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In this work, we study the short-time dynamics of a molecular junction described by Anderson-Holstein model
using full-counting statistics after projective measurement. The coupling between the central quantum dot (QD)
and two leads was turned on at remote past and the system is evolved to steady state at time t = 0, when we
perform the projective measurement in one of the lead. Generating function for the charge transfer is expressed as
a Fredholm determinant in terms of Keldysh nonequilibrium Green’s function in the time domain. It is found that
the current is not constant at short times indicating that the measurement does perturb the system. We numerically
compare the current behaviors after the projective measurement with those in the transient regime where the
subsystems are connected at t = 0. The universal scaling for high-order cumulants is observed for the case
with zero QD occupation due to the unidirectional transport at short times. The influences of electron-phonon
interaction on short-time dynamics of electric current, shot noise, and differential conductance are analyzed.
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I. INTRODUCTION

Quantum transport systems that are driven out of equilib-
rium due to external fields are stochastic in nature [1,2]. Just
as what is pointed out in the seminal paper by Landauer [3],
cross current correlation can be used to determine whether
the quasiparticle is fermionic or bosonic and one can get
the effective charge of quasiparticles from the shot noise in
fractional quantum Hall effect [4]. Full-counting statistics
(FCS) in electronic transport, which was initially formulated
by Levitov and Lesovik can give us a full scenery of probability
distribution of transferred charges besides the current and shot
noise [5–28]. Generating function (GF), from which one can
get high-order cumulants by taking derivatives with respect
to the counting field, is the key in studying FCS and has
various applications. Entanglement entropy is difficult to be
measured experimentally, it was proposed that a series of
the charge cumulants, which are measurable can be used to
approach it [29–33]. The dynamical Lee-Yang zeros of GF
of an observable in open quantum systems can be accessed
using high-order cumulants [34–37]. The fluctuation theorem
of GF can reveal the symmetry of a thermodynamic network
[11,38–41]. Efficiency statistics of a thermoelectric engine can
be calculated from the GF via the large deviation principle
[41–45]. GF of spin transfer torque has also been used
to calculate the magnetization switching probability [46].
Negative quasiprobability distributions are studied in FCS due
to an interference effect [26,27].

Besides FCS in steady states, which has been studied
extensively, FCS in transient regime attracts attentions recently
[18–24]. In the transient regime, the subsystems are connected
at time t = 0 and then the connected system evolves towards
a steady state. This is different from partition-free approach
by Cini [47–53] in which the system is well connected in
equilibrium and the bias is applied suddenly at t = 0. Universal
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scaling behaviors with respect to relative amplitudes of the
higher-order particle or energy cumulants are found at short
times for an initially unidirectional process [20–23]. FCS
in the transient regime has also been used to determine the
nonequilibrium population of the Andreev bound states in
the quantum quench dynamics in Josephson junction [24].
Transient behaviors in cold atoms systems have also been
investigated experimentally [54,55].

Although the probability behaviors of physical quantities
have been theoretically studied by their FCS, the experimental
measurement is often cumbered by the detectors strong back
action on the system. Discussions on quantum measurement
in electronic transport systems involve both the von Neumann
projection postulate and detector’s back-action effect on the
system [56,57]. In Refs. [56] and [57], the quantum point
contact (QPC) detector is capacitively coupled to the central
scattering region and the current through QPC detector serves
as a readout for the charge in the scattering region. When
the coupling strength tc between the detector and scattering
region is larger than hγ , which is related to the QPC tunneling
time scale 1/γ , strong back action of the detector on the
system leads to the strong projective measurement. The weak
measurement regime goes to the case with tc � hγ . However,
in the two-time measurement scheme in Ref. [11], the strong
(projective) measurement is performed in the electrode at
two times, so that the number of electrons transferred during
this period is counted. FCS of projective measurement in
phonon transport system has been studied using this two-time
measurement scheme [11,58–60] and the lacuna should be
filled in electron transport. For the projective measurement
regime discussed in this paper, the system was connected at
remote past so that it reaches nonequilibrium steady state at
t = 0 after which we do quantum measurement [11].

In this work, we apply the Keldysh NEGF technique to
investigate the short-time behavior of electronic transport
of a molecular junction with electron-phonon interaction
after quantum projective measurement. Dressed tunneling
approximation (DTA) is used in dealing with the strong
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electron-phonon interaction [61–64]. GF is expressed in terms
of a Fredholm determinant in the time domain. An approximate
current expression is obtained from GF by expanding the
determinant to first order with respect to the self-energy.
This current approximation agrees quite well with the one
by numerical derivative. For the case with empty initial
dot occupation, transient regime where the subsystems are
suddenly connected agrees well with the dynamics after pro-
jective measurement, and the universal scaling for high-order
cumulants is observed as well after projective measurement.
Short-time dynamics of current, shot noise, and differential
conductance after projective measurement are studied in the
numerical section. The polaron effect on the current and
shot noise will be discussed. The differential conductance
undergoes a sequence of steps and oscillations are observed
at times t ∼ 2nπ/ω0 at different voltage threshold. The rest
of the paper is organized as follows. In Sec. II, we present
the Anderson-Holstein model of a molecular junction and
GF expressed as a Fredholm determinant. Numerical results
indicating the short-time dynamics are shown in Sec. III.
Finally, concluding remarks are made in Sec. IV.

II. MODEL AND THEORETICAL FORMALISM

A. Model

Molecular electronic devices, wherein the electron-phonon
interactions become pronounced, have been the focus of many
investigations, both experimentally and theoretically [65–72].
A variety of intriguing properties, such as negative differential
conductance [53,66], phonon-assisted current steps [67,68],
Franck-Condon blockade [67–69], and sign change in the
shot noise correction [70] have been found due to the
interplay of electronic and vibrational degrees of freedom.
Transient behaviors have been studied as well [63,73–75].
Theoretically, these phenomena could be understood using a
quantum dot (QD) described by the Anderson-Holstein model
[76–78] coupled to two electrodes. Considering only the lowest
electronic orbital, the single molecule can be simplified as a
single electronic level of a QD being coupled to localized
vibrational mode. The QD then is coupled to the left and right
lead so that the system is driven to a nonequilibrium state
with an external bias applied. The corresponding Hamiltonian
reads as

H = HS + HL + HR + HT , (1)

with the QD Hamiltonian (in natural units, h̄ = kB = e =
me = 1)

HS = ε0d
†d + ω0a

†a + tep(a† + a)d†d, (2)

where ε0 is the bare electronic energy level, and ω0 is the
frequency of the localized vibron. d† (a†) denotes the electron
(phonon) creation operator in the QD. The localized vibron
modulates the QD with the electron-phonon coupling constant
tep. The Hamiltonian of the α lead is given by

Hα =
∑

k

εkαc
†
kαckα, (3)

where the indices kα are used to label the different states in
the left or right lead. HT describes the coupling between the

dot and the leads with the tunneling amplitudes tkα ,

HT = HLS + HRS =
∑
kα

(tkαc
†
kαd + t∗kαd†ckα). (4)

The tunneling rate (linewidth function) between QD and lead
α is assumed to be Lorentzian and has the expression,

�α(ω) = Im
∑

k

|tkα|2
ω − εkα − i0+ = �αW 2

ω2 + W 2
, (5)

with the linewidth amplitude �α and bandwidth W , and one
can denote � = �L + �R . Applying the Lang-Firsov unitary
transformation given by [79]

H̄ = SHS†, S = egd†d(a†−a), g = tep

ω0
, (6)

one can eliminate the electron-vibron interaction term and get
the transformed Hamiltonian

H̄S = ε̄d†d + ω0a
†a, (7)

with the effective bare QD electronic level ε̄ = ε0 − g2ω0. The
tunneling Hamiltonian is then transformed to be

H̄T =
∑
kα

(tkαc
†
kαXd + t∗kαd†X†ckα) (8)

with the phonon cloud operator X = exp[g(a − a†)], while
Hamiltonians of isolated leads are not changed.

Once the voltage bias is applied across the molecular
junction, the system is in a nonequilibrium state and the
particles transfer from one lead to the other. FCS can be used to
characterize the probability distribution of transferred number
of particles �n between an initial time t = 0 and a later time t .
The continuous GF Z(λ,t) with the counting field λ is defined
as the Fourier transform of discrete probability distribution
P (�n,t) and has the form,

Z(λ,t) =
∑
�n

P (�n,t)eiλ�n. (9)

The kth charge cumulant 〈〈(�n)k〉〉 can be calculated by taking
the kth derivative of the cumulant generating function (CGF),
which is the logarithm of GF with respect to λ at λ = 0:

Ck(t) ≡ 〈〈(�n)k〉〉 = ∂k ln Z(λ,t)

∂(iλ)k

∣∣∣∣
λ=0

. (10)

The current cumulants which are defined as,

〈〈I k〉〉 = ∂Ck(t)

∂t
, (11)

tend to the steady-state current cumulants in the long-time
limit t → ∞. The second cumulant could be expressed as
C2(t) = ∫ t

0 dt1
∫ t

0 dt2〈δI (t1)δI (t2)〉, so that the second current
cumulant expressed in a symmetry form is

〈〈I 2〉〉 = 1

2

∫ t

0
dt1[〈δI (t1)δI (t)〉 + 〈δI (t)δI (t1)〉], (12)

with δI (t) = I (t) − 〈I (t)〉. One should note that the second
current cumulant 〈〈I 2〉〉 is not an average of a squared quantity.
〈〈I 2〉〉 is the zero-frequency shot noise in the long-time
limit [1].

075417-2



SHORT-TIME DYNAMICS OF MOLECULAR JUNCTIONS . . . PHYSICAL REVIEW B 96, 075417 (2017)

0 t∞

γ+=(-λ/2 -ξ)θ(t)

γ -=(+λ/2 -ξ)θ(t)

-

FIG. 1. Complex contour defined from time −∞ to time t and
then back to time −∞ in Keldysh space.

B. Projective measurement and generating function

We count the number of transferred electrons in the left
lead, and the electrons flowing from the left lead to the QD
is defined as the positive direction of the current. The current
operator is given by

ÎL(t) = −dtN
(h)
L (t), (13)

with the electron number operator N
(h)
L (t) = ∑

k c
†
kL(t)ckL(t)

in the Heisenberg picture and dt being the total differential
with respect to time. N

(h)
L (t) is related to the number operator

in the Schrödinger picture NL(0) by,

N
(h)
L (t) = U (0,t)NL(0)U (t,0), (14)

where the evolution operator is

U (t,t ′) = TC exp

{
− i

h̄

∫ t

t ′
H (t1)dt1

}
, (t > t ′), (15)

with the time-ordering operator TC . The system starts at
t = −∞ with the leads and QD disconnected. The couplings
between the leads and QD are switched on from t = −∞
and the system evolves to steady state at time t = 0. This is
different from the transient regime studied before [18–20,22]
in which the couplings between the leads and central QD are
suddenly turned on at t = 0 and then system evolves towards
the stationary state. In the regime considered in this work,
the system at t = 0 is in state |�0〉 and has a complete set
of eigenstates |n0〉 corresponding to number operator NL(0),
that is,

NL(0)|n0〉 = n0|n0〉, P0 = |n0〉〈n0|. (16)

The system will be projected to state P0|�0〉 after the first
measurement at t = 0 in the left lead. Second measurement
with projective operator Pt = |nt 〉〈nt | is performed at a later
time t on the evolved state U (t,0)P0|�0〉, so that the state at
time t is |�t 〉 = PtU (t,0)P0|�0〉.

GF can be expressed in this the two-time quantum mea-
surement scheme as [11,19,23,60],

Z(λ,t) = Tr{ρ ′(0)U †
λ/2(t,0)U−λ/2(t,0)}, (17)

with the modified evolution operator (γ = ±λ/2 depending
on the branch of the contour, see Fig. 1),

Uγ (t,0) = TC exp

[
− i

h̄

∫ t

0
Hγ (t ′)dt ′

]
, (18)

and the projected density matrix

ρ ′(0) =
∑
n0

P0ρ(0)P0. (19)

The projected density matrix are used to measure the dis-
tribution of N (0), the information of ρ(0) is evolved from
remote past and is unknown. The modified Hamiltonian reads
as Hγ (t) = eiγNL(0)H̄ e−iγNL(0). Using the Baker-Hausdorff
lemma, we obtain

Hγ (t) =H̄S + HL + HR

+
∑

k

[eiγ tkLc
†
kLXd + tkRc

†
kRXd + H.c.]. (20)

Here we should note that counting field γ only enters the
modified Hamiltonian through the coupling term between QD
and the left lead in which the transferred electrons are counted.

Projection operator P0 could be written in the form as,

P0 =
∑

n

∫ 2π

0

dξ

2π
e−iξ (n0−n)|n〉〈n| =

∫ 2π

0

dξ

2π
e−iξ (n0−NL(0)),

(21)

through Kronecker δ function, so that ρ ′(0) could be expressed
in an integral form,

ρ ′(0) =
∫ 2π

0

dξ

2π
eiξNL(0)ρ(0)e−iξNL(0). (22)

Plugging Eq. (22) into Eq. (17), GF could be written as,

Z(λ,t) =
∫ 2π

0

dξ

2π
Z(λ,ξ,t), (23)

with

Z(λ,ξ,t) = Tr
{
ρ(0)Uλ/2−ξ (0,t)U−λ/2−ξ (t,0)

}
. (24)

Since the coupling between QD and the leads is turned on at
remote past t = −∞, the density matrix ρ(0) can be obtained
by evolving the system from direct product state ρ(−∞) =
ρL ⊗ ρS ⊗ ρR and expressed as,

ρ(0) = U (0,−∞)ρ(−∞)U (−∞,0). (25)

This enables us to rewrite Eq. (23) as

Z(λ,t) =
∫ 2π

0

dξ

2π
Z(λ,ξ,t)

=
∫ 2π

0

dξ

2π
Tr{ρ(−∞)Uγ−(−∞,t)Uγ+(t,−∞)}.

(26)

As shown in Fig. 1, the counting fields take values of [19]

γ+(t) = (−λ/2 − ξ )θ (t), γ−(t) = (λ/2 − ξ )θ (t), (27)

for the upper and lower branch of the Keldysh contour,
respectively. Heaviside step function θ (t) is added due to the
fact that the first measurement is performed at t = 0.

In the absence of electron-phonon interaction, GF is
expressed as a Fredholm determinant in the time domain as
[11,19],

Z(λ,ξ,t) = det(GG̃−1). (28)
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with

G̃−1 = G−1
0 − �̃L − �R, G−1 = G−1

0 − �L − �R. (29)

G0(τ,τ ′) denotes the Green’s function of the isolated QD,
�α is the self-energy due to the α lead, and the tilde upon
the self-energy indicates the inclusion of the counting field.
The Green’s functions and self-energies undergo the Keldysh
structure as,

A =
(

A++ A+−
A−+ A−−

)
. (30)

Dyson equation defined on the Keldysh contour has the
following relation (it also holds after Keldysh rotation, which
will be discussed later),

G(t1,t2) = G0(t1,t2)

+
∫ t

−∞
dt3

∫ t

−∞
dt4G0(t1,t3)�(t3,t4)G(t4,t2),

(31)

with �(t3,t4) = �L(t3,t4) + �R(t3,t4). Different components
of left lead self-energy with counting field can be expressed
by �̃ab

L (t1,t2) = exp[−i(γa − γb)]�ab
L (t1,t2) with a,b = +,−

denoting different component index. Explicitly, when −∞ <

t1 < 0, 0 < t2 < t ,

�̃L(t1,t2) = e−iξ

(
e−iλ/2�++

L eiλ/2�+−
L

e−iλ/2�−+
L eiλ/2�−−

L

)
(t1,t2)

; (32)

and when 0 < t1 < t,−∞ < t2 < 0, we can write �̃L(t1,t2)
as:

�̃L(t1,t2) = e+iξ

(
eiλ/2�++

L eiλ/2�+−
L

e−iλ/2�−+
L e−iλ/2�−−

L

)
(t1,t2)

; (33)

and when 0 < t1,t2 < t ,

�̃L(t1,t2) =
(

�++
L eiλ�+−

L

e−iλ�−+
L �−−

L

)
(t1,t2)

; (34)

and finally, when −∞ < t1,t2 < 0, �̃L(t1,t2) = �L(t1,t2).
We now discuss the GF of the interacting case with electron-

phonon interaction within dressed tunneling approximation
(DTA) [20,23,61–64]. Perturbative expansion is usually used
when the electron-phonon interaction is weak [80–82] and
it breaks down in dealing with strong electron-phonon inter-
action. Once the lifetime of the electronic state in the dot
is much larger than that in the bridges between the leads
and QD, which is satisfied in the polaronic regime, we can
apply DTA in which the leads’ self-energies are dressed
with the phonon cloud after decoupling the phonon cloud
operator. DTA can eliminate the pathological features at low
frequencies using the single-particle approximation and at high
frequencies using polaron tunneling approximation [62]. The
dressed self-energies under DTA are expressed as,

�ab
dα(t1,t2) = �ab

α (t1,t2)�ab(t1,t2). (35)

At zero-temperature, the lesser and greater components of
phonon cloud operator �(t1,t2) = 〈TCX†(t2)X(t1)〉 are given

by [78],

�+−(t1,t2) = [�−+(t1,t2)]∗ =
∑
m∈N

αmeimω0(t1−t2), (36)

with αm = e−g2
g2m/m!. The rest components of � could be

obtained by the relations,

�++(t1,t2) = θ (t1 − t2)�−+(t1,t2) + θ (t2 − t1)�+−(t1,t2),

�−−(t1,t2) = θ (t2 − t1)�−+(t1,t2) + θ (t1 − t2)�+−(t1,t2).

(37)

Self-energy �α is replaced with �dα in the Dyson equation
with the expression,

G = G0 + G0�dG, (38)

where �d = �dL + �dR . GF in the strong electron-phonon
coupling under DTA is similar with Eq. (28), so that

Z(λ,t) =
∫ 2π

0

dξ

2π
det(GG̃−1), (39)

with

G̃−1 = G−1
0 − �̃dL − �dR. (40)

One can also perform Keldysh rotation [19,84,85] to
transform the Green’s function and self-energies into upper
triangular matrices in Keldysh space (Larkin-Ovchinnikov
ones) with the relation(

Ar Ak

0 Aa

)
= Lσx

(
Ar Ak

0 Aa

)
L−1, (41)

where the Keldysh matrix is

L = 1√
2

(
1 1

−1 1

)
. (42)

The dressed retarded self-energy can be calculated through
the relation �r

dα(t1,t2) = θ (t1 − t2)[�+−
dα (t1,t2) − �−+

dα (t1,t2)],
and the dressed Keldysh component of self-energy is �k

dα =
2�<

dα + �r
dα − �a

dα with �<
dα = −�+−

dα . Due to Keldysh
rotation, the left lead self-energy with counting field reads [19]

�̃dL(t1,t2) = ϒ∗[γ (t1)]

(
�r

dL �k
dL

0 �a
dL

)
(t1,t2)

ϒ[γ (t2)], (43)

with ϒ[γ (τ )] = exp(−iξ ) exp(−iλσx/2) if τ � 0 and
ϒ[γ (τ )] = 1 for τ < 0. The self-energy �̃dL(τ,τ ′) in the
presence of the counting field should be calculated separately
at four different time regions. Explicitly, when −∞ < t1 <

0, 0 < t2 < t , (�r
L = 0), we can write �̃dL(t1,t2) as,

�̃dL(t1,t2) = e−iξ

(
−i sin λ

2 �k
dL cos λ

2 �k
dL

−i sin λ
2 �a

dL cos λ
2 �a

dL

)
(t1,t2)

; (44)

and when 0 < t1 < t,−∞ < t2 < 0, (�a
L = 0):

�̃dL(t1,t2) = e+iξ

(
cos λ

2 �r
dL cos λ

2 �k
dL

i sin λ
2 �r

dL i sin λ
2 �k

dL

)
(t1,t2)

; (45)

and when 0 < t1,t2 < t, �̃dL(t1,t2) has the expression as [86]

�̃dL(t1,t2) = exp(iλσx/2)�dL(t1,t2) exp(−iλσx/2). (46)
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The Keldysh transformation facilitates us in calculating GF
numerically since the Green’s function and self-energies with-
out counting field are upper triangular in Keldysh space, the
determinant det(G) could be calculated by directly multiplying
its diagonal entries. In the numerical calculations, one can
get the diagonal elements of G̃−1 first so that the inverse
of all these diagonal elements constitute a diagonal matrix
δ and det(GG̃−1) = det(δG̃−1). The time slice discretization
of Green’s function and self-energies in time domain could be
found in Refs. [19] and [23].

Taking the derivative of the GF, Eq. (39), with respect to iλ

using Jacobi’s formula and expanding the determinant to first
order in the self-energy, we can get an approximate expression
of the average number of transferred electrons,

〈�nL(t)〉 =
∫ 2π

0

dξ

2π

∂

∂(iλ)
det(GG̃−1)

∣∣∣∣
λ=0

≈
∫ t

0
dτ

∫ τ

0
dτ ′[Gr (τ,τ ′)�<

dL(τ ′,τ )

+G<(τ,τ ′)�a
dL(τ ′,τ )]

−
∫ t

0
dτ

∫ τ

0
dτ ′[Ga(τ ′,τ )�<

dL(τ,τ ′)

+G<(τ ′,τ )�r
dL(τ,τ ′)

]
. (47)

From 〈�nL(t)〉 = ∫ t

0 IL(τ )dτ , we obtain an approximate
expression for the current in the left lead after projective
measurement at time t ,

IL(t) ≈
∫ t

0
dτ

[
Gr (t,τ )�<

dL(τ,t) + G<(t,τ )�a
dL(τ,t)

] + H.c.

(48)

We can observe that the current expression is different from
that of the steady state [83] wherein the integral with respect
to time is from −∞ to t . Due to the absence of time
translation invariance, the current in the left lead is not the
same with the one in the right lead in short times. We will also
numerically show that the current after projective measurement
oscillates in the short time and evolves to the steady-state
value. This confirms the fact the system is perturbed after the
first projective measurement. Similar behaviors of heat current
have been studied previously in phonon transport [58,59].

III. NUMERICAL RESULTS

In this section, we show our numerical results at zero
temperature. The linewidth amplitudes in the left and right
lead are set equal with �L = �R = 0.5�, and the bandwidth is
set as W = 10� through all the calculations. The voltage bias
�μ = μL − μR is symmetrically applied to the left and right
lead with μL = −μR . The Fredholm determinant is calculated
in discretized time slice grid [19,23]. Cumulants and current
cumulants are measured in the left lead in default.

In Fig. 2, we compare the currents among the one
by numerical derivative with respect to λ after projective
measurement, the approximation using Eq. (48), and transient
regime for ε̄ = −� (top panel) and ε̄ = 5� (bottom panel)
in the absence of electron-phonon interaction. The voltage
bias is �μ = 5� so that μL = −μR = 2.5�. For the transient

FIG. 2. Comparison of currents among the numerical derivative
after projective measurement (blue line), the approximation using
Eq. (48) (green line), and transient regime (red line), in the absence
of electron-phonon interaction. The energies are measured in the unit
of � and the voltage bias is �μ = 5�. Two cases with different
energy levels in QD are considered: ε̄ = −� (top) and ε̄ = 5�

(bottom). 1/� is the unit of time. In the inset of bottom panel, we
also compare current noise between the projective measurement and
transient regime for ε̄ = 5�.

regime, we shall have an initial dot occupation [20,22,23],
which is set related to the steady-state lesser Green’s function
at equal times with nd = −iG<(0,0). For the case in which
the effective QD level is chosen between the leads chemical
potentials with ε̄ = −�, nd = 0.8707, and for ε̄ = 5�, which
is above μL, nd = 0. We can observe that currents oscillate at
short times and the currents calculated from Eq. (48) have good
approximations at both short times and long times in spite of
some deviations near t ≈ �−1. The current and current noise
(i.e., the second current cumulant, shown in the inset of bottom
panel) for ε̄ = 5� calculated in the transient regime almost
agree with the ones by numerical derivative while for ε̄ = −�

the currents agree poorly at short times. It suggests that the
initial density matrix ρ(0) is almost diagonal for ε̄ = 5�,
implying that the coherence in the system is not important. We
can conclude that the dynamics after projective measurement
can be well described by the transient regime for the zero dot
occupation case.

We study the universal scaling of high-order cumulants
(from the fourth to tenth order) for both ε̄ = −� and ε̄ = 5�

in Fig. 3. The cumulants are obtained by numerical derivatives
with respect to λ using Eqs. (10) and (39). The maximum
amplitudes of the relative cumulants Ck/C1 normalized with
(k − 1)! in the logarithmic scale are shown. The linear slope
corresponding to ε̄ = 5� (nd = 0) indicates a universal scaling
of high-order cumulants with max|Ck/C1| ∼ (k − 1)! x−k

where x is an unknown constant (x = π in the transient regime
[20]). The universal scaling is broken for the case of ε̄ = −�.
A slight deviation from the linear slope of tenth cumulant for
ε̄ = 5� may be due to numerical inaccuracy. The analytical
explanation has been made in the transient regime that
unidirectional transport is essential to have this linear slope of
universal scaling [20,21]. This is also reported experimentally
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FIG. 3. The maximum amplitudes of the relative cumulants
Ck/C1 normalized with (k − 1)! in the logarithmic scale for ε̄ = −�

(green line) and ε̄ = 5� (red line). The linear slope corresponding
to ε̄ = 5� (zero dot occupation) indicates a universal scaling with
max|Ck/C1| ∼ (k − 1)! x−k where x in an unknown constant in this
work. The universal scaling is broken for the case of ε̄ = −�.

in measuring high-order cumulants in a steady-state Coulomb
blockade system [14]. In the projective measurement discussed
in this work, the short-time behavior is unidirectional for
ε̄ = 5�, in which it can be well described by the transient
regime as shown in Fig. 2, while bidirectional for ε̄ = −�.
Universal scaling of factorial cumulants has also been observed
in the steady states [87,88].

In order to show the influences of electron-phonon in-
teraction on the short-time behaviors, we plot the current
and current noise for ε̄ = −� [Fig. 4(a) and Fig. 4(b)] and
ε̄ = 5� [Fig. 4(c) and Fig. 4(d)] by varying electron-phonon
interaction constant g = 0, g = 1.0, and g = 2.0 in Fig. 4.
The currents at t = 0 are finite which indicates the back action
from the detector. The initial currents increase with a positive
slope and then decrease and oscillate towards steady-state
values. With increased interaction constant g, the times when
the maximum currents locate shift towards smaller times and
eventually the initial slope becomes negative for large g. For
the case of ε̄ = 5�, the dips’ positions of the current and noise
shift towards smaller times with with increasing g, which
is also reported in the transient regime [20]. One can also
observe there are small steps at time t ∼ 2nπ/ω0 for g = 2
and this becomes more pronounced for the case of ε̄ = 5�. The
small steps observed are due to the polaron dynamics with the
phonon cloud operator expressed as Eq. (36).

The current behaviors at the inelastic thresholds with �μ =
nω0 have been investigated both in the steady state [67,68],
and transient regime [20]. It is worth studying the short-time
differential conductance behaviors of the molecular junction
after projective measurement. In Fig. 5, we plot the evolution
of short-time differential conductance ∂I/∂V normalized by
� by varying linewidth amplitudes for �μ = ω0 (top panel)
and �μ = 2ω0 (bottom panel). Electron-phonon interaction
constant is chosen to be g = 2.0. ω−1

0 is the unit of time. The
effective QD level is set zero for a perfect transmitting junction

FIG. 4. Current and current noise for ε̄ = −� [(a) and (b)] and
ε̄ = 5� [(c) and (d)] by varying electron-phonon interaction constant
g = 0 (blue line), g = 1.0 (green line), and g = 2.0 (red line).
ω0 = 2�.

so that the dot occupation is finite and the transport process at
short times is not unidirectional. The differential conductance
undergoes a sequence of up and down steps and only up steps
for �μ = 2ω0 at times t ∼ 2nπ/ω0 due to polaron dynamics
which is described by the polaron cloud operator in Eq. (36).
The oscillations of differential conductance at t ∼ 2nπ/ω0

are observed and these are absent in the transient regime [20].
For �μ = 2ω0 case, the differential conductances start from
negative values at very short times and can even oscillate to

FIG. 5. The evolution of short-time differential conductance
∂I/∂V (normalized by �) under different linewidth amplitude � =
0.05ω0 (blue line), � = 0.25ω0 (green line) and � = ω0 (red line).
The voltage bias is set as �μ = ω0 in the top panel, and �μ = 2ω0

in the bottom one. ε̄ = 0 and g = 2.0.
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FIG. 6. Differential conductances ∂I/∂V versus applied voltage
bias at different times. Since the differential conductance variation
period is 2π/ω0, t = 4ω−1

0 , 10ω−1
0 , 16ω−1

0 , and 22ω−1
0 are located

in the first, second, third, and fourth period, respectively. The bias
voltage ranges from 0.2ω−1

0 to 4.4ω−1
0 with step size 0.2ω−1

0 . The
discontinuity of each line is due to the large voltage step size.

negative values during the evolution even though the overall
steps are upward. With the increasing linewidth amplitude
�, the step structures together with the oscillations of the
differential conductance are damped for both �μ = ω0 and
�μ = 2ω0.

In Fig. 6, we plot differential conductances ∂I/∂V versus
applied voltage bias at different times. Since the conduc-
tance variation period is 2π/ω0, t = 4ω−1

0 , 10ω−1
0 , 16ω−1

0 , and
22ω−1

0 are located in the first, second, third, and fourth period,
respectively. We can observe that the sign of the differential
conductance plateau alternates and the amplitude decreases
with period when the voltage bias is odd times of polaron
frequency. Differential conductances are always positive in
each plateau and the amplitude increases with period once the
voltage bias is even times of polaron frequency.

IV. CONCLUSION

We study the short-time dynamics of a molecular junction
described by Anderson-Holstein model using full-counting
statistics after projective measurement, and obtained the GF
expressed as a Fredholm determinant in the framework of

NEGF by using DTA to deal with electron-phonon coupling.
We perform the projective measurement in the left lead at time
t = 0 when the system has been in a nonequilibrium steady
state. We obtain an approximate current expression from GF by
expanding the determinant to first order with respect to the self-
energy. This current approximation agrees quite well with the
one which is obtained by taking the numerical derivative with
respect to counting field λ. Concerning the difference between
our paper and Ref. [20], we note that the dynamics after
projective measurement in general has two different behaviors
depending on the quantum dot occupation number, which can
be controlled by tuning energy level of the quantum dot. When
the occupation number of the quantum dot is zero, where
density matrix is almost diagonal, the short-time dynamics
after project measurement can be well described by the
transient behavior similar to the sudden switch-on as discussed
by Ref. [20]. However, if the quantum dot occupation number
is nonzero, a different behavior occurs. The universal scaling
for high-order cumulants is observed for the case with zero
QD occupation due to the unidirectional transport at short
times, while the universal scaling is broken for the case with
nonzero dot occupation. Short-time dynamics of electronic
current, noise, and differential conductance are analyzed in
the presence of electron-phonon interaction. The currents at
t = 0 are finite, which indicates the back-action effect due to
quantum measurement. The times when the maximum currents
locate decrease with increasing electron-phonon interaction
constant. The occurrences of small steps at time t ∼ 2nπ/ω0

for g = 2.0 are due to the polaron dynamics and these become
more pronounced for the case of zero dot occupation. The
differential conductance undergoes a sequence of steps and
oscillations are observed at times t ∼ 2nπ/ω0 for both �μ =
ω0 and �μ = 2ω0. With increased linewidth amplitude, the
step structures together with the oscillations of the differential
conductances are progressively damped.
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