0 = 500. The comparison has been made for those shifts of the mean and dimensions p

reported by Crosier (1988): shifts corresponding to distances d = 0, 0.5, 1, 1.5, 2.0, 2.5, 3 and

dimensions p = 2, 3, 5, 10, 20, respectively.
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Table 4: ARL comparison between the new chart (MCn) and Crosier’s chart (MC0) when ARL0 =
200 (upper blocks) and ARL0 = 500 (lower blocks) . Numbers in brackets are corresponding
standard errors.

d MC0 MCn MC0 MCn
p = 2 p = 5

0 197.91(193.83) 198.07(196.10) 202.39 (185.31) 199.14 (196.84)
0.5 29.96(22.37) 21.67(17.65) 34.74(21.62) 21.73(17.46)
1 9.82(4.77) 7.31(4.18) 13.54(5.10) 7.33(4.24)

1.5 5.80(2.09) 4.27(1.90) 8.40(2.41) 4.24(1.87)
2 4.12(1.24) 3.00(1.10) 6.11(1.47) 3.01(1.12)

2.5 3.24 (0.88) 2.37(0.74) 4.82(1.01) 2.36(0.74)
3 2.69(0.66) 1.99(0.58) 4.04(0.78) 2.00(0.58)

p = 10 p = 20
0 198.63(174.77) 199.33(197.00) 199.75(150.45) 200.35(195.73)

0.5 42.70(21.19) 21.46(17.41) 55.80(21.30) 21.90(18.42)
1 18.68(5.63) 7.31(4.27) 27.27(6.40) 7.38(4.26)

1.5 11.92(2.77) 4.24(1.89) 17.98(3.27) 4.22(1.82)
2 8.84(1.71) 3.01(1.09) 13.49(2.03) 3.02(1.10)

2.5 7.02(1.20) 2.38(0.75) 10.79(1.46) 2.37(0.74)
3 5.88(0.92) 1.99(0.57) 9.053(1.11) 2.00(0.58)

p = 2 p = 5
0 498.50(496.41) 489.447(482.85) 500.07 (482.47) 498.65(487.34)

0.5 39.47(29.86) 30.62(25.29) 46.97(29.35) 30.99(25.23)
1 11.94(5.51) 9.15(5.02) 16.26(5.86) 9.12(5.05)

1.5 6.87(2.35) 5.14(2.10) 9.83(2.70) 5.13(2.10)
2 4.84(1.37) 3.59(1.20) 7.06(1.60) 3.57(1.20)

2.5 3.77 (0.94) 2.81(0.82) 5.56(1.10) 2.80(0.82)
3 3.13(0.71) 2.34(0.61) 4.65(0.84) 2.05(0.60)

p = 10 p = 20

0 500.70(468.09) 491.22(489.49) 497.20(435.10) 496.65(496.75)
0.5 56.23(28.15) 30.63(25.11) 73.38(28.28) 30.69(25.08)
1 22.36(6.43) 9.13(4.93) 32.65(7.39) 9.21(4.98)

1.5 13.94(3.03) 5.14(2.08) 21.08(3.59) 5.14(2.12)
2 10.19(1.86) 3.60(1.23) 15.63(2.26) 3.58(1.21)

2.5 8.07(1.30) 2.82(0.83) 12.45(1.55) 2.81(0.82)
3 6.71(0.98) 2.34(0.60) 10.36(1.18) 2.34(0.61)

When ARL0 = 200, it clearly appears that the new CUSUM procedure dominates Crosier’s

benchmark CUSUM chart. Not only the in-control ARL is closer to the nominate ARL0 = 200,
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but also the off-target ARLs are uniformly shorter. In addition, this happens for all the tested

dimensions p ∈ {2,5,10,20}. As for the case of ARL0 = 500, the conclusion are similar except

the in-control ARL0 seem slightly underestimated by the new MCUSUM chart.

Secondly, we have made an experiment to compare the new MCUSUM chart MCn to a

recent MCUSUM chart proposed in Golosnoy et al. (2009). Indeed, these authors have proposed

several modifications of the MC1 chart introduced in Pignatiello and Runger (1990). One of

these charts, called logarithmic chart, has been the most recommended one. More precisely, for

each time epoch t ≥ 1, let nt be the most recent time epoch before t where the CUSUM process

hit the lower boundary 0, i.e. Sn = 0. The logarithmic chart is then defined by

LOGt = max
{

ln‖St−nt ,t‖
2− γg(nt ,k) ,0

}
,

where St−nt ,t is the CUSUM from time epochs nt +1, . . . , t and g(nt ,d) =E
(

ln‖St−nt ,t‖
2
)

which

can be evaluated analytically using a series expansion. The chart will alarm when LOGt > H for

some UCL H.

The most difficult part in using this chart is the determination of the parameters k and γ .

Golosnoy et al. (2009) proposed a detailed study on this question. However, the study is limited

to a small dimension p = 3 and no general approach has been given when the distance d varies.

The final recommendation from the authors is to use k ≈ 0.8 and γ ≈ 1
2 for “all” values of the

distance d.

We follow such recommended values of k for various values of the distance d (which will

have better ARL performance than the one that fixes k for all d). We also let γ = 1
2 when dimen-

sion p = 3, and compare its ARLs to those of the new chart MCn. The results are reported in Ta-

ble 5. Here, the direction of shifts of the mean has been given to: µ = d√
p (σ1u1 +σ2u2 + . . .+σpup)

so that the distance ‖µ−µ0‖= d.

In this situation, the chart based on log norm has a slightly better performance. However, (i)
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Table 5: Comparison of ARL performances between the new chart (MCn) and a logarithmic chart
with p = 3.

d Logarithmic Chart New chart MCn
0 199.56(538.79) 199.54(197.42)

0.5 18.45(13.81) k = 0.6 21.50(17.36)
1 7.33(4.22) k = 0.8 7.43(4.26)

1.5 4.24(3.27) k = 1.0 4.25(1.88)
2 2.92(2.03) k = 1.2 2.99(1.10)

2.5 2.20(1.46) k = 1.2 2.37(0.75)
3 1.76(1.11) k = 1.4 2.00(0.57)

This ARL performance in Table 5 is based on the fact we already know the change d and then

find the most optimal k for the corresponding d. But in reality we have no pre-knowledge about d

and we have to pre-select the global k at the beginning of the procedure, which will increase the

ARLs value in the Table 5. So the ARL performance for log norm chart will degenerate; (ii) The

s.e. for log norm chart seems rather larger compared with new chart especially when procedure

is in-control or d is large, which seems to indicate that log norm procedure is slightly unstable;

(iii) The paper Golosnoy et al. (2009) provides the ARL performance of log norm chart for p = 3

only. If the dimension p becomes larger, the ARL performance may remains unknown. But the

new method holds the similar ARL performance whatever the dimension p is and it already has

quite similar ARLs’ value compared with the best-performed ARLs of log norm chart; (iv) The

log norm chart procedure has three parameters to estimate while the new method only have one

parameter to evaluate. To sum up, we recommend the new chart rather than the chart based on

log norm.

7 Discussions and conclusions

We have introduced a new MCUSUM chart where the target mean shift is assumed to be a

weighted sum of principal directions of the population covariance matrix. This chart compares

favourably to the benchmark chart of Crosier (1988). Meanwhile, we have provided new infor-
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mation on his historical chart with updated values of UCL H and the associated ARL function.

We have also done a Monte-Carlo experiment to assess the accuracy of the well known Sieg-

mund’s approximations of the ARL function when the observations are normal.

Although the assigned direction µ1−µ0 = σ1u1 +σ2u2 + . . .+σpup is a reasonable predic-

tion, we still need to handle diverse cases with other directions. To better discuss this problem,

we set

µ1−µ0 =
d
√

p
(λ1σ1u1 +λ2σ2u2 + . . .+λpσpup) ,

where λi > 0 (i = 1,2, . . . , p) and ∑
p
i=1 λ 2

i = p. Then it satisfies that ‖µ1−µ0‖= d. The param-

eter (λi) are used here make the direction of shift µ1−µ0 more arbitrary. As a result, the given

uncertain (with different λi value) direction covers all the possibilities. The corresponding unit

distance can be given as

µ1−µ0 =
1
√

p
(λ1σ1u1 +λ2σ2u2 + . . .+λpσpup) ,

which satisfies that ‖µ1−µ0‖ = 1 where we can find the optimal formula for sequential ratio

statistic (or optimal k) for specific direction. It can be calculated that

sn =
1
√

p

(
λ1

σ1
c1

n +
λ2

σ2
c2

n + . . .
λp

σp
cp

n

)
− 1

2
(k =

1
2
),

where c j
n = uT

j (xn−µ0)( j = 1,2,3 . . . p).

In addition, the ARL can be also calculated as follows

µ
′ = E (sn) =

1
√

p

p

∑
j=1

λiuT
j

σ j
(µ−µ0)−

1
2
= d− 1

2
,

and VAR(sn) = 1. Fortunately enough, these values are the same as in the previous case with
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assigned direction (µ1−µ0 = σ1u1 +σ2u2 + . . .+σpup), see Appendix for more details. So the

final UCL H and ARL formula will also be the same as given in (11)-(12).

In general, we say that ARLs’ performance remains the same no matter what direction it

changes with corresponding statistic sn.

In conclusion, if accurate information on the direction of shift is known, we can accomodate

it with the corresponding (λi) and the formula of Sn given above. Otherwise, we recommend the

new chart MCn introduced in (9).
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A Derivation of (14)-(15)

Since xn ∼ N (µ,Σ), we have

c j
n ∼ N

(
uT

j (µ−µ0) ,uT
j Σu j

)
= N

(
uT

j (µ−µ0) ,σ
2
j
)
, and

1
σ j

c j
n ∼ N

(
uT

j

σ j
(µ−µ0) ,1

)
.

Therefore, sn ∼ N
(

1√
p ∑

p
j=1

uT
j

σ j
(µ−µ0)− 1

2 ,1
)
, and σ ′2 =VAR(sn) = 1, where {σ2

i }1≤i≤p are

the eigenvalues of the covariance matrix Σ while ui (i = 1,2,3 . . . p) are the eigenvectors of Σ.

The direction of the mean shift is distributed as a weighted sum of principle component

directions, which can be written as

µ−µ0 = k (σ1u1 +σ2u2 + . . .+σpup) .

Since d2 = (µ1−µ0)
T

Σ−1 (µ1−µ0) = k2 p (where the relationship between d and p can be
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seen), we have µ−µ0 =
d√
p (σ1u1 +σ2u2 + . . .+σpup). Therefore,

µ
′ = E(sn) =

1
√

p

p

∑
j=1

uT
j

σ j
(µ−µ0) =

d
√

p
1
√

p

p

∑
j=1

uT
j

σ j
σ ju j−

1
2
= d− 1

2
.

By substituting these values of µ ′ and σ ′2 in Sigemund’s formula (11)-(12), we obtain the ARL

formula in (14)-(15).

B Empirical assessment of the accuracy of Siegmund’s ARL

approximations (14)-(15)

We have made simulations to examine Siegmund’s approximation by mainly consider four dif-

ferent covariance matrices. Each matrix has its own eigenvectors and thus eigenvector space. For

each group, we draw samples with a size of 10000 and simulate the CUSUM procedure until the

sum of the sample exceeds the control limit.

• Case 1: Identity covariance matrix

Each sample xn is generated from N (µ, Ip) with on-target mean µ0 and covariance matrix

Ip. Then we can get eigenvalues σ2
1 = σ2

2 = ... = σ2
p = 1 as well as eigenvectors u1 =

(1,0,0, . . . ,0)T u2 = (0,1,0, . . . ,0)T .....up = (0,0,0, . . . ,1)T .Then the change direction

for mean vector has the form µ − µ0 = ( d√
p ,

d√
p ,

d√
p , . . . ,

d√
p)

T and we accumulate the

sn =
1√
p ∑

p
i=1 (xn−µ0)[i]−

1
2 where (·)[i] denotes the ith element of the vector (·).

• Case 2: Diagonal matrix with unequal elements

Each sample xn is generated from N (µ,A) with on-target mean µ0 and covariance matrix
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A where the sum of eigenvalues equals to p:

A =



2
1+p 0 · · · 0 0

0 2× 2
1+p

...
...

...

0 0 . . . 0 0
...

...
... (p−1)× 2

1+p 0

0 0 · · · 0 p× 2
1+p



Then we can get eigenvalues σ1 =
√

2
1+pσ2 =

√
4

1+p ...σi =
√

2i
1+p ...σp =

√
2p

1+p as well

as eigenvectors u1 = (1,0,0, . . . ,0)T u2 = (0,1,0, . . . ,0)T .....up = (0,0,0, . . . ,1)T . The

eigenvalues gradually increase along with the dimensions. Then the change direction for

mean vector has the form µ−µ0 =
d√
p(
√

2
1+p , . . . ,

√
2i

1+p , . . . ,
√

2p
1+p)

T and we accumulate

the sn =
√

1+p
2p ∑

p
i=1

1√
i
(xn−µ0)− 1

2 .

• Case 3 and 4: Toeplitz-type matrices (AR(1) auto-correlation matrices)

Each sample xn is generated from N (µ,A) with on-target mean µ0 and covariance matrix

A where

A =



1 ρ ρ2 · · · ρ p−1

ρ 1 ρ · · · ρ p−2

ρ2 ρ 1 · · · ρ p−3

...
...

... . . . ...

ρ p−1 ρ p−2 ρ p−3 · · · 1



Here the eigenvectors are no more the canonical ones. Two values of ρ have been tested:

Case 3: ρ = 0.75,

Case 4: ρ = 0.2.
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We get the eigenvalues and eigenvectors via Matlab. Then accumulate the sum as proce-

dure described above.

We finally draw 10000 samples and get 10000 run lengths for each group. The average run

length of 10000 samples for each group as well as standard deviation are reported in Table 6 and

Table 7.

It can be seen that empirical ARLs for four groups under each dimension are nearly identical.

Also, the ARLs for all dimensions under each group are almost the same. When compared

with Siegmund’s approximation, ARL values given by Siegmund’s approximation seem slightly

smaller than the empirical ARLs with however a difference limited to 2% at most. This proves

that the Siegmund’s approximation is accurate enough for use in practice.
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Table 6: ARL comparison among 4 cases when ARL0 = 200.

d 0 0.5 1 1.5 2 2.5 3 3.5
Case 1 ARL 198.07 21.67 7.31 4.27 3.00 2.37 1.99 1.73

s.d. 196.10 17.65 4.18 1.90 1.10 0.74 0.58 0.52
Case 2 ARL 198.20 22.02 7.34 4.26 3.01 2.37 1.99 1.73

p = 2 s.d. 193.87 18.08 4.21 1.86 1.10 0.75 0.58 0.53
Case 3 ARL 195.75 21.87 7.40 4.23 3.02 2.38 1.99 1.73

s.d. 192.01 17.81 4.43 1.87 1.10 0.74 0.58 0.52
Case 4 ARL 199.55 21.63 7.41 4.26 3.00 2.38 2.00 1.73

s.d. 194.31 17.81 4.29 1.88 1.08 0.75 0.57 0.53
d 0 0.5 1 1.5 2 2.5 3 3.5

Case 1 ARL 199.14 21.73 7.33 4.24 3.01 2.36 2.00 1.74
s.d. 196.84 17.46 4.24 1.87 1.12 0.74 0.58 0.53

Case 2 ARL 198.76 21.69 7.37 4.26 3.00 2.37 1.99 1.74
p = 5 s.d. 196.90 17.82 4.31 1.86 1.09 0.75 0.57 0.51

Case 3 ARL 201.27 21.79 7.36 4.23 3.01 2.37 1.99 1.73
s.d. 198.86 17.93 4.21 1.85 1.12 0.74 0.57 0.52

Case 4 ARL 199.27 21.70 7.37 4.24 3.01 2.39 1.99 1.73
s.d. 196.30 17.50 4.28 1.86 1.09 0.76 0.58 0.53
d 0 0.5 1 1.5 2 2.5 3 3.5

Case 1 ARL 199.33 21.46 7.31 4.24 3.01 2.38 1.99 1.73
s.d. 197.00 17.41 4.27 1.89 1.09 0.75 0.57 0.51

Case 2 ARL 190.94 21.57 7.46 4.25 3.00 2.36 2.00 1.73
p = 10 s.d. 197.92 17.55 4.39 1.89 1.07 0.74 0.573 0.53

Case 3 ARL 198.96 21.67 7.36 4.25 3.02 2.37 2.00 1.72
s.d. 192.67 17.88 4.29 1.83 1.08 0.74 0.58 0.52

Case 4 ARL 201.66 21.75 7.37 4.23 3.01 2.36 1.99 1.72
s.d. 199.50 17.73 4.22 1.86 1.09 0.74 0.58 0.53
d 0 0.5 1 1.5 2 2.5 3 3.5

Case 1 ARL 200.35 21.90 7.38 4.22 3.02 2.37 2.00 1.73
s.d. 195.73 18.42 4.26 1.82 1.10 0.74 0.58 0.53

Case 2 ARL 198.91 21.81 7.34 4.24 3.01 2.37 1.99 1.73
p = 20 s.d. 198.24 17.59 4.25 1.86 1.08 0.75 0.57 0.52

Case 3 ARL 196.53 21.55 7.35 4.23 3.00 2.37 1.99 1.72
s.d. 192.63 17.84 4.22 1.85 1.09 0.75 0.59 0.53

Case 4 ARL 199.09 21.62 7.46 4.25 3.00 2.37 2.00 1.73
s.d. 194.79 17.71 4.39 1.89 1.09 0.74 0.57 0.53
d 0 0.5 1 1.5 2 2.5 3 3.5

Siegmund’s approximation 200.01 21.72 7.34 4.16 2.88 2.21 1.78 1.50
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Table 7: ARL comparison among 4 cases when ARL0 = 500.

d 0 0.5 1 1.5 2 2.5 3 3.5
Case 1 ARL 489.45 30.62 9.15 5.13 3.59 2.81 2.34 2.05

s.d. 482.85 25.29 5.02 2.10 1.20 0.82 0.61 0.47
Case 2 ARL 501.68 30.80 9.17 5.10 3.59 2.80 2.33 2.04

p = 2 s.d. 494.92 25.39 5.00 2.07 1.23 0.83 0.61 0.47
Case 3 ARL 489.22 31.01 9.17 5.12 3.59 2.81 2.34 2.05

s.d. 480.94 24.72 5.03 2.12 1.23 0.83 0.60 0.46
Case 4 ARL 497.78 31.06 9.15 5.15 3.58 2.81 2.33 2.05

s.d. 497.98 25.55 4.96 2.11 1.19 0.82 0.59 0.47
d 0 0.5 1 1.5 2 2.5 3 3.5

Case 1 ARL 498.65 30.99 9.12 5.13 3.57 2.80 2.33 2.05
s.d. 487.34 25.23 5.05 2.10 1.20 0.82 0.60 0.46

Case 2 ARL 496.07 30.50 9.10 5.11 3.61 2.80 2.34 2.06
p = 5 s.d. 496.07 24.93 4.94 2.07 1.23 0.82 0.60 0.47

Case 3 ARL 491.42 30.94 9.17 5.10 3.58 2.80 2.34 2.05
s.d. 489.10 25.59 5.04 2.08 1.21 0.83 0.61 0.47

Case 4 ARL 498.99 30.69 9.14 5.10 3.58 2.80 2.34 2.05
s.d. 484.47 25.19 4.98 2.06 1.20 0.82 0.60 0.46
d 0 0.5 1 1.5 2 2.5 3 3.5

Case 1 ARL 491.22 30.63 9.13 5.14 3.60 2.82 2.34 2.05
s.d. 489.49 25.11 4.93 2.08 1.23 0.83 0.60 0.47

Case 2 ARL 495.82 30.65 9.06 5.14 3.60 2.80 2.35 2.04
p = 10 s.d. 487.09 25.12 4.97 2.12 1.20 0.83 0.60 0.47

Case 3 ARL 488.45 30.65 9.09 5.09 3.58 2.81 2.34 2.04
s.d. 481.58 25.28 4.96 2.11 1.21 0.82 0.61 0.47

Case 4 ARL 494.20 30.60 9.06 5.14 3.61 2.81 2.33 2.04
s.d. 484.87 25.18 4.99 2.14 1.22 0.82 0.60 0.46
d 0 0.5 1 1.5 2 2.5 3 3.5

Case 1 ARL 496.65 30.69 9.21 5.14 3.58 2.81 2.34 2.04
s.d. 496.75 25.08 4.98 2.12 1.21 0.82 0.61 0.46

Case 2 ARL 501.42 30.34 9.14 5.11 3.59 2.80 2.34 2.05
p = 20 s.d. 492.40 24.53 5.13 2.11 1.22 0.82 0.61 0.47

Case 3 ARL 491.51 30.69 9.10 5.15 3.58 2.79 2.34 2.05
s.d. 495.18 25.02 4.93 2.13 1.23 0.81 0.61 0.47

Case 4 ARL 502.65 30.91 9.15 5.11 3.57 2.81 2.33 2.05
s.d. 505.59 25.42 5.11 2.08 1.20 0.83 0.60 0.47
d 0 0.5 1 1.5 2 2.5 3 3.5

Siegmund’s approximation 498.96 30.75 9.10 5.05 3.47 2.65 2.14 1.79
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