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Abstract

In this paper, we investigate an optimal periodic dividend and capital injection prob-
lem for spectrally positive Lévy processes. We assume that the periodic dividend
strategy has exponential inter-dividend-decision times and continuous monitoring of
solvency. Both proportional and fixed transaction costs from capital injection are
considered. The objective is to maximize the total value of the expected discount-
ed dividends and the penalized discounted capital injections until the time of ruin.
By the fluctuation theory of Lévy processes in Albrecher et al. (2016), the optimal
periodic dividend and capital injection strategies are derived. We also find that the
optimal return function can be expressed in terms of the scale functions of Lévy
processes. Finally, numerical examples are studied to illustrate our results.

Keywords: Periodic dividend, Capital injection, Lévy process, Stochastic control,
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1. Introduction

The Lévy risk model with positive jumps (spectrally positive Lévy process),
which is also called dual risk model, is proposed to offset continuous expenses by
the stochastic and irregular gains. Examples include research-based or commission-
based companies. In this context, dividend optimization problems have attracted
extensive attention. In Avanzi et al. (2007) and Avanzi and Gerber (2008), the
authors studied how the expectation of the discounted dividends until ruin can be
calculated in the dual compound Poisson risk model. In Kyprianou et al. (2012),
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Bayraktar et al. (2013), Yin and Wen (2013) and Zhao et al. (2015), the optimal
dividend problems were studied in a general spectrally positive Lévy risk model.

In the above papers, the dividend decisions are made continuously, which usually
leads to very irregular dividend payments. However, in practice, the companies that
are capable of distributing dividends make dividend decisions on a periodic basis.
Albrecher et al. (2011a) studied the random inter-dividend-decision times in the
Cramér-Lundberg model, where the ruin can not occur between dividend payment
times. Continuous monitoring of solvency with periodic dividends were considered
by Albrecher et al. (2011b) in the Brownian risk model, Avanzi et al. (2013) and
Avanzi et al. (2014) in the dual compound Poisson model. Recently, when the inter-
dividend-decision times of periodic dividend are exponential, Pérez and Yamazaki
(2016) showed the optimality of periodic barrier strategy for spectrally positive Lévy
processes.

When dividend payments are maximized, ruin is usually certain. In some cases,
it may be profitable to rescue the company by capital injection. This idea goes
back to Porteus (1977). Yao et al. (2011) considered an optimal dividend and
capital injection problem in the dual compound Poisson risk model. Avanzi et
al. (2011) discussed the same problem in the dual compound Poisson model with
diffusion. Bayraktar et al. (2013) and Zhao et al. (2015) extended their work to
general spectrally positive Lévy processes. In addition, transaction cost, which
usually includes two parts: proportional cost and fixed cost, is an important factor
in business activities. In Avanzi et al. (2011), the proportional transaction costs from
dividend and capital injection were involved into an optimal dividend problem. In
Yao et al. (2011) and Zhao et al. (2015), both proportional and fixed costs on capital
injection were considered. Fixed costs on dividend were studied in Bayraktar et al.
(2014).

In this paper, the optimal periodic dividend and capital injection problem is
discussed for spectrally positive Lévy processes. For periodic dividend, we assume
that the inter-dividend-decision times are exponential as in Avanzi et al. (2014)
and Pérez and Yamazaki (2016), but different methods are used. For capital in-
jection, we include the proportional and fixed transaction costs. We also assume
that the ruin may occur even under the rescue of capital injection. Like Zhao et
al. (2015), we decompose the optimal problem into two suboptimal problems. By
the fluctuation theory of Lévy processes observed at Poisson arrival in Albrecher
et al. (2016), we find the optimal strategy and the optimal return function. If the
fixed transaction cost from capital injection tends to zero, we obtain the results
in Pérez and Yamazaki (2016). When the positive jumps of the Lévy process are
hyper-exponential compound Poisson distributed, the first suboptimal problem be-
comes that in Avanzi et al. (2014). If the dividend decision intensity goes to infinity,
and meanwhile the fixed costs on capital injection tend to zero, the two suboptimal
problems in this paper reduce to those in Bayraktar et al. (2013). Furthermore, for
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hyper-exponential compound Poisson positive jumps, our results are consistent with
Avanzi et al. (2011).

This paper is organized as follows. Section 2 provides the formulations of the
problem. Section 3 discusses the case without capital injection. The case with
incorporated capital injection is considered in Section 4. The optimal periodic div-
idend and capital injection strategies are derived in Section 5. Section 6 gives some
numerical examples.

2. Model and Optimal Control Problem

2.1. Spectrally Positive Lévy Processes

Let X = {Xt} be a spectrally positive Lévy process with non-monotone paths
on a filtered probability space (Ω,F ,F,P), where F = {Ft} satisfies the usual con-
ditions. The Lévy triplet of X is given by (c, σ, ν), where c > 0, σ ≥ 0, and ν is a
Lévy measure on (0,∞) satisfying the integrability condition

∫∞
0

(1∧x2)ν(dx) <∞.
Let Ex be the conditional expectation given the initial surplus x, and in particular,
denote E0 by E. The Laplace exponent of X is given by

ψ(s) =
1

t
logE

[
e−sXt

]
=
σ2

2
s2 + cs+

∫ ∞
0

(e−sx − 1 + sx1{0<x≤1})ν(dx), (2.1)

where 1A is an indicator function of a set A. It is well known that ψ(s) is strictly
convex and tends to infinity as s tends to infinity. This allows us to define for q ≥ 0,

Φ(q) = sup {s ≥ 0 : ψ(s) = q}, (2.2)

which refers to the largest root of the equation ψ(s) = q. Note that the Laplace
exponent ψ in (2.1) is known to be zero at the origin, and hence Φ(q) is strictly
positive for q > 0. The process X has paths of bounded variation if and only if
σ = 0 and

∫ 1

0
xν(dx) < ∞. Correspondingly, the Laplace exponent (2.1) can be

written as

ψ(s) = c0s+

∫ ∞
0

(e−sx − 1)ν(dx), (2.3)

where c0 = c +
∫ 1

0
xν(dx). We rule out the case that X has monotone paths, and

then c0 > 0 is necessary when X is of bounded variation. The drift of X is given by

µ = E[X1] = −ψ′(0+).

It is well known that if
∫∞

1
yν(dy) < ∞, then µ = −c +

∫∞
1
yν(dy) < ∞. In

this paper, we assume µ < ∞ to ensure that the optimal problem has a nontrivial
solution. For more details on Lévy processes, the reader is referred to Bertoin (1996),
Kyprianou (2006) and Kuznetsov et al. (2012).
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2.2. Formulations of Control Problem

We assume that the surplus process of a company is modeled by the Lévy process
X, whose Laplace exponent is given by (2.1) and X0 = x ≥ 0. A control strategy
composes of two parts: dividend payment and capital injection. We assume that the
dividend payments follow a periodic dividend strategy, where the dividend decision
times are governed by a F-adapted and independent Poisson process N = {Nt} with
intensity γ > 0. Then the dividend payment process L = {Lt} is given by

Lt =

∫ t

0

ϑsdNs =
∞∑
k=1

ϑTk1{Tk≤t}, t ≥ 0,

where ϑt ≥ 0 is the dividend payment at time t, and Tk is the time of kth dividend.
The capital injection process G = {Gt =

∑∞
n=1 1{τn≤t}ξn} is described by a sequence

of increasing stopping times {τn, n = 1, 2, · · · } and a sequence of random variables
{ξn, n = 1, 2, · · · }, which correspond to the timings and the amounts of capital
injection, respectively.

Given a control strategy π = (Lπ;Gπ) = (ϑπT1
, ϑπT2

, · · · ; τπ1 , τ
π
2 , · · · ; ξπ1 , ξ

π
2 , · · · ),

the dynamics of the resulting surplus process Xπ = {Xπ
t } can be written as

Xπ
t = Xt −

∞∑
k=1

ϑπTk1{Tk≤t} +
∞∑
n=1

ξπn1{τπn≤t}, t ≥ 0. (2.4)

Definition 2.1. A strategy π is said to be admissible iff
(i) {Lπt }t≥0 is an increasing and F-adapted càdlàg process satisfying L0 = 0,

Lπt =
∫ t

0
ϑπsdNs and ∆LπTj = ϑπTj ≤ Xπ

Tj− + ∆XTj for j = 1, 2, · · · ;
(ii) τπn is a stopping time with respect to F, and 0 ≤ τπ1 < τπ2 < · · · a.s.;
(iii) ξπn is nonnegative and measurable with respect to Fτπn , n = 1, 2, · · · ;
(iv) P ( lim

n→∞
τπn ≤ a) = 0, ∀ a ≥ 0.

Let Π denote the set of admissible strategies. Define the time of ruin by

T π = inf{t ≥ 0 : Xπ
t ≤ 0},

with inf ∅ = ∞ by convention. To incorporate the capital injection, the fixed and
proportional transaction costs are considered. When the amount of capital is ξ, we
assume that (φ−1)ξ with φ > 1 is the proportional cost, and that K > 0 is the fixed
cost. The time preference of investors is described by the force of interest δ > 0.
Given a strategy π ∈ Π, the performance function is defined by

V (x; π) = Ex

[∫ Tπ

0

e−δsϑπsdNs −
∞∑
n=1

e−δτ
π
n (K + φξπn)1{τπn≤Tπ}

]
. (2.5)
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Our objective is to find the optimal return function or the value function, defined
as

V (x) = sup
π∈Π

V (x; π), (2.6)

and the associated optimal strategy π∗ ∈ Π such that V (x) = V (x; π∗).

2.3. Preliminary Discussions for Optimal Problem

By the optimality of the value function V (x) and similar to Lemma 3.1 in Peng
et al. (2012), we obtain that V (x) is increasing and satisfies

0 ≤ V (0) ≤ V (x); 0 ≤ V (x)− V (y) ≤ φ(x− y) +K, 0 ≤ y ≤ x.

To derive the optimal strategy and the value function, the Quasi-Variational-Inequality
(see, e.g., Fleming and Soner (2006)) approach is adopted. Before that, we introduce
some operators. Throughout the paper, for a set D ⊂ R, a function p : D → R is
called sufficiently smooth meaning that it belongs to C1(D) if X is of bounded vari-
ation, otherwise it belongs to C2(D). Suppose that a sufficiently smooth function v
is a candidate function for the value function. Let A denote the extended generator
of the process X, defined by

A v(x) =
σ2

2
v′′(x)− cv′(x) +

∫ ∞
0

[v(x+ y)− v(x)− v′(x)y1{0<y≤1}]ν(dy). (2.7)

Similar to Avanzi et al. (2014), we give the operator N associated with the dividends
by

N v(x) = γ max
0≤l≤x

{l + v(x− l)− v(x)}. (2.8)

Let M denote the injection operator, defined by

Mv(x) = sup
y≥0
{v(x+ y)−K − φy}. (2.9)

Due to the time value of money, we give the following lemma whose proof is given
in Appendix A.

Lemma 2.1. It is optimal to postpone the capital injection as long as possible, i.e.,
if capital injection occurs, it happens only at the moment when the reserve process
hits the barrier 0.

Theorem 2.1. Let v(x) be an increasing and sufficiently smooth function on (0,∞)
satisfying

max{N v(x) + (A − δ)v(x),Mv(x)− v(x)} ≤ 0, x > 0, (2.10)

with the initial conditions v(0) ≥ 0 and Mv(0) ≤ v(0). Then we have v(x) ≥ V (x).
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Proof. By the definition of the performance function and Lemma 2.1, and noting
that the Lévy process X has only positive jumps, we only need to consider the
strategies, where the capital injection does not occur at the same time as a jump
of either the process X or the dividend process L. Under this consideration, for
a strategy π ∈ Π, we can characterize the discontinuous points of the controlled
reserve process by the following sets

Λt ={s ≤ t : ∆Xs 6= 0,∆Lπs = 0,∆Gπ
s = 0},

Λ′t ={s ≤ t : ∆Lπs 6= 0,∆Gπ
s = 0},

Λ′′t ={s ≤ t : ∆Gπ
s 6= 0,∆Lπs = 0,∆Xs = 0} = {τπi : τπi ≤ t, i = 1, 2, · · · }.

Let {Sm} be a sequence of stopping times defined by Sm = inf{t ≥ 0 : Xπ
t >

m or Xπ
t < 1

m
}. Noting the sufficient smoothness of v, and applying the Itô’s

formula for semimartingale, we obtain

e−δ(t∧Sm)v(Xπ
t∧Sm)

=v(x) +

∫ t∧Sm

0

e−δs
[
σ2

2
v′′(Xπ

s−)− δv(Xπ
s−)

]
ds+

∫ t∧Sm

0

e−δsv′(Xπ
s−)dXπ

s

+
∑

s∈Λt∧Sm

e−δs[v(Xπ
s )− v(Xπ

s−)− v′(Xπ
s−)∆Xπ

s ],

where Λt = Λt ∪ Λ′t ∪ Λ′′t . By Xπ
s = Xs − Lπs +Gπ

s , we have

e−δ(t∧Sm)v(Xπ
t∧Sm)

=v(x) +

∫ t∧Sm

0

e−δs
[
σ2

2
v′′(Xπ

s−)− δv(Xπ
s−)

]
ds+

∫ t∧Sm

0

e−δsv′(Xπ
s−)dXs

+
∑

s∈Λ′t∧Sm

e−δs[v(Xπ
s− + ∆Xs − ϑπs )− v(Xπ

s− + ∆Xs)] +
∑

τπn≤t∧Sm

e−δτ
π
n [v(ξπn)− v(0)]

+
∑

s∈Λt∧Sm

e−δs[v(Xπ
s− + ∆Xs)− v(Xπ

s−)− v′(Xπ
s−)∆Xs].

Note ∑
s∈Λt∧Sm

e−δsv′(Xπ
s−)∆Xs =

∑
s∈Λt∧Sm

e−δsv′(Xπ
s−)∆Xs1{|∆Xs|≤1}

+

∫ t∧Sm

0

e−δsv′(Xπ
s−)d

(∑
u∈Λs

∆Xu1{|∆Xu|>1}

)
;
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and ∑
s∈Λ′t∧Sm

e−δs[v(Xπ
s− + ∆Xs − ϑπs )− v(Xπ

s− + ∆Xs)]

=

∫ t∧Sm

0

e−δs[v(Xπ
s− + ∆Xs − ϑπs )− v(Xπ

s− + ∆Xs)]dNs.

We obtain

e−δ(t∧Sm)v(Xπ
t∧Sm) =v(x) + M̃t∧Sm +

3∑
i=1

M i
t∧Sm

−
∫ t∧Sm

0

e−δsϑπsdNs +
∑

τπn≤t∧Sm

e−δτ
π
n [v(ξπn)− v(0)],

(2.11)

where

M̃t =

∫ t

0

e−δs
{

(A − δ)v(Xπ
s−) + γ[ϑπs + v(Xπ

s− + ∆Xs − ϑπs )− v(Xπ
s− + ∆Xs)]

}
ds,

M1
t =

∫ t

0

e−δsv′(Xπ
s−)d

(
Xs + cs−

∑
u∈Λs

∆Xu1{|∆Xu|>1}

)
,

M2
t =

∑
s∈Λt

e−δs
[
v(Xπ

s )− v(Xπ
s−)− v′(Xπ

s−)∆Xs1{|∆Xs|≤1}
]

−
∫ t

0

∫ ∞
0

e−δs
[
v(Xπ

s− + y)− v(Xπ
s−)− v′(Xπ

s−)y1{|y|≤1}
]
ν(dy)ds,

M3
t =

∫ t

0

e−δs
[
ϑπs + v(Xπ

s− + ∆Xs − ϑπs )− v(Xπ
s− + ∆Xs)

]
(dNs − γds).

By the Lévy-Itô decomposition, {M1
t∧Sm} is a zero-mean martingale; and by the

compensation formula, {M i
t∧Sm} for i = 2, 3 are zero-mean martingales. Taking

expectations on both sides of (2.11) and noting (A −δ)v(x)+γ[l+v(x−l)−v(x) ≤ 0
for 0 ≤ l ≤ x, v(x)− v(0) ≤ φx+K and v(x) ≥ 0, we obtain

v(x) ≥ Ex

[∫ t∧Sm

0

e−δsϑπsdNs −
∞∑
n=1

e−δτ
π
n (K + φξπn)1{τπn≤t∧Sm}

]

Letting t and m go to infinity, noting Sm → T π (m → ∞) a.s., and using Fatou’s
lemma, we get v(x) ≥ V (x; π) for any π ∈ Π, and so v(x) ≥ V (x).
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3. Optimal Control Problem without Capital Injection

3.1. Preliminary Discussions for the Optimal Problem without Capital Injection

We now study the optimal problem without capital injection. Let Πp = {πp :
πp = (Lπp ; 0) ∈ Π} ⊂ Π denote the set of all admissible strategies for this suboptimal
problem. The value function Vp(x) is defined by

Vp(x) = sup
πp∈Πp

V (x; πp) = sup
πp∈Πp

Ex

[∫ Tπp

0

e−δsϑπps dNs

]
. (3.1)

The objective is to find the optimal strategy π∗p ∈ Πp such that Vp(x) = V (x; π∗p).
By the definition of Vp(x), we know Vp(x) is an increasing function with Vp(0) = 0.

Similar to Theorem 2.1, we give the following lemma.

Lemma 3.1. Let vp(x) be an increasing and sufficiently smooth function on (0,∞)
satisfying

N vp(x) + (A − δ)vp(x) ≤ 0, x > 0 (3.2)

with the initial conditions vp(0) = 0. Then we have vp(x) ≥ Vp(x).

Lemma 3.2. Assuming that vp(x) is an increasing and sufficiently smooth function
on (0,∞) with vp(0) = 0, and that one of the following two hypotheses holds, we
have vp(x) ≥ Vp(x).

(i) If vp(x) is concave and there exists x∗p > 0 such that v′p(x
∗
p) = 1 and

(A − δ)vp(x) = 0, 0 < x < x∗p, (3.3)

(A − δ)vp(x) + γ[x− x∗p + vp(x
∗
p)− vp(x)] = 0, x ≥ x∗p. (3.4)

(ii) If for all x > 0, v′p(x) ≤ 1 and

(A − δ)vp(x) + γ[x− vp(x)] = 0. (3.5)

Proof. By Lemma 3.1, we only need to prove that the function vp(x) satisfies the
inequality in (3.2).

If the hypothesis (i) holds, by the concavity of vp, we have

v′p(x) ≥ 1, 0 < x < x∗p; v′p(x) ≤ 1, x ≥ x∗p.

Then

max
0≤l≤x

{l + vp(x− l)} =

{
vp(x), 0 < x < x∗p;

x− x∗p + vp(x
∗
p), x ≥ x∗p.

Combing (3.3) and (3.4), we obtain that vp(x) satisfies (3.2).
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If the hypothesis (ii) holds, we know max0≤l≤x{l + vp(x− l)} = x. By (3.5), we
have

γ max
0≤l≤x

[l + vp(x− l)− vp(x)] + (A − δ)vp(x) = 0.

The proof is completed.

Inspired by Avanzi et al. (2014) and the above lemma, we conjecture that the
optimal periodic strategy in our setting is likely to be a periodic barrier strategy as
defined in below.

Definition 3.1. (Periodic Barrier Dividend Strategy). Under a periodic barrier xp,
dividend payments are

ϑ
πp
Ti

= max(X
πp
Ti− + ∆XTi − xp, 0), i = 1, 2, · · · ,

at all dividend decision times Ti before ruin, i.e.,

L
πp
t =

∫ t

0

(X
πp
s− + ∆Xs − xp)1{Xπp

s−+∆Xs≥xp}dNs, t ≤ T πp . (3.6)

Under a periodic barrier dividend strategy πp with barrier xp, the performance
function is

V (x; πp) = Ex

[∫ Tπp

0

e−δs(X
πp
s− + ∆Xs − xp)1{Xπp

s−+∆Xs≥xp}dNs

]
. (3.7)

Then the above performance function V (x; πp) is increasing and V (0;πp) = 0.

Lemma 3.3. Assume that the performance function V (x; πp) in (3.7) is bounded
above by a linear function, sufficiently smooth on (0,∞) and right continuous at 0.
Then V (x; πp) satisfies the following integro-differential equations

(A − δ)V (x; πp) = 0, 0 < x < xp, (3.8)

(A − δ)V (x; πp) + γ[x− xp + V (xp; πp)− V (x; πp)] = 0, x ≥ xp, (3.9)

with the initial value V (0; πp) = 0 and the continuous condition

V (xp−; πp) = V (xp+; πp) = V (xp; πp). (3.10)

The corresponding proof is presented in Appendix A. In addition, by Lemma
3.3 in Avanzi et al. (2014), it is known that the ruin is certain under a periodic
barrier strategy.
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3.2. Expression of V (x; πp) Associated with Periodic Barrier Strategy

We first discuss the case of x ≥ xp. Let

Yt = xp −Xt, t ≥ 0, (3.11)

S−xp = inf{t ≥ 0 : Xt < xp} = inf{t ≥ 0 : Yt > 0} , κ+
0 , (3.12)

r0 = Φ(δ + γ) = sup{s ≥ 0 : ψ(s) = δ + γ}. (3.13)

Then {Yt} is a spectrally negative Lévy process with the characteristic exponent
ψ(s) in (2.1) and Y0 = xp − x. To find the expression of V (x; πp), we introduce the
following lemma.

Lemma 3.4. For x ≥ xp, we have

Ex
[
e−δT1(XT1 − xp)1{T1<S

−
xp}

]
=

γ

δ + γ

[
x− xp +

µ

δ + γ
(1− e−r0(x−xp))

]
. (3.14)

Proof. By (30) in Albrecher et al. (2016), we know, for z, s ≤ 0,

Ez
[
esYeq1{eq<κ+

0 }

]
=

q

q − ψ(s)

(
esz − eΦ(q)z

)
,

where eq has exponential distribution with rate q > 0 and is independent of the
Lévy process X. Differentiating with respect to s and letting s tend to zero in the
above equation yield

Ez
[
Yeq1{eq<κ+

0 }

]
= z +

ψ′(0+)

q

(
1− eΦ(q)z

)
. (3.15)

Then, we have

Ex
[
e−δT1(XT1 − xp)1{T1<S

−
xp}

]
= −Exp−x

[
e−δT1YT11{T1<κ

+
0 }

]
= − γ

δ + γ
Exp−x

[
Ye(δ+γ)

1{e(δ+γ)<κ
+
0 }

]
,

(3.16)

where e(δ+γ) is exponentially distributed with rate δ + γ, and the second equality is
due to the law of total probability. Noting ψ′(0+) = −µ, the result is obtained by
substituting (3.15) into (3.16).

Theorem 3.1. For x ≥ xp, the performance function V (x; πp) in (3.7) is given by

V (x; πp) =
γ

δ + γ
A1(x− xp) + V (xp; πp)B1(x− xp), (3.17)
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where

A1(x) = x+
µ

δ + γ
(1− e−r0x), (3.18)

B1(x) =
γ

δ + γ
+

δ

δ + γ
e−r0x, (3.19)

Proof. By the strong Markov property and XS−xp
= xp a.s., we have

V (x; πp) = Ex
[
e−δT1(XT1 − xp)1{T1<S

−
xp}

]
+ V (xp; πp)E

x
[
e−δ(T1∧S−xp )

]
. (3.20)

By the law of total probability, we obtain

Ex
[
e−δ(T1∧S−xp )

]
= Ex

[∫ ∞
0

e−δ(t∧S
−
xp ) · γe−γtdt

]
=

γ

δ + γ
+

δ

δ + γ
Ex
[
e−(δ+γ)S−xp

]
=

γ

δ + γ
+

δ

δ + γ
e−r0(x−xp),

(3.21)

where the last equality is due to (19) in Kuznetsov et al. (2012). The result is yielded
by substituting (3.14) and (3.21) into (3.20).

Remark 3.1. (i) From (3.17), it is known that, for x > xp, V (x; πp) is infinitely
differentiable and bounded above by a linear function.

(ii) As limγ→∞ r0 =∞, we have limγ→∞ V (x; πp) = x−xp+V (xp; πp) for x ≥ xp.
Then the dividend payments could occur at any time (continuously) as the limit goes
to infinity, the periodic barrier strategy becomes a barrier dividend strategy.

(iii) By (3.17), we have

V ′(xp+; πp) =
γ

δ + γ

(
1 +

µr0

δ + γ

)
− δr0

δ + γ
V (xp; πp);

V ′′(xp+; πp) = − γµ

(δ + γ)2
r2

0 +
δ

δ + γ
r2

0V (xp; πp).

(3.22)

In the following, we discuss the case of 0 < x < xp. We will used the scale

functions W (q)(x), Z(q)(x), Z
(q)

(x) and Z(q)(x, s), which are studied in Kuznetsov
et al. (2012) and Albrecher et al. (2016), and whose definitions and some results are
shown in Appendix B. For the uncontrolled surplus process X, let

S−0 = inf{t ≥ 0 : Xt < 0} = inf{t ≥ 0 : Yt > xp} , κ+
xp ,

T+
xp = min{Ti : XTi > xp, i = 1, 2 · · · } = min{Ti : YTi < 0, i = 1, 2 · · · } , T̄−0 ,
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where Yt is defined by (3.11).

Lemma 3.5. For 0 ≤ x < xp, we have

Ex
[
e−δT

+
xp (XT+

xp
− xp)1{T+

xp<S
−
0 }

]
= I1(xp − x, xp); (3.23)

Ex
[
e−δT

+
xp1{T+

xp<S
−
0 }

]
= I2(xp − x, xp), (3.24)

where

I1(x, xp) =
γ

δ + γ

[
D(x)− Z(δ)(x, r0)

Z(δ)(xp, r0)
D(xp)

]
, (3.25)

D(x) = − µγ

δ(δ + γ)
Z(δ)(x)− Z(δ)

(x) +
µ

δ
, (3.26)

I2(x, xp) =
γ

δ + γ

[
Z(δ)(x)− Z(δ)(x, r0)

Z(δ)(xp, r0)
Z(δ)(xp)

]
. (3.27)

Proof. The result is obvious when x = 0, and then we only need to discuss the case
of 0 < x < xp. By (15) in Albrecher et al. (2016), we have, for 0 < y < xp,

Ey

[
e
−δT̄−0 +sY

T̄−0 1{T̄−0 <κ
+
xp}

]
=

γ

δ + γ − ψ(s)

(
Z(δ)(y, s)− Z(δ)(y, r0)

Z(δ)(xp, r0)
Z(δ)(xp, s)

)
.

(3.28)
Letting s go to zero and noting

Ex
[
e−δT

+
xp1{T+

xp<S
−
0 }

]
= Exp−x

[
e−δT̄

−
0 1{T̄−0 <κ

+
xp}

]
,

we have the result in (3.24). Differentiating with respect to s, letting s tend to zero
in (3.28), and noting

∂Z(δ)(y, s)

∂s

∣∣∣∣
s=0

= Z
(δ)

(y)− µ

δ
+
µ

δ
Z(δ)(y),

Ex
[
e−δT

+
xp (XT+

xp
− b)1{T+

xp<S
−
0 }

]
= −Exp−x

[
e−δT̄

−
0 YT̄−0 1{T̄−0 <κ

+
xp}

]
,

we obtain the result in (3.23) after some calculations.

Theorem 3.2. For 0 ≤ x < xp, the performance function V (x; πp) in (3.7) is given
by

V (x; πp) =
γ

δ + γ
A2(xp − x) + V (xp; πp)B2(xp − x), (3.29)
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where V (xp; πp) = γ
δ+γ

[
Z

(δ)
(xp)−µ

δ

B2(xp)
+ µ

δ

]
and

A2(x) = −µ
δ
B2(x)− Z(δ)

(x) +
µ

δ
, (3.30)

B2(x) =
δ

δ + γ
Z(δ)(x, r0) +

γ

δ + γ
Z(δ)(x). (3.31)

Proof. By the strong Markov property and Lemma 3.5, we have

V (x; πp) = I1(xp − x, xp) + V (xp; πp)I2(xp − x, xp). (3.32)

Letting x tend to xp in the above equation yields

I1(0, xp) = (1− I2(0, xp))V (xp; πp).

By (3.25), we have

I1(x, xp) =
γ

δ + γ
D(x)− γ

δ + γ
Z(δ)(xp, r0)

D(xp)

Z(δ)(xp, r0)
;

I1(0, xp) =
γµ

(δ + γ)2
− γ

δ + γ

D(xp)

Z(δ)(xp, r0)
.

Then

I1(x, xp) =
γ

δ + γ
D(x)− Z(δ)(x, r0)

[
γµ

(δ + γ)2
− I1(0, xp)

]
(3.33)

=
γ

δ + γ
A2(x) + Z(δ)(x, r0)(1− I2(0, xp))V (xp; πp). (3.34)

Since

I2(x, xp) =
γ

δ + γ
Z(δ)(x)− Z(δ)(x, r0)

(
γ

δ + γ
− I2(0, xp)

)
, (3.35)

we obtain (3.29) by substituting (3.34) and (3.35) into (3.32). Letting x tend to
zero and noting V (0;πp) = 0, we get the expression of V (xp; πp).

Remark 3.2. (i) By the definitions of scale functions in Appendix B, if x < 0, we
have A2(x) = A1(x) and B2(x) = B1(x), and so the the value function can be written
uniformly as (3.29) for x ∈ R. Substituting the value of V (xp; πp) into (3.29), we
obtain

V (x; πp) =
γ

δ + γ

[
B2(xp − x)

B2(xp)
Z

(δ)
(xp)− Z

(δ)
(xp − x)− µ

δ

(
B2(xp − x)

B2(xp)
− 1

)]
,
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which is consistent with (3.15) in Pérez and Yamazaki (2016). If µ tends to +∞,
we have that r0 goes to zero, furthermore,

lim
µ→+∞

B2(xp − x)

B2(xp)
− 1 =

Z(δ)(xp − x)

Z(δ)(xp)
− 1 < 0, (x > 0).

Hence, we obtain limµ→+∞ V (x; πp) = +∞ for any xp > 0. In other words, the
solution of the optimal problem is trivial if the drift µ = +∞.

(ii) By the definitions of r0 in (3.13) and Z(δ)(x, s) in (B.1), we have

Z(δ)(x, r0) = er0x
[
1− γ

∫ x

0

W (δ)(y)dy

]
,
∂Z(δ)(x, r0)

∂x
= r0Z

(δ)(x, r0)− γW (δ)(x).

Then by (3.29), we have

V ′(xp−; πp) =
γ

δ + γ

(
1 +

µr0

δ + γ

)
− δr0

δ + γ
V (xp; πp), (3.36)

and when X is of unbounded variation, by (B.3),

V ′′(xp−; πp) = − γµ

(δ + γ)2
r2

0 +
δ

δ + γ
r2

0V (xp; πp).

Combining (3.22), we obtain that V (x; πp) is sufficiently smooth on (0,∞).

3.3. Optimal Strategy for the Optimal Problem without Capital Injection

By Lemma 3.2 and Lemma 3.3, if a periodic dividend strategy π∗p with barrier
x∗p > 0 is optimal, we have V ′(x∗p; π

∗
p) = 1. Furthermore, by (3.36) we get

V (x∗p; π
∗
p) =

γ

δ + γ

µ

δ
− 1

r0

. (3.37)

Substituting the above equation into (3.17) and (3.29), we obtain

V (x; π∗p) =


−
γZ

(δ)
(x∗p − x)

γ + δ
−
R(x∗p − x)

(γ + δ)r0

+
γ

γ + δ

µ

δ
, 0 ≤ x < x∗p,

− δ

(γ + δ)r0

e−r0(x−x∗p) +
γ

γ + δ

(
x− x∗p −

1

r0

+
µ

δ

)
, x ≥ x∗p,

(3.38)

where
R(x) = δZ(δ)(x, r0) + γZ(δ)(x), (3.39)
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and x∗p is determined by V (0;x∗p) = 0, i.e.,

γZ
(δ)

(x∗p)

γ + δ
+

R(x∗p)

(γ + δ)r0

− γ

γ + δ

µ

δ
= 0. (3.40)

The following lemma, which is Lemma 4.2 in Pérez and Yamazaki (2016), discusses
the solution of the above equation.

Lemma 3.6. The equation (3.40) has a unique positive root x∗p > 0 if and only if
γ
γ+δ

µ
δ
− 1

r0
> 0.

Remark 3.3. (i) There exists a solution x∗p > 0 of (3.40) if and only if V (x∗p; π
∗
p) > 0

by (3.37). This follows from the increasing property of V (x; π∗p) and V (0;x∗p) = 0.
(ii) Similar to Remark 4.5 in Avanzi et al. (2014), we illustrate Lemma 3.6.
In the view of the dividend frequency, the inequality γ

γ+δ
µ
δ
− 1
r0
> 0 can be rewritten

as γ > γ0, where γ0 is the solution to γ0

γ0+δ
µ
δ
− 1

r0(γ0)
= 0. In a sense, larger rate of

dividend results in higher barrier of dividend.
From the perspective of the overall drift of X, the inequality γ

γ+δ
µ
δ
− 1

r0
> 0 can

be rewritten as µ > µ0, where µ0 is the solution to γ
γ+δ

µ0

δ
− 1

r0
= 0. Then µ0 > 0,

and limγ→∞ µ0 = 0 which is the condition of (2.13) in Bayraktar et al. (2013).

Theorem 3.3. (i) If γ
γ+δ

µ
δ
− 1

r0
≤ 0, we have Vp(x) = V (x; π∗p), where

V (x; π∗p) = − γµ

(γ + δ)2
e−r0x +

γ

γ + δ
x+

γµ

(γ + δ)2
, x ≥ 0, (3.41)

and the optimal periodic dividend strategy π∗p is given in (3.6) with x∗p = 0.
(ii) If γ

γ+δ
µ
δ
− 1

r0
> 0, we have Vp(x) = V (x; π∗p), where V (x; π∗p) is given by (3.38),

and the optimal periodic dividend strategy π∗p is given in (3.6) with x∗p > 0 determined
by (3.40).

Proof. (i) Assume that π∗p is given by (3.6) with x∗p = 0. By Theorem 3.1, we
obtain (3.41). Similar to Lemma 4.4 (ii) in Pérez and Yamazaki (2016), we have
0 < V ′(x; π∗p) ≤ 1 for all x > 0. The results in (i) follows Lemma 3.3 and (ii) in
Lemma 3.2.

(ii) In the case of γ
γ+δ

µ
δ
− 1

r0
> 0, the equation (3.40) has a unique positive root

x∗p. Lemma 4.4 (i) in Pérez and Yamazaki (2016) shows that V (x; π∗p) in (3.38) is
increasing, concave and V ′(x∗p; π

∗
p) = 1. By Lemma 3.3, Lemma 3.2 (i) and Remark

3.2 (ii), we obtain the results in (ii)

Remark 3.4. (i) By the different method, Theorem 3.3 shows the same results in
Theorem 4.1 of Pérez and Yamazaki (2016). If µ < 0 (including −∞), we obtain
that the optimal barrier x∗p is zero, and that the corresponding strategy is called
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taking all the money and run at the first Poissonian dividend-decision time which is
introduced in Pérez and Yamazaki (2016).

(ii) For R(x) in (3.39), we have limγ→∞
R(x∗p−x)

(γ+δ)r0
= 0 by (B.2). Letting γ tend to

∞ in (3.38), we obtain

lim
γ→∞

V (x; π∗p) =

 − Z
(δ)

(x̃∗p − x) +
µ

δ
, 0 ≤ x < x̃∗p;

x− x̃∗p +
µ

δ
, x ≥ x̃∗p,

where x̃∗p is determined by Z
(δ)

(x̃∗p) = µ
δ
. Therefore, Theorem 3.3 becomes Theorem

2.1 in Bayraktar et al. (2013).

4. Optimal Control Problem with Capital Injection to Prevent Ruin

4.1. Preliminary Discussions for the Optimal Problem without Ruin

We assume that the company survives forever by forced capital injections. Let
Πq denote the set of admissible strategies of this suboptimal problem, i.e.,

Πq = {πq = (Lπq ;Gπq) : πq ∈ Π such that X
πq
t > 0 for all t ≥ 0} ⊂ Π.

The value function Vq(x) is defined by

Vq(x) = sup
πq∈Πq

V (x; πq)

= sup
πq∈Πq

Ex

[∫ ∞
0

e−δsϑπqs dNs −
∞∑
n=1

e−δτ
πq
n (K + φξπqn )

]
.

(4.1)

We will search for the optimal strategy π∗q ∈ Πq and the associated value function
Vq(x) = V (x; π∗q ). By the similar proof of Theorem 2.1, we give the following lemma.

Lemma 4.1. Let vq(x) be an increasing and sufficiently smooth function on (0,∞)
satisfying

max{N vq(x) + (A − δ)vq(x),Mvq(x)− vq(x)} ≤ 0, x > 0, (4.2)

with the initial condition Mvq(0) ≤ vq(0). Then we have vq(x) ≥ Vq(x).

By Lemma 2.1, we know the optimal timing of capital injection is when the
surplus process hits the barrier 0, and hence we haveMVq(0) = Vq(0). Furthermore,
if there exists some η∗ > 0 such that η∗ = inf{x : V ′q (x) = φ}, and the value function
is concave, the optimal amount of capital injection is η∗ and Vq(0) = Vq(η

∗)−φη∗−K.
Then, similar to Theorem 4.1 in Zhao et al. (2015), we give the following result.
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Lemma 4.2. Assuming that vq(x) is an increasing, concave and sufficiently smooth
function on (0,∞), and that exists a pair (η∗, x∗q) with 0 < η∗ < x∗q, such that

v′q(η
∗) = φ, v′q(x

∗
q) = 1,

vq(0) = vq(η
∗)− φη∗ −K,

(A − δ)vq(x) = 0, 0 < x < x∗q,

(A − δ)vq(x) + γ[x− x∗q + vq(x
∗
q)− vq(x)] = 0, x ≥ x∗q,

we have vq(x) ≥ Vq(x).

Proof. By the proof of (i) in Lemma 3.2, we have

N vq(x) + (A − δ)vq(x) = 0, x > 0.

Setting F (y) = vq(x+y)−φy−K, we have that the F (y) is increasing on [0, η∗−x)
and decreasing on [η∗ − x,∞). Then

Mvq(x) =

{
vq(η

∗)− φ(η∗ − x)−K, 0 ≤ x < η∗,

vq(x)−K, η∗ ≤ x <∞,
(4.3)

which together with vq(0) = vq(η
∗)−φη−K and v′q(x) ≥ φ for 0 < x ≤ η∗, we obtain

Mvq(x) ≤ vq(x) for x > 0 and Mh(0) = h(0). Then vq(x) satisfies the conditions
of Lemma 4.1, and the result is obtained.

4.2. Optimal strategy for the Optimal Problem without Ruin

By the discussions in Subsection 4.1 and Lemma 2.1, we construct the following
strategy πq, for 0 < η < xq,

L
πq
t =

∫ t

0

(
X
πq
s− + ∆Xs − xq

)
1{Xπq

s−+∆Xs≥xq}dNs, G
πq
t =

∑
τ
πq
n ≤t

ξπqn ,

ξπqn = η, n = 1, 2, · · · , τπq1 = inf{t ≥ 0 : X
πq
t− = 0 and ∆Xt = 0},

τπqn = inf{t > τ
πq
n−1 : X

πq
t− = 0 and ∆Xt = 0}, n = 2, 3, · · · .

(4.4)

Then the above strategy πq ∈ Πq, and the associated performance function V (x; πq)
is given by

V (x; πq) = Ex

[∫ ∞
0

e−δs
(
X
πq
s− + ∆Xs − xq

)
1{Xπq

s−+∆Xs≥xq}dNs −
∞∑
n=1

e−δτ
πq
n (K + φη)

]
.

(4.5)
By the same arguments of Theorem 3.1, we give the following lemma.
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Lemma 4.3. For x ≥ xq, the performance function V (x; πq) in (4.5) is given by

V (x; πq) =
γ

δ + γ
A1(x− xq) + V (xq; πq)B1(x− xq), (4.6)

where A1(x) and B1(x) are defined by (3.18) and (3.19), respectively.

Now, we discuss V (x; πq) in the case of 0 ≤ x < xq. Let Ỹt = xq −Xt, and

S−0 = inf{t ≥ 0 : Xt < 0} = inf{t ≥ 0 : Ỹt > xq} , κ̃+
xq ,

T+
xq = min{Ti : XTi > xq, i = 1, 2 · · · } = min{Ti : ỸTi < 0, i = 1, 2 · · · } , T̃−0 ,

Lemma 4.4. For 0 ≤ x < xq, the performance function V (x; πq) in (4.5) is given
by

V (x; πq) =
γ

δ + γ
A2(xq − x) + V (xq; πq)B2(xq − x), (4.7)

where A2(x) and B2(x) are defined by (3.30) and (3.31), respectively.

Proof. By the strong Markov property and the law of total probability, we have

Vq(x; πq) =Ex
[
e−δT

+
xq (XT+

xq
− xq)1{T+

xq<S
−
0 }

]
+ Vq(xq; πq)E

x
[
e−δT

+
xq1{T+

xq<S
−
0 }

]
+ Ex

[
e−δS

−
0 1{T+

xq≥S
−
0 }

]
[Vq(η; πq)− (φη +K)].

Letting x go to zero in the above equation, we get

Vq(0; πq) = Vq(η; πq)− (φη +K).

By (12) (for a killing rate δ > 0) in Albrecher et al. (2016), we obtain

Ex
[
e−δS

−
0 1{T+

xq≥S
−
0 }

]
= Exq−x

[
e−δκ̃

+
xq1{T̃−0 ≥κ̃

+
xq}

]
=
Z(δ)(xq − x, r0)

Z(δ)(xq, r0)
,

where r0 is defined by (3.13). Letting I3(x, xq) = Z(δ)(x,r0)

Z(δ)(xq ,r0)
and combining Lemma

3.5, we have

Vq(x; πq) = I1(xq − x, xq) + Vq(xq; πq)I2(xq − x, xq) + Vq(0;πq)I3(xq − x, xq).

Letting x tend to xq in the above equation yields

I1(0, xq) = Vq(xq; πq)(1− I2(0, xq))− Vq(0;πq)I3(0, xq). (4.8)

Replacing xp by xq in (3.33) and (3.35), we obtain the expressions of I1(x, xq) and
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I2(x, xq), which together with I3(x, xq) = Z(δ)(x, r0)I3(0, xq) and (4.8) yield

I1(x, xq) + Vq(xq; πq)I2(x, xq) + Vq(0; πq)I3(x, xq)

=
γ

δ + γ
D(x)− γµ

(δ + γ)2
Z(δ)(x, r0) + Vq(xq; πq)

γ

δ + γ

(
Z(δ)(x)− Z(δ)(x, r0)

)
+ Z(δ)(x, r0)[I1(0, xq) + Vq(xq; πq)I2(0, xq) + Vq(0;πq)I3(0, xq)]

=
γ

δ + γ
A2(x) + Vq(xq; πq)B2(x).

The proof is completed.

Remark 4.1. By Remark 3.2 (ii), we can show that V (x; πq) given by (4.6) and
(4.7) is increasing and sufficiently smooth on (0,∞). Furthermore, V (x; πq) satisfies
the integro-differential equations (3.8) and (3.9).

Theorem 4.1. The value function Vq(x) in (4.1) is given by

V (x; π∗q ) =


−
γZ

(δ)
(x∗q − x)

γ + δ
−
R(x∗q − x)

(γ + δ)r0

+
γ

γ + δ

µ

δ
, 0 ≤ x < x∗q;

− δ

(γ + δ)r0

e−r0(x−x∗q) +
γ

γ + δ

(
x− x∗q −

1

r0

+
µ

δ

)
, x ≥ x∗q,

(4.9)

where R(x) is defined by (3.39), and the optimal strategy π∗q is given by (4.4) with
the parameters x∗q and η∗ determined by V ′(η∗; π∗q ) = φ and V (η∗; π∗q ) − V (0;π∗q ) =
φη∗ +K, i.e.,

γ

δ + γ
Z(δ)(x∗q − η∗) +

δ

δ + γ
Z(δ)(x∗q − η∗, r0) = φ, (4.10)

γ

δ + γ

(
Z

(δ)
(x∗q)− Z

(δ)
(x∗q − η∗)

)
+
R(x∗q)−R(x∗q − η∗)

(δ + γ)r0

= φη∗ +K. (4.11)

Proof. By Lemma 4.2, if the strategy π∗q is optimal, we have V ′(x∗q; π
∗
q ) = 1. Similar

to (3.37), we obtain

V (x∗q; π
∗
q ) =

γ

δ + γ

µ

δ
− 1

r0

.

Substituting the above equation into (4.6) and (4.7) yields (4.9). If there exists a
pair of (η∗, x∗q) satisfying the equations (4.10) and (4.11), similar to the discussions
of V (x; π∗p) in (3.38), we can prove that V (x; π∗q ) in (4.9) satisfies all the conditions
of Lemma 4.2, and hence the results are obtained. Therefore, we only need to show
that there exists a pair of (η∗, x∗q) solving (4.10) and (4.11) with 0 < η∗ < x∗q.
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For convenience, we define a function

f(x) =
γ

δ + γ
Z(δ)(x) +

δ

δ + γ
Z(δ)(x, r0), x ≥ 0. (4.12)

Making the change of variable x = x∗q − η∗, we can rewrite (4.10) as f(x) = φ. By
(3.12) and (3.13) in Pérez and Yamazaki (2016), we have

f(0) = 1 < φ, f ′(x) > 0, x > 0, lim
x→+∞

f(x) = +∞.

Hence, there exists a unique x1 > 0 such that f(x1) = φ. We define another function
with respect to xq as follows, for xq ≥ x1,

f1(xq) =
γ

δ + γ

(
Z

(δ)
(xq)− Z

(δ)
(x1)

)
+
R(xq)−R(x1)

(δ + γ)r0

− φ(xq − x1)−K. (4.13)

Then the equation (4.11) can be written as f1(xq) = 0. By R′(xq) = r0δZ
(δ)(xq, r0),

we have

f ′1(xq) =
γ

δ + γ
Z(δ)(xq) +

δ

δ + γ
Z(δ)(xq, r0) = f(xq)− φ > f(x1)− φ = 0.

Furthermore, we obtain lim
xq→+∞

f ′1(xq) = +∞ and f ′′1 (xq) = f ′(xq) > 0. Then we get

lim
xq→+∞

f1(xq) = +∞. Noting f1(x1) = −K < 0, we know there exists an x∗q > x1

such that f1(x∗q) = 0, and so η∗ = x∗q − x1 is also determined.

Remark 4.2. (i) By the above proof, if K goes to zero, we have that η∗ tends to zero
and that x∗q is determined by γ

δ+γ
Z(δ)(x∗q) + δ

δ+γ
Z(δ)(x∗q, r0) = φ. Hence, we obtain

Theorem 5.1 in Pérez and Yamazaki (2016).
(ii) Similar to Remark 3.4, we have

lim
γ→∞

V (x; π∗q ) =

 − Z
(δ)

(x̃∗q − x) +
µ

δ
, 0 ≤ x < x̃∗q,

x− x̃∗q +
µ

δ
, x ≥ x̃∗q,

where η̃∗ and x̃∗q are determined by{
Z(δ)(x̃∗q − η̃∗) = φ,

Z
(δ)

(x̃∗q)− Z
(δ)

(x̃∗q − η̃∗) = φη̃∗ +K.

Furthermore, letting K tend to zero, Theorem 3.1 in Bayraktar et al. (2013) is
derived.
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5. Optimal Periodic Dividend and Capital Injection Strategy

From the definitions of Vp, Vq and V , we can easily get the relationship

V (x) ≥ max{Vp(x), Vq(x)}, x ≥ 0.

Lemma 5.1. If the function v(x) satisfies one of the following two hypotheses, we
have v(x) ≥ V (x),

(i) If v(x) satisfies the conditions of Lemma 3.1 and Mv(0) ≤ v(0);
(ii) If v(x) satisfies the conditions of Lemma 4.1 and v(0) ≥ 0.

Proof. (i) If v′(x) < φ for all x > 0, we have Mv(x) = v(x) −K < v(x). If there
exists η > 0 such that v′(η) ≥ φ, we let η = sup{y > 0 : v′(y) ≥ φ}, and then
v′(η) = φ. Similar to (4.3), we get Mv(x) ≤ v(x). By Theorem 2.1, the result is
obtained.

(ii) The result follows Theorem 2.1.

Similar to Lemma 5.2 in Zhao et al. (2015), we give the following lemma.

Lemma 5.2. For V (x; π∗p) in (3.38) and V (x; π∗q ) in (4.9), we have
(i) MV (0;π∗p) ≤ V (0;π∗p) if and only if x∗p ≤ x∗q;
(ii) V (0; π∗q ) ≥ 0 if and only if x∗p ≥ x∗q.

Theorem 5.1. For the general optimal control problem in Section 2, we have
(i) If γ

γ+δ
µ
δ
− 1

r0
≤ 0, the value function V (x) = Vp(x) = V (x; π∗p) is given by

(3.41), and the optimal strategy π∗ is given by π∗p in (3.6) with x∗p = 0.
(ii) If γ

γ+δ
µ
δ
− 1

r0
> 0 and x∗p ≤ x∗q, the value function V (x) = Vp(x) = V (x; π∗p) is

given by (3.38), and the strategy π∗ is given by π∗p in (3.6) with x∗p > 0 determined
by (3.40)

(iii) If γ
γ+δ

µ
δ
− 1

r0
> 0 and x∗p > x∗q, the value function V (x) = Vq(x) = V (x; π∗p)

is given by (4.9), and the optimal strategy π∗ is given π∗q in (4.4) with 0 < η∗ < x∗q
determined by (4.10) and (4.11).

In other words, the value function V (x) = max{Vp(x), Vq(x)} and the optimal
dividend barrier x∗ = min{x∗p, x∗q}.

Proof. (i) If γ
γ+δ

µ
δ
− 1

r0
≤ 0, we know V (x; π∗p) in (3.41) satisfies 0 < V ′(x; π∗p) ≤ 1 <

φ. Then MV (x; π∗p) ≤ V (x; π∗p) for all x ≥ 0, furthermore, V (x; π∗p) satisfies the
conditions of Theorem 2.1. The results are obtained.

The results in (ii) and (iii) are obtained by Lemma 5.1 and Lemma 5.2.
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6. Numerical Examples

In Egami and Yamazaki (2014), the authors considered the spectrally negative
phase-type Lévy process, whose scale function admits an analytical expression; they
proposed an approach to approximate the scale function for a general spectrally
negative Lévy process. The numerical results of this paper are based on their ap-
proximation method. For simplicity, we discuss the cases of the Lévy process X
with hyperexponential and Gamma distributed compound Poisson positive jumps,
respectively.

6.1. Hyper-exponential Compound Poisson Positive Jumps

Assume that X has hyperexponential compound Poisson positive jumps, i.e.,

ν(dy) = λ
∑n

i=1wiαie
−αiydy, y ≥ 0,

where λ > 0, 0 < α1 < α2 < · · · < αn, and wi > 0 for 1 ≤ i ≤ n such that∑n
i=1wi = 1. The Laplace exponent ψ(s) is then

ψ(s) =
σ2

2
s2 + c0s+ λ

n∑
i=1

wi
αi

αi + s
− λ.

If σ > 0, the equation ψ(s) = δ has n + 2 roots, denoted by s0 = Φ(δ) > 0,
s1, s2, · · · , sn+1, and

sn+1 < −αn < sn < −αn−1 < · · · < s1 < 0 < s0 < r0.

Here, we use the Laplace transform to analyze the results in Theorem 3.3. Let
p̂(s) denote the Laplace transform of the function p(x). By the definitions of scale
functions in Appendix B, we have, for s > r0,

Ẑ(δ)(s) =
ψ(s)

s(ψ(s)− δ)
, Ẑ(δ)(s, r0) =

ψ(s)− δ − γ
(s− r0)(ψ(s)− δ)

, Ẑ
(δ)

(s) =
ψ(s)

s2(ψ(s)− δ)
.

Set

w(x) = −γZ
(δ)

(x)

γ + δ
− δZ(δ)(x, r0) + γZ(δ)(x)

(γ + δ)r0

+
γ

γ + δ

µ

δ
, x ≥ 0.

Taking the Laplace transforms on both sides of the above equation, we obtain

ŵ(s) =
γ

γ + δ

r0ψ(s)

s2(s− r0)(ψ(s)− δ)
− 1

r0(s− r0)
+

γ

γ + δ

µ

δ

1

s
, s > r0.
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By partial fraction decomposition and after some simplifications, we have

ŵ(s) =
γ

γ + δ

n+1∑
k=0

r0

sk(sk − r0)

n∏
i=1

αi + sk
αi

n+1∏
j=0,j 6=k

sj
sj − sk

1

s− sk
, s > r0.

Inverting the above Laplace transform and combining Theorem 3.3, we obtain the
results in Avanzi et al. (2014).

6.2. Gamma Distributed Compound Poisson Positive Jumps

In the following, we assume ν(dy) = 3ye−ydy(y ≥ 0) to illustrate our results.
That is, the size of jumps follows the Gamma(2,1) distribution, and the arrival times
of the jumps are determined by a Poisson process with rate 3.

• Influences of φ and K

Let µ = 1, σ = 0, δ = 0.15 and γ = 1. By Theorem 3.3, we obtain x∗p = 3.4116
and Vp(3) = 3.6945. By Table 1 (↑ and ↓ mean increase and decrease, respectively),
the level of x∗q increases as φ or K increases, while the amount of capital injection
η∗ increases when K increases or φ decreases. With the increase of K or φ, the
optimal dividend barrier x∗ = min{x∗p, x∗q} (boldface) switches from x∗q to x∗p, i.e.,
the optimal strategy π∗ switches from π∗q to π∗p. Accordingly, as φ or K increases,
the value function V (3) = max{Vp(3), Vq(3)} decreases and changes from Vq(3) to
Vp(3). Furthermore, if φ = 1.1 and K ≥ 0.4162, or φ ≥ 1.2132 and K = 0.2, the
optimal strategy π∗ ≡ π∗p and V ≡ Vp, i.e. the company prefers declaring ruin to
rescuing itself by capital injection whenever it is on the edge of ruin.

Table 1 Influences of φ and K on η∗, x∗q , x∗p, vq = Vq(3) and vp = Vp(3)

φ = 1.1 K = 0.2
K ↑ 0.2 0.3 0.4162 0.5 φ ↑ 1.1 1.2 1.2132 1.3
η∗↑ 1.6985 2.0399 2.3592 2.5566 η∗↓ 1.6985 1.5212 1.5025 1.3972
x∗q↑ 2.7509 3.0923 3.4116 3.6090 x∗q↑ 2.7509 3.3420 3.4116 3.8348
x∗p≡ 3.4116 3.4116 3.4116 3.4116 x∗p≡ 3.4116 3.4116 3.4116 3.4116
vq↓ 4.3599 4.0204 3.6945 3.4885 vq↓ 4.3599 3.7633 3.6945 3.2841
vp≡ 3.6945 3.6945 3.6945 3.6945 vp≡ 3.6945 3.6945 3.6945 3.6945
1 Optimal periodic dividend barrier and value function are given in bold.
2 Switch of optimal strategy and value function are given in bold and italic.

• Influence of σ

We now consider the influences of the volatility σ on the optimal periodic div-
idend barriers and the associated value functions. Let µ = 0.75, δ = 0.1, γ = 1,
φ = 1.1 and K = 0.35. By Table 2 (↑ and ↓ mean increase and decrease, respective-
ly), we find that, with the increase of σ, the levels of η∗ and x∗q increase while the
levels of x∗p, Vp(4.2) and Vq(4.2) decrease. Larger volatility means higher financial

23



risk. For large volatility, if the capital injection is permitted, it is better to enhance
the dividend barrier to guard against risk; otherwise, it is wiser to pay dividends as
soon as possible. At the same time, the higher risk results in the lower value of profit
(value function). As σ increases, the optimal dividend barrier x∗ switches from x∗q
to x∗p, correspondingly, the optimal strategy π∗ switches from π∗q to π∗p. That is, if
the volatility is large enough, it is more advisable to declare ruin rather than res-
cue the company by capital injection when the ruin occurs. In this example, when
σ ≥ 0.5776, the optimal strategy π∗ ≡ π∗p, i.e., the company prefers ruin to capital
injection when the surplus process hits 0.

Table 2 Influences of σ on η∗, x∗q , x∗p, vq = Vq(4.2) and vp = Vp(4.2)

σ ↑ 0.1 0.2 0.3 0.4 0.5 0.5776 0.6 0.7 0.8

η∗ ↑ 2.6185 2.6207 2.6243 2.6294 2.6358 2.6418 2.6437 2.6528 2.6633
x∗q ↑ 4.1833 4.1880 4.1958 4.2068 4.2208 4.2337 4.2378 4.2577 4.2806
x∗p ↓ 4.2530 4.2512 4.2482 4.2440 4.2387 4.2337 4.2321 4.2244 4.2154
vq ↓ 4.9816 4.9728 4.9581 4.9376 4.9114 4.8872 4.8797 4.8424 4.7999
vp ↓ 4.9119 4.9095 4.9057 4.9003 4.8935 4.8872 4.8853 4.8759 4.8652

1 Optimal periodic dividend barrier and value function are given in bold.
2 Switch of optimal strategy and value function are given in bold and italic.

• Influences of µ, δ and γ

In Fig.1, we let δ = 0.1, γ = 1, σ = 0, φ = 1.15 and K = 0.2. Then we have
x∗p ≡ 0 if and only if µ ≤ µ0 = 0.2338, and x∗ ≡ x∗p if and only if µ ≤ µ1 = 0.7222.
The levels of η∗ and x∗q are decreasing as the drift increases. In contrast, µ has
a mixed impact on the barrier x∗p. On one hand, the increasing drift brings the
company opportunities for profit, which requires a higher dividend barrier to delay
the coming of ruin. On the other hand, larger drift brings the company more benefit,
which calls for a lower barrier to distribute a greater proportion of the surplus as
dividend. Fig.1 also shows that the optimal strategy π∗ switches from π∗p to π∗q when
µ increases. That is, the company prefers capital injection to avoid ruin when its
perspective is good enough.

The influence of δ is depicted by Fig.2 with µ = 1, γ = 1, σ = 0, φ = 1.1 and
K = 0.2. We obtain x∗ ≡ x∗p if and only if δ ≥ δ1 = 0.1868 and x∗p ≡ 0 if and only
if δ ≥ δ0 = 0.4646. With the increase of δ, the levels of η∗, x∗q and x∗p decrease. The
larger force of interest means more impatience of managers. Then it is the sooner
the better to pay out dividends, which calls for the lower barriers of dividend. The
optimal strategy π∗ switches from π∗q to π∗p with the increase of δ. That is, if δ is
high enough, it is advisable to declare ruin whenever it is on the edge of ruin.

Fig.3 and Fig.4 depict respectively the effects of γ and δ on the minimal drift
level µ0 such that the optimal barrier is strictly positive. For fixing δ = 0.1, Fig.3
shows that larger γ results in lower µ0. This means that more frequent dividends
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compensate for lower expected profit µ. In Fig.4, fixing γ = 1 and increasing δ have
a increasing impact on µ0, which means that more impatience of manager requires
a higher expected profit. These explanations are consistent with the numerical
illustrations of Figure 2 in Avanzi et al. (2014).
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Appendix A. Proofs of Lemma 2.1 and Lemma 3.3

Proof of Lemma 2.1. Similar to Lemma 3.2 in Peng et al. (2012), we prove
the result by constructing a strategy π̂ such as V (x; π̂) ≥ V (x; π) where π is an
admissible strategy with the amount of capital injections z > 0 at the initial time,
i.e., τπ1 = 0 and ξπ1 = z.

We define the stopping time τπz = inf{t ≥ 0 : Xπ
t ≤ z} and the number of capital

injections before τπz by m = sup{n ≥ 1 : τπn < τπz }. The strategy π̂ is constructed as
follows: Lπ̂t = Lπt for all t ≥ 0, and

τ π̂i = τπi+1, ξπ̂i = ξπi+1, for i = 1, 2, · · · ,m− 1;

τ π̂i = τπi , ξπ̂i = ξπi , for i = m+ 1,m+ 2, · · ·.

If τπz =∞, then τπ = τ π̂ = m =∞. We have

V (x; π̂)− V (x; π) = K + φz ≥ 0.

If τπz < ∞, we have X π̂
t > 0 for t < τπz by the definitions of τπz and π̂. We set

τ π̂m = τπz and ξπ̂m = z, then X π̂
τ π̂m

= Xπ
τπz

. Furthermore, we obtain

V (x; π̂)− V (x; π) = K + φz − Ex[e−δτ
π
z (K + φz)] ≥ 0.

Hence, the result is proved. In other words, if capital injection occurs, Xπ∗
τn− = 0, a.s.

holds for the optimal strategy π∗.

Proof of Lemma 3.3. We still denote by Sm the stopping time Sm = inf{t ≥
0 : X

πp
t > m or X

πp
t < 1

m
}. Under a periodic barrier dividend strategy πp in (3.6),

substituting ν
πp
s = X

πp
s− + ∆Xs − xp and xp = X

πp
s− + ∆Xs − νπps in (2.11), removing

the capital injection and taking the expectations, we obtain

Ex[e−δ(t∧Sm)V (X
πp
t∧Sm ; πp)]

=V (x; πp)− Ex

[∫ t∧Sm

0

e−δs(X
πp
s− + ∆Xs − xp)1{Xπp

s−+∆Xs≥xp}dNs

]
+ Ex

{∫ t∧Sm

0

[(A − δ)V (X
πp
s−; πp) + γM(s)]ds

}
,

(A.1)

where M(s) =
[
X
πp
s− + ∆Xs − xp + V (xp; πp)− V (X

πp
s− + ∆Xs; πp)

]
1{Xπp

s−+∆Xs≥xp}.

Since V (x; πp) is bounded above by a linear function, there exist two constants β1

and β2 such that

0 ≤ e−δ(t∧Sm)V (X
πp
t∧Sm ; πp) ≤ β1X

πp
t∧Sm + β2 ≤ β1 sup

t≤Tπp
X
πp
t + β2.
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By (21) in Kuznetsov et al. (2012), we have

Ex[ sup
0≤t≤T1

Xt] = x+ E[ sup
0≤t≤T1

Xt] = x+
µ

γ
+

1

Φ(γ)
,

where Φ(γ) = sup{s ≥ 0 : ψ(s) = γ}. Similar to (3.73) in Avanzi et al. (2014), we
obtain that {e−δ(t∧Sm)V (X

πp
t∧Sm ; πp)} is dominated by a nonnegative and integrable

random variable. Letting t and m go to∞ in (A.1), using the dominated convergence
theorem, noting that V (x; πp) is right continuous at zero, and Sm ↑ T πp , Xπp

Tπp = 0
a.s., we get

V (x; πp) = Ex

[∫ Tπp

0

e−δs(X
πp
s− + ∆Xs − xp)1{Xπp

s−+∆Xs≥xp}dNs

]
,

if and only if

(A − δ)V (x; πp) + γ[x− xp + V (xp; πp)− V (x; πp)]1{x≥xp} = 0.

The continuous condition in (3.10) is obtained by (3.8) and (3.9).

Appendix B. Scale Functions

We now recall the definition of the q-scale function for the spectrally positive
Lévy process X, whose Laplace exponent ψ is given by (2.1). For q > 0, there exists
a continuous and increasing function W (q) : R 7→ [0,∞), called the q-scale function
defined in such a way that W (q)(x) = 0 for all x < 0 and on [0,∞) its Laplace
transform is given by∫ ∞

0

e−sxW (q)(x)dx =
1

ψ(s)− q
, s > Φ(q),

where Φ(q) is given by (2.2). We give the function Z(q)(x), closely related to W (q)(x),
by

Z(q)(x) = 1 + q

∫ x

0

W (q)(y)dy, x ∈ R,

and its anti-derivative

Z
(q)

(x) =

∫ x

0

Z(q)(y)dy = x+ q

∫ x

0

∫ y

0

W (q)(z)dzdy, x ∈ R.

Noting that W (q)(x) is identically zero on the negative half line, we have Z(q)(x) = 1

and Z
(q)

(x) = x for x ≤ 0.
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The so-called second scale function is defined by, for s ≥ 0,

Z(q)(x, s) = esx
(

1− (ψ(s)− q)
∫ x

0

e−syW (q)(y)dy

)
, x ≥ 0, (B.1)

and Z(q)(x, s) = esx for x < 0. Note Z(q)(x, s) = Z(q)(x) for s = 0 and that we can
rewrite Z(q)(x, s) for s > Φ(q) in the form

Z(q)(x, s) = (ψ(s)− q)
∫ ∞

0

e−syW (q)(x+ y)dy, x ≥ 0, s > Φ(q). (B.2)

From Chan et al. (2011), we know the following facts about the scale function.
If X has paths of bounded variation, we have that W (q) ∈ C1((0,∞)) if and only if
the Lévy measure ν has no atoms, particularly, if ν is absolutely continuous with
respect to Lebesgue measure, W (q) ∈ C1((0,∞)). In the case that X has paths
of unbounded variation, it is known that W (q) ∈ C1((0,∞)). Moreover, if σ > 0,

C1((0,∞)) may be replaced by C2((0,∞)). Hence, Z(q) ∈ C1((0,∞)), Z
(q) ∈ C1(R)

and Z
(q) ∈ C2((0,∞)) for the bounded variation case, while Z(q) ∈ C1(R), Z(q) ∈

C2((0,∞)), Z
(q) ∈ C2(R) and Z

(q) ∈ C3((0,∞)) for the unbounded variation case.
Considering the asymptotic behavior near zero, we have

W (q)(0+) =


0, if X is of unbounded variation,

1

c0

, if X is of bounded variation.
(B.3)

References

Albrecher, H., Cheung, E. C. K., Thonhauser, S., 2011a. Randomized observation
periods for the compound poisson risk model: dividends. Astin Bulletin, 41(2),
645-672.

Albrecher, H., Gerber, H. U., Shiu, E. S., 2011b. The optimal dividend barrier in
the Gamma-Omega model. European Actuarial Journal, 1(1), 43-55.

Albrecher, H., Ivanovs, J., Zhou, X., 2016. Exit identities for Lévy processes observed
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