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ABSTRACT A decision support system with data-driven methods is of great significance for the prognosis
of scoliosis. However, developing an accurate and interpretable data-driven decision support system is
challenging: 1) the scoliosis data collected from clinical environments is heterogeneous, unstructured, and
incomplete; 2) the cause of adolescent idiopathic scoliosis is still unknown, and the effects of somemeasured
indicators are not clear; and 3) some treatments like wearing a brace will affect the progression of scoliosis.
The main contributions of the paper include: 1) propose and incorporate different imputation methods like
Local Linear Interpolation (LLI) and Global Statistic Approximation (GSA) to deal with complicated types
of incomplete data in clinical environments; 2) identify important features that are relevant to the severity of
scoliosis with embedded method; and 3) establish and compare the scoliosis prediction models with multiple
linear regression, k nearest neighbor, tree, support vector machine, and random forest algorithms. The
prediction performance is evaluated in terms of mean absolute error, root mean square error, mean absolute
percentage error, and the Pearson correlation coefficient. With only a few critical features, the prediction
models can achieve satisfactory performance. Experiments show that the models are highly interpretable
and viable to support the decision-making in clinical environments.

INDEX TERMS Scoliosis prognosis, missing values, feature selection, decision support system, data-driven
method.

I. INTRODUCTION
Idiopathic scoliosis is a complex spine distortion that affects
millions of people in the world [1]. The commonly occurring
symptoms of scoliosis include poor personal image, poor
truncal balance, and susceptibility to back pain. A large spinal
deformity may cause cardiopulmonary compromise resulting
in significant health complications or even death [2], [3].
The severity of scoliosis is usually quantified by Cobb angle,
which is the angle between the two most tilted vertebrae in
the spinal curves [4]. Treatment of scoliosis depends on the
magnitude of Cobb angle and whether it is progressing. Most
scoliosis patients present with minor curves, which requires
periodical examinations to determine any progression. Those
with moderate curves or progressive curves may be treated
with bracing. Only about 0.25% scoliosis cases will require
surgery [5]. A prediction of the curve progression can help
doctors determine which treatment method is most appropri-
ate. However, it is still a challenge for physicians to determine
which scoliosis patients may progress and most rely on their
experience and foresight.

A few studies [6]–[8] have attempted to deal with these
challenges by predicting the Cobb angle or its progression
with data-driven methods. The data-driven methods can pro-
vide reasonable support for doctors to address these two
problems: 1) whether the patient needs close observations in
future; 2) whether the patient should be treated preemptively
in anticipation of future progression.

Wu et al. [3] combined fuzzy c-means clustering methods
and artificial neural network (ANN) to predict the follow-
up scoliosis Cobb angle. The material used included 61
scoliosis patients with at least four follow-up Cobb angle
measurements. This method clusters scoliosis patients into
several groups and assumes their progression follow different
patterns [9]. The model may not be applicable for those
scoliosis patients with few historical records as well as new
scoliosis patients. Chalmers et al. [4], [10] proposed a condi-
tional fuzzy clustering model for predicting the progression
of braced scoliosis. Although the fuzzy method can help
the clustering, the importance of features and their interac-
tions may not be well identified. Ajemba et al. [11] utilized
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common indicators of patients to predict the progression of
scoliosis with support vector machine. However, the method
may find it difficult to apply to those patients with missing
key values.

FIGURE 1. Decision support system for scoliosis prognosis.

Based on the above analysis, we propose a decision sup-
port system for scoliosis prognosis, as shown in Fig. 1. Our
study aims at predicting the scoliosis curvature of patients for
clinical treatments. The initial results of this work has been
reported [12]. In this paper, the situations of missing values
in clinical environments have been intensively analyzed and
handled. The importance of features has been identified and
selected for the prediction models.

II. PROBLEM DESCRIPTION
In clinical practice, the treatment decisions made by doctors
for scoliosis patients usually can be decomposed into three
steps:

Step 1: Diagnosis: Check the symptoms (current diagno-
sis records and historical diagnosis records) of the
patient;

Step 2: Prognosis: Identify or estimate the curvature of the
spine in the future;

Step 3: Decision-making: Find appropriate therapies for the
patient based on the diagnosis and prognosis.

There exist large uncertainties during this decision-
making process, especially in the prognosis step, which
can be affected by many uncontrollable factors such
as the experience or skill level of attending doctors.
Data-driven methods can provide quantitative support for
physicians. The decision support system utilizes both the
current outpatient diagnosis records and the other data in
the Scoliosis Data Reservoir to build this prediction model,
as shown in Fig. 1, which can reduce the uncertainties of
traditional decision-making.

However, there are two main challenges in building the
prediction model for scoliosis in the clinical environment.

1) The scoliosis data are incomplete, and the sources of the
incomplete data are very complicated. Some records are
unavailable due to the following reasons:

• Some tests may not be available for the lack of the
necessary equipment;

• Some measurements may not be appropriate for
certain patients;

• Different doctors may require different measure-
ments.

2) Although there are many risk factors [4], [11], [13]–[15]
have been reported that relate to the progression of
scoliosis, it is hard to identify critical ones and quantify
the effects because of the unknown causes [16].

In general, the incomplete data from complicated
sources and the unclear relation of the indicators are two
major obstacles to having a reliable prediction model
for clinical treatment. In addition, the interpretability is
another important feature that the prediction model should
possess.

III. MATERIAL AND METHOD
A. OVERVIEW
When a new patient comes to seek advice or treatments for
his/her scoliosis problem, the individual data of the patient is
not enough to build a reliable data-driven model for the deci-
sion support. The data from other patients would be a good
reference for the decision support. This idea motivates the
study to establish a reliable and interpreted prediction model
by incorporating the records both from the new patient and
other patients. However, the scoliosis data is often unstruc-
tured data with many missing values, missing features or
even text description data, which restrict the available data
samples for the prediction model. The main work of this
paper is to reduce the complexity of the scoliosis data, so
as to be understood and modeled easily for prognosticating.
The overall method is shown in Fig. 2, and the methods are
outlined in the followings:

• The scoliosis data are recorded as multivariate longi-
tudinal data with much unaccountable noise, missing
values, and categorical features. The clinical data should
be preprocessed to reduce the noise, impute the missing
values and transfer the categorical features to numeric
features.

• Based on the preprocessed data, new features are
extracted from the historical records, the importance of
features are evaluated with random forest importance
metric and Pearson correlation coefficients for the selec-
tion of best feature subset. The features are added to
the initial feature subset sequentially according to their
importance, so as to avoid the exhaustive search. 5-fold
cross-validation is employed to select the best feature
subset.

• The prediction models are established with multivari-
ate linear model, k nearest neighbor regression, tree
regression, support vector machine and random forest
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TABLE 1. Summary of the recorded data.

FIGURE 2. The configuration of data-driven methods for scoliosis
prognosis.

method. The cross-validation that leaves one patient out
is employed to compare their prediction performance.

B. SCOLIOSIS DATA DESCRIPTION
Our data included scoliosis medical records of patients from
the Duchess of Kent Children’s Hospital in Hong Kong.More
than two thousand patients have been involved in this project.
About twenty indicators have been recorded by the hospital,
and Table 1 summarizes the recorded indicators. The Cobb
angle indicates the severity of scoliosis. The larger the Cobb
angle, the worse the scoliosis. The other indicators reflecting
the conditions of patients are assumed to be related with
scoliosis. Some indicators from clinical environments are
measured and recorded manually with unstructured proper-
ties, and hard to be utilized. The unstructured characteristics
of the collected data are summarized in the following aspects:

i Some records of the indicators are missing, and the per-
cent of the missing records are shown in Table 1. The
indicators with many missing values are incapable of
providing useful information when compared to the noise
or measurement error;

ii The indicators, like Brace, Gender or FamHx, with cat-
egorical attribute cannot be fed into data-driven model
directly;

iii The number of spine curvatures may be variable. About
half of the patients have two or more curves. Besides, the
progression patterns of curves are also varied from patient
to patient.

The above phenomena make data extraction difficult for
the prediction of scoliosis. Only part of the indicators have
been considered in the prediction models for its simplicity
and representativeness. For example, some indicators like
BodyHeight, SittingHeight and ArmSpan are highly corre-
lated, thus, only BodyHeight has been incorporated into our
models. Furthermore, the progression process for double or
triple curves is more complicated than the single one. To
simplify the problem, the study concentrates on the prediction
of single curve cases. The paper analyzed total 341 patients
with 80 males and 261 females. The number of records for
each patient is no less than two. The diagnosis age for most
patients is from 10 to 20 years old. The time span for predict-
ing the next CobbAngle is most within one year. Most of the
CobbAngle lie within 10◦ to 50◦. The histogram distribution
for currentAge, TimeSpan and currentCobbAngle as well as
futureCobbAngle are shown in Fig. 3.

The categorical features are encoded with the dummy vari-
able method [17], and the encoded values are summarized in
Table 2. Some features are extracted from the primary indi-
cators to be more representative, such as Age extracted from
Birthday and Appointment Date. The TimeSpan extracted as
the period between two adjacent age parameters for each
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FIGURE 3. The histogram distribution for currentAge, TimeSpan and
currentCobbAngle as well as futureCobbAngle.

TABLE 2. Encoding categorical features.

TABLE 3. Newly constructed features.

patient. The currentBrace, futureBrace and changeBrace are
extracted from the Brace states. Brace wearing was deter-
mined by the doctors and is prospective, thus, the future
information of brace statement can be incorporated into the
prediction model. Since our prediction model aims at pre-
dicting the next magnitude of Cobb angle, the Cobb angle
is divided into currentCobbAngle and futureCobbAngle. The
currentCobbAngle indicates the initial value of Cobb angle.
The futureCobbAngle indicates the next Cobb angle of the
same patient, which is selected as the responsible variable.
The extracted features are summarized in Table 3.

C. MISSING VALUE IMPUTATION
The missing values are common and a tough problem to solve
in clinical datasets. The reasons varied from the manually
missing entry process, equipment errors to incorrect mea-
surements [18]. There are many methods for dealing with
missing values. Some simple methods utilize the most com-
mon values such as mean or median to replace the missing
values, and some machine learning methods like k nearest
neighbor or random forest methods to impute the missing
values [19], [20]. However, handling the missing values is
very specific and domain knowledge related. None of the
solutions above can really directly solve the problem of
missing values.

FIGURE 4. The main types of missing values for the scoliosis data (X1, X2,
X3, X4 and T represent some features of patients; here, T represents the
feature of appointing time and also can be converted to age; t1, t2 or ti
represent the specific time or age and V represent the value of the
corresponding feature at that time for each patient).

In our preprocessing procedure, dealing with missing val-
ues is one of the most challenging tasks. The situation of
missing values in our dataset is very complicated. Fig. 4
indicates the types of missing values, T represents each time
the patient visits the clinic for assessment. X1,X2, X3 and X4
represent part of the measured indicators for each patient. The
"?" indicates the missing value. The main types of missing
values are defined for easy understanding and preprocessing.

Type 1: one appointment record is missing most of the indi-
cators;

Type 2: one indicator is missing in most of the records for an
individual patient, while other patients have almost
complete records for this indicator;

Type 3: the indicator is missing in only a few or part of the
records within an individual patient;

Type 4: the indicator is missing in most of the records for
most of the patients.

A single imputation method is incapable of handling this
complicated situation of missing values. We combine domain
knowledge to analyze the properties of each feature and then
handle the four types of missing values accordingly. Case
deletion is utilized in Type 1 and Type 4, because the instances
and the features with many missing values may bring larger
noise than the useful information they would bring to the
prediction model; As for Type 2 and Type 3 missing condi-
tions, if the indicators are categorical (like FamHx, Brace),
the missing values are considered as a new category and
encoded with a new value;

As for the numeric features (like BodyHeight, RisserSign),
these features are assumed to be correlated with age ignoring
the measurement errors and other noise. The Local Lin-
ear Interpolation (LLI) and Global Statistic Approximation
(GSA) methods are proposed for the imputation of Type 3
and Type 2 conditions respectively.

a) The LLI method assumes that the feature of a patient is
linearly changed within a short growth period, and the
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missing values are imputed with interpolation method.
The LLI method is dealing with the Type 3 missing con-
dition, like features X2, X3 of patient m in Fig. 4. The
Formula (1) shows the implementation of LLI method;

V (Xk , tm) = V (Xk , ti)

+ (V (Xk , tj)− V (Xk , ti))
tm − ti
tj − ti

(1)

where, V (Xk , tm) is the missing value of an individual
patient on feature Xk at appointed time (or age) tm,
V (Xk , tj) and V (Xk , ti) are the time closest values for the
same indicator. The value (V ) of the missing part and the
measured records are not discriminated with the patient
because all the V used in Formula (1) are from the same
patient. tm, ti and tj represent the appointed time (or age)
when the features are measured.

b) For the missing condition of Type 2, the feature of an
individual patient is absent for almost all the values, and
the LLI method is inappropriate for the feature because
of lacking enough information for the interpolation, the
GSA method can be utilized to approximate the most
likely value from other patients on similar growth period.
Formula (2) shows the implementation of GSA.

V (Xk , tm,Pi) =
1
n

∑
j 6=i

V (Xk , tq,Pj)

|tq − tm| < γ (2)

where, V (Xk , tm,Pi) is the missing value for the i-th
patient on feature Xk at age tm, V (Xk , tq,Pj) represents the
value for j-th patient on feature Xk at age tq that similar
to the age tm. The γ controls the similiarity of the age.
Formula (2) utilizes other patients’ non-missing values for
the imputation.
By combining the above methods, the existed missing

value problem can be well handled, and the procedures are
summarized in the following steps:
Step 1: Detecting missing values from all the instances (data

row in Fig. 4), and the instances are deleted if many
features are absent.

Step 2: detecting the missing values over all the features
(data column in Fig. 4), if a feature misses most of
the values, then delete the feature;

Step 3: if a categorical variable is detected with missing
values, then encode a new value to these missing
values, as shown in Table 2;

Step 4: if a numerical variable is detected with missing val-
ues, then apply LLI method to those patients with
enough individual features to support the imputa-
tion, the other patients who failed to implement the
LLI method can utilize the GSA method for the
imputation.

D. FEATURE SELECTION
The aim of feature selection is to improve the prediction
accuracy, reduce the computation cost and a better inter-

pretation of the data. In many datasets, the effect of some
features are unclear to the response variable, which need to
be carefully selected considering both the complexity and
the accuracy of prediction model. There are many methods
for feature selection, like filter method, wrapper method
and embedded method [21], [22]. The embedded method
incorporates the filter method and wrapper method together,
which can reduce the computation cost and also consider the
interaction of features.

In our scoliosis dataset, the Cobb angle is measured to
reflect the severity of the spinal deformity. The other indica-
tors reflect the states or conditions of patients. The influences
of indicators on the severity of scoliosis are not clear in theory.
The embedded method is utilized for the feature selection
in this study. The importance of the indicators is first eval-
uated with Pearson correlation coefficient, and random forest
importance metric then the feature selection procedures are
implemented into the training procedure with 5-fold cross-
validation.

1) RANDOM FOREST IMPORTANCE METRIC
Random forest [23], [24] method has been utilized to estimate
the importance of features. The method evaluates the impor-
tance of a feature Xm for predicting Y by summing up the
weighted impurity decreases for all nodes that used Xm, and
then averaged over all trees in the forest:

Imp(Xm) =
1
NT

∑
NT

∑
tεT :v(st )=Xm

p(t)1i(st , t) (3)

where p(t) is the proportion Nt/N of samples reaching node
t and v(st ) is the variable used in split st . 1i(st , t) is the
maximum decrease of impurity measure i(t) when splitting
the variable st = s∗.

1i(st , t) = i(t)− pL i(tL)− pRi(tR) (4)

where the partition of theNt node samples into tL and tR, and
pL = NtL/Nt and pR = NtR/Nt . The impurity measure i(t)
can be selected as the Gini index, the Shannon entropy or the
variance of response variable Y .

2) PEARSON CORRELATION COEFFICIENT
The Pearson product-moment correlation coefficient is an
index to measure the linear relation between two vari-
ables (X and Y ). The Formula (5) were first developed by
Pearson [25].

r =

∑n
i=1(yi − y)(xi − x)√∑n

i=1(yi − y)2
√∑n

i=1(xi − x)2
(5)

where xi, yi are the realization of X and Y respectively, x
is the mean of xi(i = 1, 2, 3, ...), and y is the mean of
yi(i = 1, 2, 3, ...). The coefficient r can be utilized as an
importance metric to measure the importance of predictor
variables [21].
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3) THE PROCEDURE OF FEATURE SELECTION
The embedded methods are implemented in this procedure
to avoid training an exponential amount of models. The
5-fold cross-validation is utilized to train the prediction
model based on different feature subsets. The performance
is evaluated with mean absolute error (MAE), and root mean
square error (RMSE). The procedures are shown in the
following steps:
Step 1: Evaluate features’ importance with random for-

est importance metric and Pearson correlation
coefficient, then rank the features from
top to bottom according to their importance
respectively;

Step 2: select the most important feature as the initial sub-
set, for example, currentCobbAngle, and add other
features to the subset sequentially according to the
ranked order;

Step 3: when one feature is added to the subset, measure the
performance of the prediction model on the selected
feature subset with cross-validation;

Step 4: repeat step 3 until all features are added to the sub-
set and the performance is measured with cross-
validation, compare the performance and choose the
best feature subset accordingly.

E. PREDICTION WITH DATA-DRIVEN ALGORITHMS
To investigate the relationship between the recorded
indicators and the future Cobb angle, both nonparametric
and parametric data-driven methods are implemented for
the scoliosis prediction, that are linear model (LM), k near-
est neighbor algorithm (kNN), tree model, support vector
machine (SVM) and random forest (RF) [26]. LM is the
most basic regression method to model the linear relation-
ship between predictor variables and responsible variable.
kNN regression is a nonparametric method that predicts the
value directly according to the value of nearest neighbors.
The hyperparameter k is usually decided arbitrary or selected
with grid search method. Tree models divide the training
instances into different subspaces and make prediction with
the average of the values within the same subspace. Treemod-
els are noisy, but the bagging trees can reduce the variance
greatly. The random forest is a bagging method that
grows trees with random selections of the input vari-
ables, which can lessen the correlation between the
trees [28]. Support vector machine (SVM) is designed
for the binary classification problem by mapping fea-
tures into hyperspace and then introducing the optimal
hyperplane with maximized margin to separate different
classes. SVM can also be adapted to regression problem
by introducing the ε - insensitive error function for the
optimization [27].

The five algorithms are the typical data mining techniques
for regression, which are capable of capturing both the linear
and nonlinear relationship. The prediction performance is
evaluated and compared in section IV.

TABLE 4. The seven methods for dealing with missing values.

F. MODEL EVALUATION
The performance of the applied models is assessed by mean
absolute error (MAE), root mean square error (RMSE),
mean absolute percentage error (MAPE) and Pearson product
moment correlation coefficient (r):

MAE =
1
n

n∑
i=1

|yi − ŷi| (6)

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)2 (7)

MAPE =
1
n

n∑
i=1

|
yi − ŷi
yi
| (8)

r =

∑n
i=1(yi − y)(ŷi − ŷ)√∑n

i=1(yi − y)2
√∑n

i=1(ŷi − ŷ)2
(9)

where yi is the actual value of the Cobb angle at appointed
time ti, ŷi is the prediction value of the Cobb angle at
appointed time ti, y is the mean of yi, ŷ is the mean of ŷi,
i indicates the i-th individual, n is the number of the total
samples.

The MAE, RMSE, MAPE are different kinds of errors
that should be minimized as much as possible, the smaller
the errors, the better the model performance. While the
Pearson correlation can be interpreted as a kind of accu-
racy, the higher the correlation, the better the model
performance.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTS FOR HANDLING MISSING VALUES
In the settings of the experiments, the data are preprocessed
with the above methods except for dealing with missing
values. Different methods for handling the missing values
are implemented for the scoliosis data, i.e. the case deletion,
case deletion combinedwith feature deletion,median ormean
value imputation and knn imputation, as well as our proposed
methods. It should be noted that only k = 2 works for the
knn imputation on our scoliosis data, because a larger k is
unable to obtain enough complete neighbors for supporting
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TABLE 5. Comparing the performance of the imputation methods.

FIGURE 5. The cross-validation performance of five regression models
influenced by different methods of handling missing values.

the imputation. The methods of handling missing values are
summarized in details in Table 4.

The five prediction models are built on all these handled
datasets. The 5-fold cross-validation MAE and RMSE are
employed to evaluate the performance. The qualitative results
are compared in Fig. 5. Moreover, the standard deviations
among the 5-fold cross-validation are added as error bars
to the mean value of MAE and RMSE. For quantitative
comparing the performance of all the seven methods, the
results are converted to the reduced percentage MAE or
RMSE of the baseline, as shown in Formula (10) and (11).
The MAE and RMSE of method A are selected as the base-
line.

TABLE 6. Ranked features with decreasing importance.

Table 5 shows the quantitative performances of reduced per-
centage MAE and reduced percentage RMSE to the baseline.

rpMAE = (1−
MAE

MAEbaseline
)× 100% (10)

rpRMSE = (1−
RMSE

RMSEbaseline
)× 100% (11)

From Fig. 5 and Table 5, our proposed approach, method
G outperforms other methods in threefold: (1) the cross-
validation MAE and RMSE are smaller than any of the
other methods for almost all five prediction algorithms;
(2) the error bars that indicate the standard deviation for our
proposed methods are smaller than most of other methods
for almost all the five prediction algorithms; (3) the average
reduced percentage MAE (rpMAE) for all five algorithms is
18.5%, and the average reduced percentage RMSE (rpRMSE)
is 11.3%, which is larger than any of the corresponding
values.

B. EXPERIMENTS FOR BEST FEATURE SUBSET SELECTION
In these experiments, we evaluate the importance of features
with both Pearson correlation and random forest importance
metrics. Then, we utilize the embedded method to select best
feature subset. The features are ranked in Table 6 according to
the importance. The features at the top are considered as more
important than the features on the bottom. The importance list
of features are partially different due to the different criteria.
Some features are in the same ranking positions while others
are not, for example, the most important feature is considered
as currentCobbAngle by both importance metric while the
second important features are not the same. The two different
importance rankings can provide a new perspective on the
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TABLE 7. Results of feature selection.

FIGURE 6. The RMSE of feature selection procedure embedded with
random forest importance metrics and Pearson correlation respectively.

feature importance in terms of both linearity and nonlinearity.
The embedded method for feature selection is imple-

mented accompanying ranked features. The performance of
the five regression algorithms on all the selected feature
subsets is evaluated with cross-validation RMSE and MAE.
The cross-validation RMSE of the five regression models
during the feature selection procedures is shown in Fig. 6.
Fig. 6 (a) and Fig. 6 (b) show the RMSE corresponding to
different feature importance metrics respectively. The MAE
plots show the similar trend of the procedures and are not
displayed here due to the limited pages.

TABLE 8. The model performance on features selected with random
forest importance metric.

From Fig. 6 (a), the RMSE is not decreased for most
of the models as these features were added to the feature
subset sequentially. It is hard to find the turning point that the
RMSE will be significantly reduced due to the newly added
feature for all five prediction models. The performance of
the linear model, tree model, and support vector machine is
hardly improved during the procedure; while the k nearest
neighbor waves a lot during the procedure; the performance
of random forest also waves at first but keeps stable at last
when adding more than five features into the initial feature
subset. Thus, according to the results, the first additive feature
is selected to the best feature subset. The best feature subset
for these five prediction models includes two features that are
currentCobbAngle and changeBrace, as shown in Table 7.

The substantial decrease of RMSE for most of the models
can be found in Fig. 6 (b). The RMSE is decreased for most
prediction models and then keeps stable or even increase
due to the overfitting as the feature adding to the feature
subset. The turning point happens when adding additional
four features to the initial feature subset for LM, KNN, TR
and SVM. While for random forest, the turning point occurs
when adding additional five features to the initial feature
subset. Thus, the best feature subsets for the five models are
shown in Table 7.

C. PREDICTIONS AND MODEL COMPARISONS
In this section, the latest Cobb angle is predicted for each
scoliosis patient. The prediction models are built based on the
selected best feature subsets. The performance is evaluated
with MAE, RMSE, MAPE and Pearson correlation over the
cross-validataion that leave one patient out. The results are
shown in Table 8 and Table 9. The prediciton errors are shown
in Fig. 7 and Fig. 8 with boxplot. In addition, the boxplot
of prediction errors for best 95% samples are also indicated
respectively.

From Table 8 and Table 9, the performance is similar for
tree model and SVM with respect to different best feature
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TABLE 9. The model performance on features selected with Pearson
correlation.

FIGURE 7. The boxplot of prediction error on the feature set selected with
random forest importance metrics.

subsets. The linear model, kNN and random forest model
perform slightly better on the BFS selected with Pearson
correlation coefficient. However, the embedded method with
random forest importance metric selects less features.

As for the individual algorithm, SVM with best MAPE
21.3% and Pearson correlation 0.86 performs slightly better
than random forest and linear regression model. The linear
model is quite straightforward and easy to understand. The
performance of the linear model is acceptable with MAPE
23.5% and the predicted correlation 0.848. Random forest is
an ensemble model, and the performance is better than the
tree model as expected. kNN is not favorable for the scoliosis
data due to the huge uncertainty that cannot find effective

FIGURE 8. The boxplot of prediction error on the feature set selected with
Pearson correlation importance metric.

nearest neighbors to support the correct predictions. SVM
is suitable for an accurate prediction while linear model is
good for the interpretation. The accuracy and interpretability
of the models are both necessary for the decision support in
the management of scoliosis.

From the boxplot of the prediction errors, the Cobb angle
of some patients (less than 5%) cannot be well predicted with
absolute error more than 20◦. While most of the prediction
errors are within ±10◦, as can be found in Fig. 7(b) and
Fig. 8(b).

V. DISCUSSION
Our study focuses on the prediction models to facilitate the
prognosis of scoliosis in clinical workflow. The records are
collected in the routine clinic setting with large uncertainty.
The complexity of the scoliosis data has been analyzed and
reduced with our proposed methods. The proposed miss-
ing values imputation methods try to preserve the original
data information from being discarded and reduce the noise
introduced by the imputed values. Different types of missing
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values have been described and handled with the proposed
methods. Our proposed methods outperform other deletion
methods, mean/median imputation methods and knn imputa-
tion method on almost all five regression algorithms.

The recorded indicators and extracted features partly
reflect the initial states and the trend of these states as well
as scoliosis interventions. However, the significance of these
indicators with regards to progression is still unclear. In our
study, we provide an importance ranking for these indicators
based on an intuitive understanding of their importance with
the future Cobb angle. Both linear and nonlinear impor-
tance metrics have been utilized to rank the importance of
these indicators, which can provide a comparable relationship
between the severity of scoliosis and these indicators. For
example, we can claim that the current Cobb angle has a
stronger relationship to the next Cobb angle than any other
indicators in terms of both linearity and nonlinearity.

The irrelevant or redundancy information existed in the
features may lead to overfitting and difficulty in interpreting
the prediction models. Based on the importance ranking list,
the embedded methods are employed for the feature selec-
tion to make the prediction model less complex and with
higher interpretability. The performance of each prediction
algorithm on feature subset that was selected with correlation
coefficient is slightly better than those selected with random
forest importance metric. The current Cobb angle and the
change of Brace treatment are both selected by the two
importance metrics and therefore are vital to the prediction
of future Cobb angle. It is evident that the future magnitude
of Cobb angle is highly related to the beginning magnitude
of Cobb angle. The change of Brace treatment affecting the
next Cobb angle is also easily understood and accepted by
physicians.While the other selected features, like currentAge,
currentRisserSign, and currentBrace, are also related to the
futureCobbAngle, with less obvious relationship comparing
the previous two features. For further investigation of these
factors, the variance of the current Cobb angle and the change
of Brace treatment should be carefully controlled.

Data-driven methods are promising techniques for prog-
nosticating scoliosis. Our proposed models can effectively
extract useful information from the clinical data and provide a
useful tool to support the decision-making for scoliosis treat-
ments. The heterogeneous, incomplete and random follow-
up interval records can be well processed and handled with
our proposed methods. With the proposed models, clinicians
can compare the predicted future Cobb angles on different
conditions of future brace wearing actions. Thus, physicians
can make decisions based on the comparing results. The
interpretability of prediction models can shed light on the
prediction results and is easy to be adopted by clinicians.

VI. CONCLUSION
A decision support system is designed for scoliosis prognos-
tication. The prediction models for scoliosis patients have
been developed using various data-driven methods, which
have potential to be utilized in clinical practice. The clinical

data has been intensively analyzed and effectively processed
to cope with the huge uncertainty. Both the current infor-
mation and potential brace wearing action of patients have
been extracted and incorporated into the prediction models.
Features have been ranked according to the importance with
respect to both linearity and nonlinearity. The embedded
method for the feature selection has been implemented with
importance metrics to avoid model overfitting, which also
increases the interpretability of our prediction models.

The clinical data is still under collection, future work will
validate themodels withmore clinical data and investigate the
effects of other factors by controlling the initial Cobb angle
and the change of Brace treatment. The prediction of double
curve and triple curve are also deserving of future study.
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