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Electronic Health Record (EHR) system enables clinical decision support. In this study, a set of 112 abdominal computed
tomography imaging examination reports, consisting of 59 cases of hepatocellular carcinoma (HCC) or liver metastases
(so-called HCC group for simplicity) and 53 cases with no abnormality detected (NAD group), were collected from four
hospitals in Hong Kong. We extracted terms related to liver cancer from the reports and mapped them to ontological
features using Systematized Nomenclature of Medicine (SNOMED) Clinical Terms (CT). The primary predictor panel was
formed by these ontological features. Association levels between every two features in the HCC and NAD groups were
quantified using Pearson’s correlation coefficient. The HCC group reveals a distinct association pattern that signifies liver
cancer and provides clinical decision support for suspected cases, motivating the inclusion of new features to form the
augmented predictor panel. Logistic regression analysis with stepwise forward procedure was applied to the primary and
augmented predictor sets, respectively. The obtained model with the new features attained 84.7% sensitivity and 88.4%
overall accuracy in distinguishing HCC from NAD cases, which were significantly improved when compared with that
without the new features.

1. Introduction

Sheer amount of clinical data hosted by the electronic health
record (EHR) system facilitates the exploration of disease
signatures and potentiates the relevant clinical decision
support functions [1, 2].

As a real-time, digital patient-centered record, EHR
contains a large amount of patient information and labo-
ratory and test results. It provides opportunities to
enhance patient care, to embed performance measures in
clinical practice, and to make information available
instantly and securely to the authorized users [3]. These
voluminous complex data contain abundant input for pre-
cision medicine and big data analytics, which can extract

huge knowledge to improve the quality of healthcare [4].
Integrated exploitation of multiple heterogeneous sources
also serves for multidisciplinary renovation like biomedical
engineering. In this article, extrapolating EHRs’ human
lexical judgments from computational models of semantics
is one of the approaches that can minimize human inter-
vention and save human efforts significantly.

The rapid development of EHR provides good opportu-
nity to utilize the data for risk modeling and clinical deci-
sions. Besides the well-structured demographics and
laboratory information, clinical reports in EHR provide great
potential for machine learning and data mining to exploit the
detailed clinical information to improve risk modeling and
prediction. For example, machine learning approaches could
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be developed based on admission notes and progress notes to
improve prediction of major adverse cardiac events (MACE)
of acute coronary syndrome (ACS) [5, 6]. Extraction of key
information from reports is a foundation step to enable these
data mining applications.

As a simplifying representation in natural language
processing and information retrieval, the bag-of-words
model has long been applied in the text clustering tasks,
in which documents are represented by independently
treated single terms [7]. Without a reference terminol-
ogy, a bag of words can be extracted from a document
to form an array of unique features whose weights are
determined by the term frequencies and form the feature
vector. However, the length of feature vector increases
monotonically with the number of documents in the
dataset of interest, jeopardizing the practicality of the
bag-of-words model.

Recently, some researchers focused on the application of
ontology for extracting the conceptual features from docu-
ments. Based on reference ontology, the feature vectors
consist of common fixed elements, which have already been
defined before the feature extraction. Such ontological fea-
ture vector model could improve the performance of text
retrieval and classification [8, 9]. In some studies, feature
vector model has been developed for converting the clinical
texts and image patterns of an EHR into an array of
numerical values [10–13].

The support of a medical ontology is required to map
textual information, such as image findings in a diagnostic
report, to a feature vector [12, 13]. Systematized Nomen-
clature of Medicine (SNOMED) Clinical Terms (CT) is
an ontological standard of clinical terms, which are orga-
nized as concepts and linked with “is-a” or inverse “is-a”
relationships [14–17]. In such hierarchical structure, con-
cepts at a particular level could be chosen as the feature
concepts.

Some studies have compared SNOMED-CT with other
standards, such as International Classification of Diseases
(ICD) andMEDCIN [18, 19]. As a trigger to order laboratory
tests, clinical conditions were extracted from laboratory
guidelines and mapped to ICD10 and SNOMED-CT. It

was found that ICD10 could cover 43.1% of clinical condi-
tions only, whereas 80.1% of these conditions were
mapped by SNOMED-CT. For representing traumatic
brain injury (TBI) concepts, SNOMED-CT yielded a sensi-
tivity of 90%, outperforming MEDCIN whose sensitivity
was 49%. Thus, SNOMED-CT was selected as the refer-
ence ontology in this study.

The semantic distance between a clinical term in EHR
and a feature concept can be quantified by counting the
edges along the path connecting them in the “is-a” hierar-
chy [10–12, 20, 21]. Aggregating all the semantic distances
to the feature concepts generates an ontological feature
vector that characterizes an EHR with its disease context.
A study has performed the evaluation and comparison
between information content and edge counting approaches
proposed by various published works against benchmarks
[11]. It was found that features built with edge-counting
outperformed most of the information content approaches.
Therefore, the edge counting is necessary for weighting the
features. We hypothesize that the feature association pat-
terns derived from the EHRs can uniquely distinguish a
disease group from the nondisease group. If such distin-
guishable association patterns exist, new features could
be derived from the patterns and incorporated into the
existing ontological feature vector to strengthen the onto-
logical characterization of EHRs and thus the classification
performance using similarity algorithm, as illustrated in
Figure 1.

The identified ontological patterns can be used to
develop a clinical decision support functions. For the
new cases, similar cases retrieved from EHR database
using the patterns provide clinicians with evidence of the
feasible diagnostic and therapeutic options. The similarity
search algorithm based on the ontological vector model
has been successfully applied to similar radiological image
report retrieval and similar radiotherapy treatment plan
retrieval [22–24].

In addition to the clinical evidence, the association
between concepts in the patterns can be used to remind a
clinician of checking the inclusion of a concept when its asso-
ciated concept has already been mentioned in an EHR.

New case

Key features

Similar cases

Demographic,
clinical signs,
symptoms, 

examination report,
lab results,

signals, images,
and so on. Diagnostic 

& therapeutic 
recommendations

EHR
database

Fast prediction
& risk modeling

Algorithm

Other applications

Figure 1: Clinical decision support application of EHR similarity algorithm.
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2. Methods

2.1. Data Collection.We collected retrospectively 112 image
reports of abdominal computed tomography examinations
from the radiology departments of four local hospitals in
Hong Kong. HCC or liver metastases were found in 59
cases (called HCC group for simplicity) and the other 53
cases had no abnormality detected (NAD group). These
112 cases were randomly selected from the pool of image
reports where HCC or liver metastases were reported in
the diagnoses of HCC cases and not reported in the diag-
noses of NAD cases. Before the data collection, third party
clinical personnel have removed the patient name, identity
card number, telephone number, and address from the
reports and assigned a randomly generated unique ID to
each case. We have obtained Human Subject Ethics
Approval from the Hong Kong Polytechnic University
(HSEARS20140710002).

2.2. Ontological Feature Extraction. The HCC-related clini-
cal terms were extracted manually from the image reports
according to SNOMED-CT curated in the Unified Medical
Language System (UMLS; license code: NLM-0315126310).
During the extraction process, the whole image reports
were read and interpreted. The negation and uncertainty
of a disease, disorder, or image finding was regarded as
“not detected” and the corresponding term was not con-
sidered in the ontological feature mapping. Modifiers for
clinical terms were not found in the image reports. To
facilitate the future studies on a bigger dataset, the extrac-
tion can be automatic if the terms in image reports have
been already tagged by SNOMED-CT or extracted auto-
matically by text-mining methods. UMLS organizes clini-
cal terms in concepts, and SNOMED-CT defines the
relationship between concepts using the “is-a” hierarchical
tree. The extracted terms were projected to the feature
concepts at a particular level to ensure consistent compar-
ison between reports.

In our previous study, a set of EHRs were collected from
47 subjects of type II diabetic patients in Hong Kong [21].
Levels 1–4 of the SNOMED-CT hierarchy were considered

as the individual candidate sets of the feature concepts.
For each level, ontological feature vectors were generated
using the alignment with SNOMED-CT hierarchy and
the similarity score between every possible pair of EHRs
was calculated. Using SNOMOD-CT level 4, the accuracy
was highest for ranking the agreement of carotid plaque
identification in EHR pairs. It is important to note that
level 4 has already had 6964 feature terms, providing suf-
ficient granularity for characterizing EHRs. The use of
level 5 is indeed infeasible due to the tremendously large
number of features. Due to the optimal classification gran-
ularity, level 4 concepts were considered as feature con-
cepts in this work.

Edge-counting approach is illustrated in Figure 2. For
each report, the ontological features, a1, a2,…, am , were
generated using edge-counting approach based on the fol-
lowing formula:

ai =
pi

1 +minj=1,…,nsij
, 1

where pi is the conditional probability of the ith feature
concept given the occurrence of liver cancer and sij repre-
sents the edge count between the ith feature concept and
the jth clinical term extracted from a report. A smaller
edge count means that the feature concept is conceptually
closer to the clinical term. Therefore, the minimum of the
edge counts should be taken to determine the degree of
activation of a feature concept. PubMed document cluster-
ing has been successfully demonstrated using the edge-
counting method [25].

With the value between 0 and 1, ai indicates the relevance
between the ith feature concept and a clinical term in a
report. Such relevance can be modulated by the conditional
probability, pi, which is estimated by the specific term-
weighting approach [22]. Indeed, a similarity measure
derived from direction cosine represents the sum of the prod-
uct of ontological features. Each product of corresponding
features eliminates the square root, and the value pi becomes

Level 4 (feature concepts) Liver 
finding 

Abdominal 
organ finding Fatty liver

Level 5 Disease 
of liver

Disorder of 
spleen

Level 6 Liver 
regeneration SplenomegalyHepatic

fibrosis

Level 7 Cirrhosis

a

b c

Figure 2: Edge counting based on level 4 concepts: “liver finding,” “abdominal organ finding,” and “fatty liver.” (a) “Cirrhosis” at level 7 is the
descendant of “liver finding,” edge count is 3. (b) Edge count between “hepatic fibrosis” and “liver finding” is 2. (c) “Splenomegaly” is the
descendant of “abdominal organ finding” but not “liver finding.” Thus, edge count of “splenomegaly” with “abdominal organ finding” is 2
and that with “liver finding” is infinity. “Fatty liver” is a feature concept, and thus, the edge count with itself is 0. Diagram was extracted
from [22].
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the weight associated with the product of the degree of
feature concept activation between two EHRs.

It is obvious that the values of ai follow a nonnormal
distribution in the HCC and NAD populations, which
violates the assumption of statistical analysis using Pearson
correlation coefficient. Rank-based inverse normalization is
a popular approach that converts the feature values to those
normally distributed across individuals [26]. Those features
with zero values do not cause any effect on the characteriza-
tion of image reports and the association patterns between
features. Thus, those zero-valued features were excluded in
inverse normalization process and remain unchanged. For
each feature concept, the nonzero values of ai were ranked
by Ri ∈ 1,N −N0 among reports of the group where N
and N0 are, respectively, the total number of reports and
the number of zero-valued features in the group. The activa-
tion value of the ith feature concept is given by

zi =Φ−1 Ri − ξ

N −N0 − 2ξ + 1 , 2

where Φ−1 represents the standard normal quantile function
and ξ denotes a constant, whose value is given by zero as sug-
gested by van der Waerden [27]. The activation values of a
feature concept across a group form the following vector:

ui = zi 1 , zi 2 ,…, zi N T 3

Note that nonzero zi k follows normal distribution,
N 0, 1 , after inverse normalization.

2.3. Ontological Association Patterns. The association level
between two feature concepts was denoted by Cd i, j for
the HCC group and Cn i, j for the NAD group, as given by
the following formulas:

Cd i, j = ∣r udi, udj ∣ =
1
Nd

〠
Nd

k=1
zdi k zdj k

Cn i, j = ∣r uni, unj ∣ =
1
Nn

〠
Nn

k=1
zni k znj k ,

4

where udi and udj represent the vectors weighting the ith and
jth feature concepts across the HCC group; uni and unj repre-
sent the vector weighting the ith and jth feature concepts
across the NAD group; and r ui, uj is Pearson correlation
coefficient between two arrays. Two sets of correlation coeffi-
cients, Cd and Cn, in the HCC and NAD groups formed two
cumulative distributions, Fd and Fn, which were compared
using two-sample Kolmogorov-Smirnov (KS). To test the
significant difference, the maximum deviation between two
cumulative distributions,D value, was compared with its crit-
ical value, Dα, which is derived based on our developed
method [28] and given by following equations. A correlation
threshold, at which Fd and Fn were extremely deviated, can
be identified and used to characterize the perturbed ontolog-
ical association pattern.

D =max
C

∣Fd C − Fn C ∣
Fd C = prob Cd ≤ C

Fn C = prob Cn ≤ C

Dα = γ α
4

m m− 1 ,

5

where α is the significance level, that is, 0.05, γ 0 05 = 3 1,
and k = 30 in this study. The critical value of D is
0.2102, which has been proved by exhaustive computer
simulations [28].

2.4. New Features Derived from Association Patterns. It is
interesting to explore some new features, which signify the
image reports of HCC cases, based on the above-mentioned
ontological association patterns. The first new feature, z1′ k ,
is the square of the sum of activation values characterizing
the image report of the kth case in a group.

z1′ k = 〠
m

i=1
zi k

2

6

The expected value of this new feature can be estimated
by its average over the group.

1
N
〠
N

k=1
z1′ k = 1

N
〠
N

k=1
〠
m

i=1
zi k

2

= 1
N
〠
N

k=1
〠
m

i=1
zi k

2 + 2 〠
i=m,j=m

i≠j,i=1,j=1
zi k zj k

=m + 2 〠
i=m,j=m

i≠j,i=1,j=1

1
N
〠
N

k=1
zi k zj k

≤m + 2 〠
i=m,j=m

i≠j,i=1,j=1
C i, j

7

It is clearly shown that the expected value of this new fea-
ture forms the lower bound of the sum of association levels
over all possible pairs of features in the group. The second
new feature, z2′ k , is the square of the sum of the absolute
values of activation values characterizing the image report
of the kth case in a group.

z2′ k = 〠
m

i=1
zi k

2

8

The expected value of the second new feature, again, can
be estimated by its average over the group.
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1
N
〠
N

k=1
z2′ k = 1

N
〠
N

k=1
〠
m

i=1
zi k

2

= 1
N
〠
N

k=1
〠
m

i=1
zi k

2 + 2 〠
i=m,j=m

i≠j,i=1,j=1
zi k zj k

=m + 2 〠
i=m,j=m

i≠j,i=1,j=1

1
N
〠
N

k=1
zi k zj k

≥m + 2 〠
i=m,j=m

i≠j,i=1,j=1
C i, j

9

The above formula clearly shows that the expected value
of the second new feature defines the upper bound of the sum
of association levels over all possible pairs of features in the
group. When the KS test indicates that the ontological asso-
ciation patterns of two groups are significantly different, we
expect that the sum of association levels of a group is distin-
guishable from that of the other group. Therefore, the new
features could signify the difference between two groups.

2.5. Logistic Regression. The statistical analysis was per-
formed by SPSS (IBM SPSS Statistics 22; Armonk, NY).
Binary logistic regression selects and estimates the optimal
subset of independent variables for predicting categorical
outcome Y coded by 1 or 0, which represents HCC and
NAD in this work. Stepwise forward procedure was used to
obtain the logistic regression model where the potential pre-
dictors were prioritized and entered into the model one by
one until the predictive power was optimized. The procedure
results in the following model with M predictors,

logit = ln P
1− P

= β0 + β1X1 + β2X2 +⋯ + βMXM , 10

where logit is the estimated log odds of Y = 1, P is the esti-
mated probability of Y = 1, Xi is the ith predictor entered into
the models, and i is the coefficient associated with the ith pre-
dictor for i = 1,…, k. The statistical significance of the associ-
ation between the outcome and each predictor is indicated by
p < 0 05. For a well-balanced sample, we assume 50% of the
cases will be classified as Y = 1 and the cut-off of logit is set
at 0. Sample is imbalanced when the number of cases with
an outcome category is about 2–5 times that with the other
category. For an imbalanced sample, the constant 0 is cor-
rected by deducting the log odds of Y = 1 observed in the
sample. Omnibus test of model coefficients indicate the over-
all performance of an identified model.

Two sets of candidate predictors, primary set and aug-
mented set, are considered for identifying the logistic regres-
sion models. The primary set consists of the activation values
of feature concepts: z1 k , z2 k ,…, zm k . The augmented
set is composed of the activation values of feature concepts
and three new features derived from the association patterns:
z1 k , z2 k ,…, zm k , z1′ k , z2′ k .

2.6. Experimental Settings. Figure 3 illustrates the flow chart
of the experimental steps performed in the study.

2.7. Performance Evaluation. Sensitivity, specificity, and
overall accuracy were used to evaluate the performance of
two logistic regression models based on the primary and aug-
mented predictor sets. To examine the agreement between
primary predictor model (PPM) and augmented predictor
model (APM), 2× 2 contingency tables for HCC, NAD, and
all cases are constructed. The McNemar test is used to com-
pare sensitivities, specificities, and overall accuracy of two
models. The difference in performance is considered signifi-
cant if the P value is less than 0.05.

3. Results

3.1. Extracted Features. From 59 and 53 image reports of
respective HCC and NAD groups, 38 clinical terms were
extracted andmapped to 38 unique concepts in UMLS. Based
on the approach illustrated in Figure 2, these terms were then
projected to 30 feature concepts at level 4 of SNOMED-CT
“is-a” hierarchy (Table 1). After counting the edges and esti-
mating the conditional probabilities of these concepts, their
weightings were calculated and formed 30× 59 and 30× 53
matrices for HCC and NAD groups.

3.2. Ontological Association Patterns. The association level
between every two feature concepts was calculated. We gen-
erated 435 association levels for each of HCC and NAD
groups. Figure 4 shows the cumulative distributions of asso-
ciation levels for the two groups and their difference. The
maximum deviation, D = 0 333, was found at C = 0 03 and
greater than its critical value. Therefore, the two ontological
association patterns are significantly different.

3.3. Primary Predictor Model. The stepwise forward proce-
dure stops at step 2 where the prediction accuracy is optimal,
yielding the following regression:

Logistic 
regression

HCC versus NAD

Logistic 
regression

HCC versus NAD 

Edge counting

Term weighting

Inverse 
normalization

Association 
patterns

HCC versus NAD

Primary predictor
set

Augmented 
predictor set

Primary predictor 
model

Augmented 
predictor model

Figure 3: Flow chart of the performed experimental steps.
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logit = −1 28 z11 − 32 9 z27 − 0 114, 11

where z11 represents the activation value of “radiologic find-
ing” and z27, “abnormal radiologic density, nodular.” The
predictor z11, “radiologic finding,” is significantly associated
with the log-odds of HCC (p = 0 016). The constant has been
adjusted to compensate the imbalanced NAD and HCC
cases. Omnibus test shows that the variance of log-odds
explained by the model is significantly greater than the unex-
plained variance (χ2 = 11.989, df = 2, p = 0 002). For logit ≤ 0,
the case is NADmore likely than HCC. For logit > 0, the case
is HCCmore likely than NAD. Classifier based on this model
is illustrated in Figure 5(a). The y-axis represents the linear
combination of z11 and z27 in the above equation. The hori-
zontal dotted line indicates the threshold level in the equa-
tion, 0.114, above which a lesion is classified as HCC and
otherwise, NAD.

3.4. Augmented Predictor Model. The stepwise forward
procedure stops at step 5 where the prediction accuracy
is optimal, yielding the following regression:

logit = − 0 586z1′ + 0 650z2′− 3 72z11
+ 7 72z13 + 13 9z25 − 1 39,

12

where z1′ and z2′ are the squares of sum of the ontological fea-
tures and their absolute values, which were incorporated into
the model in the first two steps; z11, z13, and z25 represent the
activation values of “radiologic finding,” “mass of body
region,” and “imaging result abnormal,” respectively, which
were included in steps 3–5. The augmented predictors, z1′
and z2′, and the primary predictors, z11, “radiologic finding,”
z25, and “imaging result abnormal” are significantly associ-
ated with the log-odds of HCC (p = 0 014, 0.006, 0.003, and
0.04). The constant has been also adjusted to compensate
the imbalanced NAD and HCC cases. Omnibus test shows
that the variance of log-odds explained by the model is signif-
icantly greater than the unexplained variance (χ2 = 70.619,
df = 5, p < 0 001). For logit ≤ 0, the case is NAD more likely
than HCC. For logit > 0, the case is HCC more likely than
NAD. Classifier based on this model is illustrated in
Figure 5(b). In step 5, the linear combination of the aug-
mented predictors, z1′ and z2′, forms the y-axis and that of
the primary predictors, z11, z13, and z25, the x-axis. The clas-
sifier is represented by the dotted line.

3.5. Performance Comparison of Models. Using the PPM,
98.1%, that is, 52 out of 53 NAD cases, and 57.6%, that is,
34 out of 59 HCC cases, are correctly classified. The overall
accuracy is 76.8%. Using the APM, the correctly classified
HCC cases increase significantly to 84.7% (p < 0 0001),
which consist of 50 out of 59 HCC cases. Although the
correctly classified NAD cases are reduced slightly to
92.5% (p = 0 250), the APM raises the overall accuracy to

Table 1: Feature concepts and feature vectors of representative
NAD and HCC cases.

Class NAD HCC

Abdominal organ finding 0 0.949

Blood vessel finding 0 0

Disorder of body cavity −0.253 0.097

Disorder of body system −0.140 −0.108
Disorder of cardiovascular system 0 0.319

Disorder of digestive system −0.431 −0.399
Disorder of soft tissue 0 0.074

Disorder of trunk −0.253 0.454

Finding of trunk structure −0.253 1.165

Liver finding 0 0.349

Radiologic finding 0 −1.267
Cyst of abdomen 0 0

Mass of body region 0 0.502

Mass of digestive structure 0 0.502

Neoplastic disease 0 0

Growth alteration 0 0

Imaging result abnormal 0 0

Mechanical abnormality 0 −0.253
Finding of biliary tract −0.842 0

Hemorrhage into peritoneal cavity 0 0

Disorder of connective tissue 0 0

Degenerative abnormality 0 0

Traumatic and/or nontraumatic
injury of anatomical site

0 0

Abnormal radiologic density, diffuse 0 −0.431
Imaging result abnormal 0 −0.566
Abnormal radiologic density, irregular 0 0

Abnormal radiologic density, nodular 0 0

Abnormal radiologic density, small area 0 0

Multiple lesions 0 −0.674
Finding of number of lesions 0 −0.842

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1
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Figure 4: Two distinct ontological association patterns. Cumulative
distributions of ontological association levels across NAD and HCC
groups are indicated by dash-dotted and dash lines, respectively.
Solid line represents the difference between these two cumulative
distributions.
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88.4% significantly (p < 0 0001). The comparison of perfor-
mances is summarized in Table 2.

4. Discussion

This study illustrated an approach for characterizing textual
image reports by numerical values that weight the alignment
of report contents with the ontological standard. Such
approach has been demonstrated in our previous study
where all the level 4 feature concepts of SNOMED-CT were
considered to characterize the same set of image reports used
in this study [22]. Using the specific term weighting, the
highest overall accuracy, 74.3%, was attained for mapping
report pairs based on the similarity measure of modified
direction cosine. In this study, the features were further con-
verted to standardized values, following N 0, 1 , by inverse
normalization [26]. Such conversion could help reduce the
noise or outlier that was induced to the features through
the edge-counting approach. The converted features were

considered as primary predictors. Binary logistic regression
model, identified using the primary predictors as the candi-
dates in stepwise forward procedure, was used to classify
the reports. The overall accuracy was increased to 76.8%.

It was shown that the interfeature association levels in
HCC and NAD groups exhibited significantly different dis-
tributions where the feature concepts have particularly
strong association in HCC [29]. This observation led to the
derivation of two new features, which are squared sums of
the existing features and their absolute values. We proved
that the expected values of these two new features, which
are estimated by their averages, represent the lower and
upper limits of the sum of association levels over the group.
The new features were combined with the existing features
to provide the augmented predictor set for the stepwise for-
ward procedure. It was found that the overall accuracy was
significantly increased to 88.4% (p < 0 0001). The sensitivity,
an important diagnostic performance indicator, was also
significantly increased from 57.6% to 84.7% (p < 0 0001).
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Figure 5: Logistic regression classification results using primary and augmented predictor models. (a) Primary predictor model (PPM):
the identification procedure incorporated z11, “radiologic finding,” z27, and “abnormal radiologic density, nodular” in the first two steps.
The process stopped at step 2 as new predictor cannot make any improvement in classification. (b) Augmented predictor model (APM):
two new features, z1′ and z2′, were included in the model in the first two steps of the procedure. The predictors, z1′ and z2′, represent the
squared sums of ontological features and their absolute values, respectively. The identification proceeds to step 5 that extends the
feature space into three predictor dimensions, z11, z13, and z25, representing “radiologic finding,” “mass of body region,” and “imaging
result abnormal.”
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Besides the first two new features, we identified the feature
concepts: “radiologic finding,” “mass of body region,” and
“imaging result abnormal.”

For new suspected cases, this panel of predictors repre-
senting a disease signature can be used to assist the clinical
decision when associations of those pairs are observed. In
future work, the discovered signature should be validated
with independent data before its clinical applications. The
detailed underlyingmeanings of the signature in patientman-
agement should be further explored using big data analytics.

An alternative application of the identified association
patterns is the detection of inaccurate medical coding. When
a disease is diagnosed, the “coactivated” feature concepts can
be obtained and checked against the pairs in the disease-
specific patterns. Potential inaccurate coding can be detected
and the clinicians will be alerted. On a public health level,
systematic failure in appropriate medical coding may result
in under- or overadjustment to case-mix measurements
when assessing quality of care [30]. In some healthcare
models, this will also affect billing, reimbursement, and
insurance claims [31].

Some observed image patterns mentioned in the image
reports cannot be mapped to concepts in SNOMED-CT.
For example, intravenous contrast injection induces changes
of pixel optical density in different phases of CT scan. Con-
trast enhancement in particular phases is critically important
for HCC diagnosis. However, SNOMED-CT has not defined
the concepts, which could represent closely “contrast
enhancement,” “arterial enhancement,” and “hyperdensity
in arterial phase.” This is a limitation of this study that hin-
dered the precision of the proposed predictor model.

5. Conclusions

This study demonstrated the extraction of ontological fea-
tures from image report contents based on the ontological
standard. Combining new features, derived from the differ-
ential association patterns, with the ontological features
forms a panel of augmented predictors that signifies the
HCC image reports.
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