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Abstract

This paper addresses the multi-vehicle bike-repositioning problem, a pick-up and delivery
vehicle routing problem that arises in connection with bike-sharing systems. Bike-sharing is
a green transportation mode that makes it possible for people to use shared bikes for travel.
Bikes are retrieved and parked at any of the stations within the bike-sharing network. One
major challenge is that the demand for and supply of bikes are not always matched. Hence,
vehicles are used to pick up bikes from surplus stations and transport them to deficit stations
to satisfy a particular service level. This operation is called a bike-repositioning problem. In
this paper, we propose a hybrid large neighborhood search for solving the problem. Several
removal and insertion operators are proposed to diversify and intensify the search. A simple
tabu search is further applied to the most promising solutions. The heuristic is evaluated on
three sets of instances with up to 518 stations and five vehicles. The results of computational
experiments indicate that the heuristic outperforms both CPLEX and the math heuristic
proposed by Forma et al. (2015) [Transportation Research Part B 71: 230-247]. The average
improvement of our heuristic over the math heuristic is 1.06%, and it requires only a small
fraction of the computation time.

Keywords: Bike-sharing; Bike-repositioning; Pick-up and delivery routing; Large neighbor-
hood search; Tabu search



1 Introduction

Bikes constitute a green and healthy mode of transportation, and have thus drawn increased
attention in recent years. Research topics include bike trip estimation (de Chardon and Caruso,
2015), bike network design (Lin and Yang, 2011; Lin et al., 2013; Chow and Sayarshad, 2014),
bike network flow analysis (Kitthamkesorn et al., 2016), bike service level analysis (Raviv and
Kolka, 2013), bike safety (Lawson et al., 2013), bike redistribution strategies (Nair and Miller-
Hooks, 2011), and bike repositioning. In bike repositioning, vehicles are deployed to pick up and
transport bikes from stations with an excess of bikes to stations with an insufficient number.
Table 1 summarizes the literature on bike-repositioning problems according to operation type,
number of repositioning vehicles used, and problem objectives.

In terms of operation type, the literature can be roughly classified into two categories: static and
dynamic. Static repositioning problems consider night-time operations and scenarios in which
demand is low or the system is closed, meaning that the change in demand is negligible. Dynamic
repositioning problems mainly consider daytime operations and scenarios that take real-time
system usage into account. As shown in Table 1, most studies focus on static repositioning
problems because such problems are already difficult to analyze and solve without introducing
further complexities. Ho and Szeto (2014) pointed out that static repositioning problems are
NP-hard, and are more difficult to solve than classical routing problems because of the presence
of pick-up and drop-off quantities as decision variables. An understanding of static repositioning
problems and the algorithms developed for them is useful in addressing more difficult dynamic
repositioning problems.

Table 1: Summary of the bike-repositioning problem literature

No. of
Reference Type vehicles Objective

Benchimol et al. (2011) Static 1 Minimize total travel cost
Caggiani and Ottomanelli (2012) Dynamic > 1 Minimize relocation and lost user cost
Contardo et al. (2012) Dynamic > 1 Minimize total unmet demand
Lin and Chou (2012) Static > 1 Minimize total travel time or distance
Chemla et al. (2013) Static 1 Minimize total travel distance
Di Gaspero et al. (2013a) Static > 1 Minimize the weighted sum of total travel time and total

absolute deviation from the target number of bikes
Nair et al. (2013) Static 1 Minimize total redistribution cost
Raviv et al. (2013) Static > 1 Minimize the weighted sum of total travel time and penalty cost
Schuijbroek et al. (2013) Static > 1 Minimize maximum tour length
Erdoğan et al. (2014) Static 1 Minimize travel and handling costs
Ho and Szeto (2014) Static 1 Minimize total penalty cost
Kloimüllner et al. (2014) Dynamic ≥ 1 Minimize the weighted sum of unfulfilled demand, absolute

deviation from the target fill level, total number of loading
instructions, and total drive time

Forma et al. (2015) Static > 1 Minimize the weighted sum of total travel time and penalty cost
Rainer-Harbach et al. (2015) Static ≥ 1 Minimize the weighted sum of the total absolute deviation from the

target number of bikes, total number of loading/unloading
activities, and overall travel time required for all routes

Szeto et al. (2016) Static 1 Minimize the weighted sum of unmet customer demand and
operational time on the vehicle route

The objectives considered in the literature vary. As shown in Table 1, both single and weighted
sum objectives are considered. The objectives are formed by either a single measure of effective-
ness (e.g., total unmet demand ) or a weighted combination of measures of effectiveness (e.g., the
weighted sum of unfulfilled demand, the absolute deviation from the target fill level, the total

2



number of loading instructions, and total drive time). Moreover, travel time or distance, user
dissatisfaction, and penalty cost are commonly used as sole or partial components in the objec-
tive function. The choice of objectives should be determined by the application of bike-sharing
operations. The operator’s concern normally governs the choice of objective. Meanwhile, some
objectives are more general than others. For example, minimizing total penalty cost is more
general than minimizing total user dissatisfaction or the sum of the deviations from the target
number of bikes in each station because we can choose a penalty function that assigns a value
of zero to the level equal to or greater than the demand level and a very large number to other
levels to replicate the effect of minimizing total user dissatisfaction. Similarly, we can select a
penalty function that assigns a value to a level equal to the absolute difference between that
level and the target level to replicate the effect of minimizing the sum of deviations.

The literature can also be classified according to the number of vehicles employed. In terms
of formulation, multiple-vehicle repositioning problems are straightforward extensions of single-
vehicle problems. However, it is more realistic to consider multiple-vehicle repositioning prob-
lems. Some studies that consider multiple vehicles (Alvarez-Valdes et al., 2016) allow each sta-
tion to be visited by multiple vehicles more than once, whereas others (Dell’Amico et al., 2014)
allow each station to be visited only by exactly one vehicle. The main challenge in addressing
multi-vehicle than single-vehicle repositioning problems is developing efficient solution methods
to handle the larger solution space arising from the presence of more vehicles and the possibility
of multiple visits to a station. Direct applications of the solution techniques for the single-vehicle
case cannot search the solution space efficiently.

Exact methods such as branch-and-cut algorithms (see Dell’Amico et al., 2014; Erdoğan et al.,
2014; Erdoğan et al., 2015) have been used to solve repositioning problems. However, such
methods are intractable for large, realistic repositioning problems. The literature (e.g., Raviv
et al., 2013; Ho and Szeto, 2014) has also illustrated this point via numerical experiments.
Therefore, most studies to date have focused on developing inexact methods to obtain good
solutions using small computing time. A brief summary of inexact solution methods follows.

Approximation method :
9.5-approximation algorithm (Benchimol et al., 2011)

Heuristics or metaheuristics:
Ant colony and constraint programming (Di Gaspero et al., 2013b)
Cluster-first route-second (Schuijbroek et al., 2013)
Iterated tabu search (Ho and Szeto, 2014)
GRASP with path relinking (Papazek et al., 2014)
GRASP with VND (Kloimüllner et al., 2014; Rainer-Harbach et al., 2015)
VNS (Kloimüllner et al., 2014; Rainer-Harbach et al., 2015)
Chemical reaction optimization (Szeto et al., 2016)

Hybrid methods (of exact method and heuristic):
Branch-and-cut method with tabu search (Chemla et al., 2013)
3-step math heuristic (Forma et al., 2015)

GRASP: Greedy randomized adaptive search procedure; VND: Variable neighborhood de-
scent; VNS: Variable neighborhood search

It can be seen from the foregoing summary that few hybrid methods have been developed and
that recent heuristics such as large neighborhood search (LNS) have not been applied to bike-
repositioning problems. LNS is a metaheuristic in which, at each iteration, a part of the solution

3



is destroyed by a removal operator, and the solution is repaired by an insertion operator. LNS
differs from variable neighborhood search (VNS). According to Mladenović and Hansen (1997),
VNS is a metaheuristic that systematically performs the neighborhood change procedure, both
in descent to local minima and in escape from the valleys that contain them.

Most of the preceding inexact methods do not consider problem properties and station charac-
teristics. For example, in reality, not all stations need to be visited by repositioning vehicles
for several reasons. First, the stations where the demand for bikes equals the supply are not
required to provide extra bikes when the objective is to minimize unmet demand. The bikes at
these stations should also not be taken away. Hence, it is unnecessary to visit these “balanced”
stations. Second, some stations may not be reached by vehicles owing to short operational time.
Third, it is not necessary to visit all stations in an optimal solution because of shortage of
repositioning resources (e.g., limited repositioning time) and costs (e.g., the fact that it is not
worthy to let a vehicle make a very long trip to save tiny penalty cost). Finally, there may be
an insufficient total supply from pick-up stations for drop-off stations. In such a case, even if
trucks visited all drop-off stations, the total demand from those stations could not be satisfied.
Hence, it is unwise to visit all drop-off stations.

To the best of our knowledge, only Ting and Liao (2013), Ho and Szeto (2014; 2016), and Szeto
et al. (2016) have considered station characteristics to narrow the solution search space and
develop efficient heuristics to solve their problems. These studies classified stations into pick-up
and drop-off stations and made use of station characteristics in problem-solving. Ting and Liao
(2013) and Ho and Szeto (2016) considered the total travel time of a vehicle in the objective
function, and the number of bikes required by each drop-off station was explicitly given. Ho and
Szeto (2016) developed a GRASP with path relinking to solve the problem examined by Ting
and Liao (2013), and showed it to produce better average results than the memetic algorithm
used by Ting and Liao (2013) in less computing time. However, they did not consider a penalty
cost or loading/unloading quantities. The penalty cost of not satisfying one unit of demand may
vary from one station to another. In an area with high (low) bike station density or many (few)
transportation alternatives, the penalty cost may be low (high) because users can (cannot) easily
walk to nearby bike stations or take other modes of transportation. It is more reasonable to
consider such a penalty cost than user demand alone for bike services offered by governments. Ho
and Szeto (2014) refined the arc-based formulation of the static repositioning problem in Raviv
et al. (2013) to minimize the total penalty cost. They also developed an efficient iterated tabu
search for large repositioning network applications. However, they consider the single-vehicle
case alone and do not consider total travel time as a secondary objective. Szeto et al. (2016)
also studied the single-vehicle static bike-repositioning problem but did not consider the penalty
cost in the objective function. The objective of repositioning is to minimize the weighted sum
of unmet customer demand and operational time on the vehicle route. The problem was solved
by the chemical reaction optimization.

This paper develops a hybrid large neighborhood search (H-LNS) to solve a problem similar to
the multi-vehicle static repositioning problem in Raviv et al. (2013) and Forma et al. (2015).
This problem is the night-time operation problem of using more than one vehicle to pick up bikes
from locations with excess bikes and transport them to stations with insufficient bikes to address
the bike imbalance issue. It determines the sequence of stations for each repositioning vehicle to
visit, the pick-up quantity from each station with excess bikes for each vehicle, and the drop-off
quantity to each station with insufficient bikes from each vehicle. Station characteristics are
incorporated into the formulation and used in designing the algorithm. The hybrid algorithm
incorporates tabu search to improve the local search ability of LNS. To demonstrate the efficiency
and accuracy of our method, we set up various test scenarios and compared the results with
those obtained from IBM ILOG CPLEX and the 3-step math heuristic proposed by Forma
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et al. (2015). The results show our algorithm to obtain better solutions than the 3-step math
heuristic in much less computing time. Computational tests were also performed to confirm that
H-LNS outperforms LNS (without incorporating tabu search). The results are presented herein
to illustrate the contribution of each removal and insertion operator to solution accuracy.

This paper differs from Ho and Szeto (2014) in three main respects: 1) it studies a multiple-
rather than single-vehicle repositioning problem, 2) it considers travel time in the objective
function, and 3) it develops a solution algorithm based on a different solution approach as a
backbone algorithm and more insertion and removal operators. Compared with Ho and Szeto
(2016), this paper also considers a more complicated routing problem, with pick-up and drop-
off quantities as the decision variables and multiple vehicles with split pick-ups and deliveries.
This paper also differs from Szeto et al. (2016) in three aspects: 1) it studies a multiple-vehicle
bike repositioning problem, 2) it considers the penalty cost in the objective function, and 3) it
develops a different solution method.

The paper’s contributions include the following.

1. This paper develops an efficient and effective hybrid heuristic to solve large real-life in-
stances of multiple-vehicle bike repositioning problems.

2. To the best of our knowledge, this is the first application of large neighborhood search to
solve multiple-vehicle bike repositioning problems with great success.

The rest of the paper is organized as follows. Section 2 presents the mathematical formulation.
Section 3 depicts the hybrid heuristic. Section 4 presents the test cases and discusses the results.
Section 5 concludes the paper.

2 Mathematical formulation

This section presents the arc-indexed formulation of Raviv et al. (2013) for the sake of complete-
ness and the revised model with additional constraints to explicitly consider the characteristics
of the pick-up and drop-off stations. A pick-up station is a station at which the initial number of
bikes is greater than the optimal number (i.e., the level at which the station’s penalty function
attains its minimum), whereas a drop-off station is a station at which the initial number of bikes
is smaller than the optimal number.

The repositioning problem considers a set of stations and a depot. Each station is characterized
by its capacity, initial bike inventory, and a penalty function. The penalty function represents
the expected shortage of bikes and lockers incurred by station users on the next day as a function
of the station’s inventory after repositioning is carried out (Forma et al., 2015). The depot is
assumed to have a very large capacity and no demand.

Multiple repositioning vehicles with limited capacity collect bikes from pick-up stations and
transport them to and unload them at drop-off stations. These vehicles start from and end up
at the depot and operate within a given time constraint. They are allowed to return to the
depot to load or unload bikes in the middle of the operation. The objective is to determine the
route of each vehicle and the quantities of bikes loaded and unloaded at each station visited to
minimize the weighted sum of the penalty cost at each station and the total travel time.
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2.1 Notations

The following notations are used throughout the paper.

Sets
N Set of stations
N0 Set of nodes, including the stations and depot
P Set of pick-up stations
D Set of drop-off stations
V Set of vehicles

Indices
i, j Indices of nodes
v Index of vehicle (or route)
ū Index of inventory level

Parameters
α Weight of total travel time relative to total penalty cost
s0
i Initial inventory at station i
ci Capacity of station i
k Vehicle capacity
T Repositioning time
L Time required to load a bike from a station onto a vehicle
U Time required to unload a bike from a vehicle to a station
M A very large number
ai, bi Parameters associated with the penalty function for station i
tij Travel time from station i to station j

Decision variables
xijv Binary variable that equals one if vehicle v travels directly from node i to node j,

and zero otherwise
yijv Number of bikes on vehicle v when it travels directly from node i to node j
qiv Auxiliary variable associated with node i used for the sub-tour elimination constraints
yPiv Number of bikes loaded onto vehicle v at node i
yDiv Number of bikes unloaded from vehicle v at node i
si Inventory level at station i at the end of the repositioning operation

Function
fi(si) A convex penalty function for station i defined over si

2.2 Arc-indexed formulation

The basic arc-indexed formulation in Raviv et al. (2013) is given by

min
∑
i∈N

fi(si) + α
∑
i∈N0

∑
j∈N0,j 6=i

∑
v∈V

tijxijv (1)

s. t. si = s0
i −

∑
v∈V

(yPiv − yDiv) ∀i ∈ N0 (2)

yPiv − yDiv =
∑

j∈N0,j 6=i
yijv −

∑
j∈N0,j 6=i

yjiv ∀i ∈ N0,∀v ∈ V (3)
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yijv ≤ kxijv ∀i, j ∈ N0, i 6= j,∀v ∈ V (4)

∑
j∈N0,j 6=i

xijv =
∑

j∈N0,j 6=i
xjiv ∀i ∈ N0,∀v ∈ V (5)

∑
j∈N0,j 6=i

xijv ≤ 1 ∀i ∈ N ,∀v ∈ V (6)

∑
v∈V

yPiv ≤ s0
i ∀i ∈ N0 (7)

∑
v∈V

yDiv ≤ ci − s0
i ∀i ∈ N0 (8)

∑
i∈N0

(yPiv − yDiv) = 0 ∀v ∈ V (9)

∑
i∈N

(LyPiv + UyDiv) +
∑
i∈N

(Ly0iv + Uyi0v) +
∑

i,j∈N0:i 6=j
tijxijv ≤ T ∀v ∈ V (10)

qjv ≥ qiv + 1−M(1− xijv) ∀i ∈ N0, j ∈ N , i 6= j,∀v ∈ V (11)

xijv ∈ {0, 1} ∀i, j ∈ N0 : i 6= j,∀v ∈ V (12)

yPiv ≥ 0, yDiv ≥ 0, integer ∀i ∈ N0, ∀v ∈ V (13)

yijv ≥ 0 ∀i, j ∈ N0 : i 6= j,∀v ∈ V (14)

si ≥ 0 ∀i ∈ N0 (15)

qiv ≥ 0 ∀i ∈ N0 (16)

The objective function (1) is defined as the sum of the penalty cost incurred at each station
and the weighted total travel time. Equation (2) defines the final number of bikes at each node
as the sum of the initial number of bikes at that node plus the total number of bikes loaded
onto and unloaded from each vehicle. Equation (3) requires that the number of bikes loaded
onto or unloaded from a vehicle at a given node equals the difference between the vehicle load
before and after the node visit. Constraint (4) ensures that the load on each vehicle cannot
be greater than the vehicle capacity. Equation (5) ensures that if a vehicle visits a station, it
must leave that station. Constraint (6) ensures that each vehicle can visit a station at most
once. Constraints (7) and (8) require that the total pick-up and drop-off quantities at each
node are not larger than the number of bikes available at and the remaining capacity of that
node, respectively. Constraint (9) ensures that all bikes picked up by each vehicle are eventually
delivered. Constraint (10) ensures that the sum of the loading, unloading, and travel times
of each vehicle does not exceed the repositioning time available. Constraint (11) is the sub-
tour elimination constraint (see Miller et al., 1960), and constraints (12)-(16) are the domain
constraints.
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Raviv et al. (2013) later linearized the objective function as

min
∑
i∈N

gi + α
∑
i∈N0

∑
j∈N0,j 6=i

∑
v∈V

tijxijv, (17)

and added the following linear constraints to the formulation.

gi ≥ aiū + biūsi ∀i ∈ N , ū = 0, . . . , ci − 1, (18)

where gi is the penalty incurred at station i,

biū ≡ fi(ū+ 1)− fi(ū)

aiū ≡ fi(ū)− biū · ū.

To speed up computation, they also added the following.∑
j∈N

x0jv ≥ 1 ∀v ∈ V (19)

yPiv ≤ min(s0
i , k)

∑
j∈N0

xijv ∀i ∈ N , ∀v ∈ V (20)

yDiv ≤ min(ci − s0
i , k)

∑
j∈N0

xijv ∀i ∈ N ,∀v ∈ V (21)

yPiv + yDiv ≥
∑
j∈N0

xijv ∀i ∈ N ,∀v ∈ V (22)

∑
j∈N

j · x0jv ≤
∑
j∈N

j · x0,j,v+1 ∀v ∈ V (23)

Constraint (19) ensures that each vehicle departs from the depot at least once. Constraints
(20)-(21) further tighten the solution space for the loading and unloading quantities of each
vehicle at a station, respectively, by including vehicle capacity and conditioning the quantities
only for cases in which the corresponding vehicle visits the station. Constraint (22) tightens the
solution space by ensuring that each vehicle that enters a station must engage in a loading or
unloading activity, and constraint (23) is the the symmetry-breaking constraint.

2.3 Revised model

Our revised model is as follows.

min (17)
s. t. (2)-(16) and (18)-(23) and the following station characteristic constraints.

yPiv = 0 ∀i ∈ D,∀v ∈ V (24)

yDiv = 0 ∀i ∈ P,∀v ∈ V (25)

It is clear from the definitions of the pick-up and drop-off stations that P = {i ∈ N|s0
i > sIi }

and D = {i ∈ N|s0
i < sIi }, where sIi = arg minsi{fi(si)} (i.e., the optimal number of bikes at

node i). These stations and the optimal quantities are known before the operation starts.
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It is also clear that, in principle, the revised model’s optimal objective value should not be smaller
than the basic model of Raviv et al. (2013) because our solution space is smaller. However,
adding station characteristic constraints (24)-(25) into their model can benefit the development
of efficient and effective heuristics to solve our multi-vehicle static repositioning problem. We
can make use of the characteristics of each station (e.g., a pick-up, drop-off, or balanced station)
in the revised model to develop an efficient and effective heuristic to solve the problem under
study. As shown in Section 4, even though we solve a more restricted problem, our solution
method obtains a better solution faster than the math heuristic of Forma et al. (2015), which
was developed to solve the model in Section 2.2.

3 The algorithm

In this section, we present a hybrid large neighborhood search for solving the multi-vehicle bike-
repositioning problem. LNS is a metaheuristic in which, at each iteration, a part of the solution is
destroyed by an operator and the solution is repaired by another operator. LNS was first applied
by Shaw (1998) to the capacitated vehicle routing problem and the vehicle routing problem with
time windows. It was later applied to the pick-up and delivery vehicle routing problem with
time windows (Bent and Van Hentenryck, 2006) with great results. Other methods that exhibit
a similar framework to LNS include the ruin and recreate method (Schrimpf et al., 2000) and
the iterated greedy heuristic (Ruiz and Stützle, 2007). An LNS extension is the adaptive LNS
(ALNS) proposed by Ropke and Pisinger (2006a). The difference between LNS and ALNS is
that it is possible to choose from among a number of different operators to destroy and repair
a solution in ALNS, and the choice of a specific operator is determined based on the operator’s
performance.

The main ideas of our H-LNS are as follows. At each iteration, q stations are removed from
the solution by a removal operator, and these q stations are put in a pool together with any
previously unassigned stations, with q stations selected from the pool then added back to the
solution using an insertion operator. There are a total of five removal operators and five insertion
operators. These operators rely on simple mechanisms (e.g., greediness, randomness, biased
sampling, noise, regret) to remove stations and reinsert them into the solution. One operator
from each category is randomly chosen and applied to the solution. The new solution is improved
by a simple tabu search if the solution is no more than λ% worse than the best known solution
x∗. A solution is accepted as the new current solution only if its solution value is better than that
of the current solution. The method’s algorithmic framework is depicted in Algorithm 1. The
differences between our method and ALNS are that (1) in our method the choice of a specific
operator is not guided by the operator’s performance, but rather by the uniform distribution,
and (2) our method requires fewer parameters.

The input to Algorithm 1 is constructed by Algorithm 2. In Algorithm 1, there are removal and
insertion operators (lines 3 and 4) and tabu search and intensification procedures (line 12). The
removal and insertion operators are described in Sections 3.3 and 3.4, respectively, and tabu
search and intensification procedures are depicted primarily by Algorithms 3-6. Note that the
construction of an initial solution, neighborhood operators (including the removal and insertion
operators), tabu search, and intensification procedures in our heuristic are highly reliant on
knowledge of the station characteristics. For example, if a station is a pick-up station, in a
neighbor solution generated by any one of the proposed operators, the drop-off quantity must
be zero and the vehicle’s pick-up quantity cannot be larger than the number of bikes available
at the station or the available space in the vehicle. To obtain a station’s pick-up or drop-off
quantity, the neighborhood operators, construction heuristic, tabu search, and intensification
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Algorithm 1 H-LNS

Require: A feasible initial solution x0

1: Set x̄ = x0 and x∗ = x0.
2: while iterWI < K do
3: x̂ =removals(x̄)
4: x =insertions(x̂)
5: if z(x) < z(x∗) then
6: Set iterWI = 0.
7: Set x∗ = x.
8: else
9: Set iterWI = iterWI + 1.

10: end if
11: if z(x) < z(x∗)× (1 + λ) then
12: x =tabuSearch(x)
13: if z(x) < z(x∗) then
14: Set x∗ = x.
15: end if
16: end if
17: if z(x) < z(x̄) then
18: Set x̄ = x.
19: end if
20: end while

procedures must have knowledge of the station characteristics to select an appropriate rule to
generate a feasible solution. All of these rules have been incorporated into Algorithms 2-6.

3.1 Solution representation

A solution x is made up of a set of vehicle routes and a set of loading and unloading quantities,
where each route v is represented as (i0, i1, . . . , inv), i0 = inv = 0 and i1, . . . , inv−1 ∈ N0. A node
is denoted as ih, where h = 1, . . . , nv − 1 is the placement of ih in route v. For each node ih,
there is also a yPihv or yDihv associated with it (depending on whether ih ∈ P or ih ∈ D). Solution
x is evaluated by an evaluation function z(x) =

∑
i∈N fi(si) + α

∑
i∈N0

∑
j∈N0,j 6=i

∑
v∈V tijxijv,

where si is defined by (2).

3.2 Construction heuristic

The construction heuristic generates one route at a time. Pick-up stations are first assigned to
a route, and the number of bikes to be picked up from each station is determined by a number
of factors: 1) spare capacity, 2) the remaining time of the repositioning operation (τ), 3) the
initial inventory level s0

i , and 4) the optimal inventory level sIi . If no more pick-up stations
can be assigned, then drop-off stations are inserted. The number of bikes to be dropped off at
each station is determined by the vehicle load, s0

i , and sIi . The heuristic alternates between the
assignment of pick-up stations and drop-off stations until it is not possible to assign any more
stations without violating a constraint. The steps of the algorithm can be found in Algorithm
2. The heuristic is adapted from the one in Ho and Szeto (2014) to take into account multiple
vehicle routes and split pick-ups/drop-offs.
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Algorithm 2 Construction

Require: Let PL (DL) be an ordered set of pick-up (drop-off) nodes and PLd (DLd) the dth
node of PL (DL).

1: Sort PL such that d > d̄⇒ |fPLd
(s0
PLd

)− fPLd
(sIPLd

)| ≥ |fPLd̄
(s0
PLd̄

)− fPLd̄
(sIPLd̄

)|.
2: Sort DL such that d > d̄⇒ |fPLd

(s0
PLd

)− fPLd
(sIPLd

)| ≥ |fPLd̄
(s0
PLd̄

)− fPLd̄
(sIPLd̄

)|.
3: for v = 1, . . . , |V| do
4: Set d = 1 and w = 1. Initialize the route as (i0, . . . , inv).
5: Set τ = T and yinv−1invv = 0.
6: repeat
7: repeat
8: Set g = PLd
9: Set τ1 = τ and τ = τ − tinv−1g − tginv

+ tinv−1inv

10: Set yPgv = min{k − yinv−1invv, s
0
g − sIg −

∑
r y

P
gr, bτ/(U + L)c}

11: if yPgv > 0 then

12: Node g is inserted between inv−1 and inv in route v. Set τ = τ − (U + L)yPgv.

13: Set yinv−1gv = yinv−1invv and yginvv = yinv−1gv + yPgv.
14: else
15: Set τ = τ1.
16: end if
17: Set d = d+ 1
18: until no more nodes g ∈ PL can be added without violating the constraints or d > |PL|
19: repeat
20: Set g = DLw
21: Set τ1 = τ and τ = τ − tinv−1g − tginv

+ tinv−1inv

22: Set yDgv = min{yinv−1invv, s
I
g − s0

g −
∑

r y
D
gr}

23: if yDgv > 0 and τ ≥ 0 then
24: Node g is inserted between inv−1 and inv in route v.
25: Set yinv−1gv = yinv−1invv and yginvv = yinv−1gv − yDgv.
26: else
27: Set τ = τ1.
28: end if
29: Set w = w + 1
30: until no more nodes g ∈ DL can be added without violating the constraints or w > |DL|
31: until not possible to add more nodes without violating the constraints
32: end for
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3.3 Removal operators

The five following removal operators are selected randomly in H-LNS.

Random removal 1 The following is repeated q times: randomly choose a vehicle route v;
randomly choose a node from route v, and remove it from the route.

Random removal 2 The following is repeated q times: randomly choose a vehicle route v;
remove node i from route v that contributes the least to the objective value, i.e., i =
arg minj∈Wv∩P {fj(s0

j −
∑

r y
P
jr + yPjv) − fj(s

0
j −

∑
r y

P
jr)} or i = arg minj∈Wv∩D{fj(s0

j +∑
r y

D
jr − yDjv) − fj(s0

j +
∑

r y
D
jr)}, where Wv denotes the set of nodes visited by route v.

Note that the pick-up/drop-off quantities of the remaining nodes remain unchanged.

Cluster removal The idea is to partition the nodes of a randomly chosen route v into two
clusters using an algorithm to find the minimum spanning tree (Kruskal, 1956). Instead
of executing the algorithm until the end, the modified version terminates when there are
two connected components left. Then, a cluster is selected at random, and its nodes are
removed. If the number of nodes removed is less than q, then one of the removed nodes is
chosen at random (say node i). The closest visited node j∗ of node i belonging to route r
(r 6= v) is determined, where j∗ = arg minj∈Wr\Wv

tij . The nodes of route r is partitioned
into two clusters. The entire procedure is repeated until at least q nodes are removed.
This method was first applied by Ropke and Pisinger (2006b) to vehicle routing problems
with backhauls.

Radial ruin This operator’s aim is to remove q nodes from the solution. It was first mentioned
in Schrimpf et al. (2000). First, randomly select node i (among those being visited).
Second, remove i and its q−1 nearest (in terms of the shortest travel time) neighbors from
the solution.

Neighbor graph removal This removal operator makes use of historical information to de-
stroy a solution (Ropke and Pisinger, 2006b). The historical information is saved in a
directed graph, where nodes correspond to stations and the edge weights correspond to
the objective function value of the best solution. Initially, all weights are set to infinity.
Once a new best solution x∗ is found, all of the arcs found in x∗ have their weights updated
with z(x∗). Based on the current solution x̄, this operator computes a score for each of the
nodes in x̄. The score of node i is the summed weights of the arcs incident to i. The nodes
with large scores are most likely misplaced and are selected for removal. The removals are
randomly determined, but controlled by the parameter φ ≥ 1. As the nodes are sorted
in descending order according to their scores (stored in a list Ω), the higher φ is set, the
greater the chance of the nodes with the larger scores being selected. The index p of the
node is first determined based on bU(0, 1)φ|Ω|c, and the node to be removed is denoted
as Ωp. The scores of the nodes incident to Ωp are then updated before another node is
chosen for removal. This process is repeated until q nodes are removed.

When a node is removed from the solution, the solution may no longer remain feasible w.r.t. the
loading and capacity constraints. Hence, the solution is repaired after q nodes are removed by
assigning the pick-up/drop-off quantity at each node with the minimal number of bikes to render
the solution feasible. Then, the pick-up/drop-off quantities are gradually increased until it is
not possible to increase them any further without violating the loading and capacity constraints
(see Appendix A for details).

12



3.4 Insertion operators

Any node in the pool Λ is subject to potential insertion in the solution. Λ consists of all
unassigned nodes, nodes that were previously removed by one of the removal operators, and
nodes whose s0

i −
∑

r y
P
ir 6= sIi or s0

i +
∑

r y
D
ir 6= sIi . The latter implies that a node that has

already been visited by route r may be allowed to be inserted into route v (where v 6= r). The
five following operators are used randomly to insert nodes.

Time-based insertion with noise The following is repeated q times: Choose node i∗ =
arg mini∈Λ{δi+ζi}, where δi is the additional travel time for inserting i between two consec-
utive nodes using the cheapest insertion criterion, and the evaluation function is perturbed
with some noise ζi. The noise ζi is drawn randomly from the range [−ρηmax, ρηmax], where
ηmax = maxi,j∈N0{tij} and ρ is a parameter (Charon and Hudry, 1993).

Best insertion The following is repeated q times: Node i∗ = arg mini∈Λ z(x ∪ {i}) is selected
and inserted in the best position between two consecutive nodes in a route. For this
insertion to be feasible, all constraints have to be respected and either yPi∗v > 0 or yDi∗v > 0
has to be true. To avoid recomputing all of the pick-up/drop-off quantities of the nodes
in a route, it suffices to adjust the quantities at the depot, of the preceding or succeeding
node of the inserted node i∗. This operator is also the insertion operator used in tabu
search. Details on how to determine the values of yPi∗v and yDi∗v and how to adjust the
other nodes’ quantities can be found in Section 3.5 and Algorithm 4.

Biased random insertion A node is selected for insertion based on the geometric distribution.
The candidates (for potential insertion) in the list Ω are sorted in ascending order of their
insertion cost (i.e., the additional travel time required to visit the node). Each candidate is
assigned a probability from the geometric distribution (i.e., β(1−β)p, where β ∈ [0.05, 0.25]
and p is the index of the candidate in Ω). β can be interpreted as the probability of selecting
the candidate with the lowest insertion cost at one specific iteration of this procedure (Juan
et al., 2010). The selection process is repeated until q nodes are inserted.

Regret insertion A node i∗ is selected for insertion based on its regret value, which is the
cost difference between its best insertion position and its k̂-th best insertion position. It
is the best to insert nodes with high regret values first; otherwise it may be difficult to
insert them at a later stage owing to the lack of favorable insertion positions. A node i∗

is selected from among the set Λ based on i∗ = arg maxi∈Λ
∑k̂

e=1(δei − δ1
i ), where δei is the

additional travel time induced after inserting i into the e-th best position in the solution.
Note that this step is a bit different from that in Ropke and Pisinger (2006a), as they
restricted the different insertion positions to being in different routes, whereas in our case
the best insertion positions can be in the same route. This procedure is repeated q times.
k̂ is set to 3 in our implementation, as this value has been shown to produce good results
in the literature on various routing problems.

Random insertion Randomly select a station, and insert it in its best position (with the least
additional travel time induced) in the solution. This procedure is repeated q times.

After q nodes are inserted, the values of yPiv or yDiv (of these q nodes) are all set to zero except for
the operator “Best insertion”. Sometimes the objective value can be improved by reallocating
the bikes between the nodes of a vehicle route. Hence, the pick-up and/or drop-off quantities of
every route are adjusted to obtain a better objective value. Details on how this is achieved can
be found in Section 3.6 and in Algorithm 6.
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3.5 Tabu search

Tabu search (TS) is applied to promising solutions (i.e., solutions that are no worse than λ%
of the current best known solution x∗). TS selects the best non-tabu solution (or a solution
that satisfies the aspiration criterion) from a neighborhood comprising the neighbor solutions
obtained by three operators, namely, the removal (removes a station from its route), insertion
(inserts a station) and replacement (replaces a pick-up (drop-off) station with another pick-up
(drop-off) station) operators. The neighborhood consists of feasible solutions only. A neighbor
solution is created when the routing sequence is altered by one of the three operators. To
ensure that the neighbor solution is feasible, the number of bikes to be picked up/dropped
off at the preceding and succeeding stations of the inserted/removed station must be updated
simultaneously. The reverse move of the new incumbent solution is set tabu for a number of
iterations. TS is run for a fixed number of iterations, γ.

The afore-described TS is applied to the single-vehicle bike-repositioning problem in Ho and
Szeto (2014). In this paper, we modify the algorithm to conform with the features of a multi-
vehicle bike-repositioning problem in which multiple visits to a node by different vehicles are
accounted for when creating the neighborhood. In the following, we highlight the changes that
have been made and illustrate the concepts by giving examples (Figures 1-3).

Neighborhood N1(x) consists of all feasible neighbor solutions obtained by applying the removal
operator, which removes one node ih from route v at a time (such that the resulting route then
continues to ih+1, bypassing ih from ih−1), and then adjusts the pick-up or drop-off quantities
at the depot (yPi0v), the preceding station (yPih−1v

or yDih−1v
), or the succeeding station (yPih+1v

or yDih+1v
) to make the neighbor solution x̄ feasible (if possible). (Note that the loading and

unloading quantities at the other nodes remain unchanged.) The efficiency lies in being able to
evaluate the neighborhood without recomputing the pick-up/drop-off quantity of every station
in a neighbor solution, by simply adjusting the quantity of one of the three aforementioned
stations. For each node that is removed from the solution, up to three feasible neighbor solutions
are included in N1(x). The necessary conditions and steps of this adjustment are stated in
Algorithm 3, where ỹPiv (ỹDiv) represents yPiv (yDiv) in neighbor solution x̄. The adjustment of
yPi0v, y

P
ih−1v

or yDih−1v
, or yPih+1v

or yDih+1v
, depends on whether ih is a pick-up node (Algorithm

3, lines 3-21) or a drop-off node (Algorithm 3, lines 22-41). Obviously, in addition to satisfying
the conditions stated in the algorithm, a feasible neighbor solution also needs to obey the time
constraint. The necessary changes are the additions of the summations of the respective pick-
up/drop-off quantities to account for the possibility of a node being visited by more than one
vehicle.

If ih is a pick-up node, then the first potential neighbor solution consists of a solution whereby
vehicle v picks up yPihv extra bikes at the depot (lines 4-7 and Figure 1b) rather than from ih
(Figure 1a). For this solution to be feasible, the condition in line 4 has to be satisfied. ỹPi0v in
line 6 represents the adjusted number of bikes to be picked up from the depot if this solution is
chosen and implemented. Similar notations (those with ∼) are used later in the paper and in
Algorithms 4 and 5 to denote the adjusted quantities. The second potential neighbor solution is
obtained by adjusting the preceding station’s pick-up/drop-off quantity. If ih−1 is also a pick-up
node, then ih−1 needs to provide yPihv extra bikes for pick-up (lines 8-11). If ih−1 is a drop-off

node, then the vehicle needs to drop off yPihv fewer bikes at ih−1 (lines 12-16 and Figure 1c). The
third potential neighbor solution is reached by adjusting the succeeding station’s pick-up/drop-
off quantity. The logic behind lines 17-21 (see Figure 1d) follows the same principles as lines
8-16. Lines 22-41 describe the possibilities of creating neighbor solutions when ih is a drop-off
node, and they follow similar patterns to lines 3-21.
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Algorithm 3 The removal move

1: for v = 1, . . . , |V| do
2: for h = 1, . . . , nv − 1 do
3: if ih ∈Wv ∩ P then
4: ϑ = minl=0,1,...,h−1{k − yilil+1v}
5: if (ϑ ≥ yPihv and yPi0v + yPihv ≤ k and s0

i0
−
∑

r y
P
i0r
− yPihv ≥ 0) then

6: Set ỹPi0v = yPi0v + yPihv and ỹPihv = 0. Create x̄, and add x̄ to N1(x).
7: end if
8: if ih−1 ∈Wv ∩ P then
9: if (s0

ih−1
−
∑

r y
P
ih−1r

− yPihv ≥ 0) then

10: Set ỹPih−1v
= yPih−1v

+ yPihv and ỹPihv = 0. Create x̄, and add x̄ to N1(x).
11: end if
12: else if ih−1 ∈Wv ∩ D then
13: if (s0

ih−1
+
∑

r y
D
ih−1r

− yPihv ≤ cih−1
and yDih−1v

> yPihv) then

14: Set ỹDih−1v
= yDih−1v

− yPihv and ỹPihv = 0. Create x̄, and add x̄ to N1(x).
15: end if
16: end if
17: if ih+1 ∈Wv ∩ P then
18: Same as lines 9-11, except replace h− 1 with h+ 1.
19: else if ih+1 ∈Wv ∩ D then
20: Same as lines 13-15, except replace h− 1 with h+ 1.
21: end if
22: else if ih ∈Wv ∩ D then
23: u = minl=0,1,...,h−1{yilil+1v}
24: if (u− yDihv ≥ 0 and yPi0v − y

D
ihv
≥ 0) then

25: Set ỹPi0v = yPi0v − y
D
ihv

and ỹDihv = 0. Create x̄, and add x̄ to N1(x).
26: end if
27: if ih−1 ∈Wv ∩ D then
28: if (s0

ih−1
+
∑

r y
D
ih−1r

+ yDihv ≤ cih−1
) then

29: Set ỹDih−1v
= yDih−1v

+ yDihv and ỹDihv = 0. Create x̄, and add x̄ to N1(x).
30: end if
31: else if ih−1 ∈Wv ∩ P then
32: if (s0

ih−1
−
∑

r y
P
ih−1r

+ yDihv ≥ 0 and yPih−1v
> yDihv) then

33: Set ỹPih−1v
= yPih−1v

− yDihv and ỹDihv = 0. Create x̄, and add x̄ to N1(x).
34: end if
35: end if
36: if ih+1 ∈Wv ∩ D then
37: Same as lines 28-30, except replace h− 1 with h+ 1.
38: else if ih+1 ∈Wv ∩ P then
39: Same as lines 32-34, except replace h− 1 with h+ 1.
40: end if
41: end if
42: end for
43: end for
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(a) The original route with five stations (with cir-
cles denoting the pick-up stations, and squares
the drop-off stations). The numbers below the
nodes are the pick-up (+) and drop-off (-) quan-
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(b) The new route with station 3 removed and
an adjusted pick-up quantity for the depot.
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(c) The new route with station 3 removed and an
adjusted drop-off quantity for station 2.
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(d) The new route with station 3 removed and an
adjusted pick-up quantity for station 4.

Figure 1: Illustration of three neighbor solutions obtained by the removal operator when h = 3
and ih = 3.
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Neighborhood N2(x) consists of all feasible neighbor solutions obtained by applying the insertion
operator. This operator inserts node i ∈ Λ in every potential position (between every pair of
adjacent nodes ih−1 and ih) of every route, and then adjusts the pick-up/drop-off quantities
at the depot (yPi0v), the preceding node (yPih−1v

or yDih−1v
), or the succeeding node (yPihv or yDihv)

to make the resulting neighbor solution feasible. Note that the quantities of the other nodes
remain unchanged. To account for the possibility of multiple trips in a solution, node i can
also be inserted after depot inv , but then an additional depot must be added after i to make it
feasible. For each insertion of i between ih−1 and ih, up to four neighbor solutions are included
in N2(x): 1) no adjustment of existing pick-up/drop-off quantities, 2) yPi0v is adjusted, 3) yPih−1v

or yDih−1v
is adjusted, and 4) yPihv or yDihv is adjusted. A feasible neighbor solution needs to satisfy

all of the constraints. The necessary conditions regarding the time, capacities, and load of route
v are listed in Algorithm 4. The adjustment of yPi0v, y

P
ih−1v

or yDih−1v
, or yPihv or yDihv depends on

whether ih is a pick-up node (Algorithm 4, lines 5-35 and 69-74) or a drop-off node (Algorithm
4, lines 36-67 and 75-81). The applied changes are the summations of the pick-up/drop-off
quantities to account for multiple visits to a node. Lines 69-74 are new to Algorithm 4. They
are where a new trip is created by adding a pick-up node in position nv + 1 after the depot
located in position nv of route v. To render the insertion feasible, an extra depot-node needs to
be inserted in position nv + 2.

If i is a drop-off node, then the first potential neighbor solution is to insert i between ih−1 and
ih, and then determine the number of bikes to drop off at i while satisfying all of the constraints
(lines 37-41). A second potential neighbor solution is to let the vehicle pick up yDiv extra bikes
at the depot so that it can drop them off at i (lines 42-47 and Figure 2b). The third potential
neighbor solution is to adjust the preceding station’s pick-up/drop-off quantity. If ih−1 is also
a drop-off node, then the vehicle can drop off yDiv fewer bikes at ih−1 and then drop off the
remainder at i (lines 48-52). If ih−1 is a pick-up node, then, for every additional bike that is
picked up from ih−1, a bike is dropped off at i (lines 53-58 and Figure 2c). The fourth potential
solution is to adjust the succeeding station’s pick-up/drop-off quantity. The logic behind lines
59-60 follows the same principle as lines 49-52. If ih is a pick-up node, then, for every bike that
is dropped off at i, an extra bike is picked up from ih (lines 61-66 and Figure 2d). Because it is
possible for a vehicle to return to the depot more than once during the repositioning duration,
a possible neighbor solution with an extra trip is shown in Figure 2e (lines 75-81), where the
vehicle picks up yPinvv

bikes from the depot and drops them off at i.

Neighborhood N3(x) consists of all feasible neighbor solutions obtained by applying the exchange
operator to solution x. This operator replaces node ih in route v of solution x with another
node i ∈ Λ. In addition to respecting the time constraint, ih and i have to be the same type
and i 6∈ Wv. Ho and Szeto (2014) restricted ih ∈ Wv but, because vehicle v can perform more
than one trip, we allow ih ∈Wv ∪ {0}. If ih is the depot, then it may be exchanged by either a
pick-up or drop-off node. The pick-up/drop-off quantity of i is the same as that of ih, given the
neighbor solution remains feasible. The necessary conditions are in Algorithm 5. The applied
changes are the inclusion of the summations of the pick-up/drop-off quantities to account for a
node being visited more than once. Figure 3 shows the potential neighbor solutions when one
pick-up station is replaced by another (i = 6).

After a move is implemented, the pool Λ may be updated. If the chosen move is the removal
move, then node ih is added to Λ if it has not already been included. If the chosen move
is the insertion move, then node i is removed from Λ if s0

i −
∑

r y
P
ir = sIi (where i ∈ P) or

s0
i +

∑
r y

D
ir = sIi (where i ∈ D). Finally, if the chosen move is the exchange move, then the

foregoing rules apply to both ih and i.
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Algorithm 4 The insertion move

1: for i ∈ Λ do
2: for v = 1, . . . , |V| do
3: τ1 = T− LHS of (10)
4: for h = 1, . . . , nv do
5: if i ∈ P \Wv then
6: τ = τ1 − (tih−1i + tiih − tih−1ih)
7: κ = maxl=h−1,h,...,nv−1{yilil+1v}
8: y = min{bτ/(U + L)c, s0

i −
∑

r y
P
ir, k − κ}

9: if y > 0 then
10: Set ỹPiv = y. Create x̄, and add x̄ to N2(x).
11: end if
12: u = minl=0,...,h−1{yilil+1v}
13: y = min{s0

i −
∑

r y
P
ir, u}

14: if y > 0 then
15: Set ỹPiv = y and ỹPi0v = yPi0v − ỹ

P
iv. Create x̄, and add x̄ to N2(x).

16: end if
17: if ih−1 ∈Wv ∩ P then
18: y = arg minω=0,1,...,min{s0i ,yPih−1v

} fih−1
(s0
ih−1
−
∑

r y
P
ih−1r

+ω) +fi(s
0
i −

∑
r y

P
ir−ω)

19: if y > 0 and yPih−1v
> y then

20: Set ỹPiv = y and ỹPih−1v
= yPih−1v

− ỹPiv. Create x̄, and add x̄ to N2(x).
21: end if
22: else if ih−1 ∈Wv ∩ D then
23: y = min{yih−1ihv, cih−1

− s0
ih−1
−
∑

r y
D
ih−1r

, s0
i −

∑
r y

P
ir, bτ/(U + L)c}

24: if y > 0 then
25: Set ỹPiv = y and ỹDih−1v

= yDih−1v
+ ỹPiv. Create x̄, and add x̄ to N2(x).

26: end if
27: end if
28: if ih ∈Wv ∩ P then
29: Same as lines 18-21, except replace h− 1 with h.
30: else if ih ∈Wv ∩ D then
31: y = min{k − yih−1ihv, cih − s0

ih
−
∑

r y
D
ihr
, s0
i −

∑
r y

P
ir, bτ/(U + L)c}

32: if y > 0 then
33: Set ỹPiv = y and ỹDihv = yDihv + ỹPiv. Create x̄, and add x̄ to N2(x).
34: end if
35: end if
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36: else if i ∈ D \Wv then
37: µ = minl=h−1,h,...,nv−1{yilil+1v}
38: y = min{ci − s0

i −
∑

r y
D
ir , µ}

39: if y > 0 then
40: Set ỹDiv = y. Create x̄, and add x̄ to N2(x).
41: end if
42: τ = τ1 − (tih−1i + tiih − tih−1ih)
43: ϑ = minl=0,1,...,h−1{k − yilil+1v}
44: y = min{bτ/(U + L)c, ci − s0

i −
∑

r y
D
ir , ϑ, s

0
i0
−
∑

r y
P
i0r
}

45: if y > 0 then
46: Set ỹDiv = y and ỹPi0v = yPi0v + ỹDiv . Create x̄, and add x̄ to N2(x).
47: end if
48: if ih−1 ∈Wv ∩ D then
49: y = arg minω=0,1,...,min{ci−s0i−

∑
r y

D
ir ,y

D
ih−1v

} fih−1
(s0
ih−1

+
∑

r y
D
ih−1r

− ω) + fi(s
0
i +∑

r y
D
ir + ω)

50: if (y > 0 and yDih−1v
> y) then

51: Set ỹDiv = y and ỹDih−1v
= yDih−1v

− ỹDiv . Create x̄, and add x̄ to N2(x).
52: end if
53: else if ih−1 ∈Wv ∩ P then
54: y = min{k − yih−1ihv, s

0
ih−1
−
∑

r y
P
ih−1r

, ci − s0
i −

∑
r y

D
ir , bτ/(U + L)c}

55: if y > 0 then
56: Set ỹDiv = y and ỹPih−1v

= yPih−1v
+ ỹDiv . Create x̄, and add x̄ to N2(x).

57: end if
58: end if
59: if ih ∈Wv ∩ D then
60: Same as lines 49-52, except replace h− 1 with h.
61: else if ih ∈Wv ∩ P then
62: y = min{yih−1ihv, ci − s0

i −
∑

r y
D
ir , s

0
ih
−
∑

r y
P
ihr
, bτ/(U + L)c}

63: if y > 0 then
64: Set ỹDiv = y and ỹPihv = yPihv + ỹDiv . Create x̄, and add x̄ to N2(x).
65: end if
66: end if
67: end if
68: end for
69: if i ∈ P \Wv then
70: τ = τ1 − (tinv i + tiinv+2)
71: y = min{k, s0

i −
∑

r y
P
ir, bτ/(U + L)c}

72: if y > 0 then
73: Set ỹPiv = y and ỹDinv+2v

= y, where i = inv+1. Create x̄, and add x̄ to N2(x).
74: end if
75: else if i ∈ D \Wv then
76: τ = τ1 − (tinv i + tiinv+2)
77: y = min{ci − s0

i −
∑

r y
D
ir , k, s

0
i0
−
∑

r y
P
i0r
, bτ/(U + L)c}

78: if y > 0 then
79: Set ỹPinvv

= y, ỹDiv = y and ỹDinv+2v
= 0, where i = inv+1. Create x̄, and add x̄ to

N2(x).
80: end if
81: end if
82: end for
83: end for
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(a) The original route with four stations.
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(b) The new route with station 2 inserted and an
adjusted pick-up quantity for the depot.
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(c) The new route with station 2 inserted and an
adjusted pick-up quantity for station 1.
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(d) The new route with station 2 inserted and an
adjusted pick-up quantity for station 3.
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(e) An additional trip is added, with the new trip
being D-2-D and an adjusted pick-up quantity for
the depot.

Figure 2: Illustration of four neighbor solutions obtained by the insertion operator when i = 2,
h = 2, and ih = 3.

20



Algorithm 5 The exchange move

1: for i ∈ Λ do
2: for v = 1, . . . , |V| do
3: τ1 = T− LHS of (10)
4: for h = 1, . . . , nv − 1 do
5: τ = τ1 − tih−1ih − tihih+1

+ tih−1i + tiih+1

6: if ih ∈ (Wv ∩ P) ∪ {0} and i ∈ P \Wv and τ ≥ 0 then
7: if s0

i −
∑

r y
P
ir − yPihv ≥ 0 then

8: Set ỹPiv = yPihv and ỹPihv = 0. Create x̄, and add x̄ to N3(x).
9: end if

10: else if ih ∈ (Wv ∩ D) ∪ {0} and i ∈ D \Wv and τ ≥ 0 then
11: if s0

i +
∑

r y
D
ir + yDihv ≤ ci then

12: Set ỹDiv = yDihv and ỹDihv = 0. Create x̄, and add x̄ to N3(x).
13: end if
14: end if
15: end for
16: end for
17: end for
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(a) The original route with five stations.
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(b) The new route with station 6 replacing station
1. The pick-up quantity at station 6 is equal to
station 1’s original quantity.
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(c) The new route with station 6 replacing station
3. The pick-up quantity at station 6 is equal to
station 3’s original quantity.
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(d) The new route with station 6 replacing station
4. The pick-up quantity at station 6 is equal to
station 4’s original quantity.

Figure 3: Illustration of the neighbor solutions produced by the exchange operator when i = 6.
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3.6 Intensification procedures

The best solution found from TS is subject to further intensification procedures. Sometimes
a solution can be improved by redistributing the assigned pick-up/drop-off quantities among
the nodes of a given route. Note that this procedure does not increase the total time spent
on the route, but simply alters the yDiv , yPiv, and yijv variables. The following approach was
originally applied by Ho and Szeto (2014) to their single-vehicle repositioning problem. We
have modified it to conform to the features of our multi-vehicle repositioning problem with split
pick-ups/drop-offs. The resulting algorithm is given as Algorithm 6. Then, 2-opt (Lin, 1965)
is applied to every vehicle route. This operator repeatedly removes two edges from the route,
and adds back two new edges so that the route remains a tour. The objective is to reduce
the total travel time, disregarding pick-up/drop-off quantities. Because the route is now (most
likely) shorter, it is possible to add more nodes to the route. Using the insertion operator from
Section 3.5, a maximum of five nodes are inserted. Finally, Algorithm 6 is applied to adjust the
pick-up/drop-off quantities between the route’s nodes.

The adjustment in Algorithm 6 is performed in a heuristic manner. To make it easier to com-
prehend, we focus here on four main cases of adjustment. In the first two cases, we consider one
pair of nodes, im and ih (where m < h), of the same type on route v (that is, either im ∈ P ∩Wv

and ih ∈ P ∩Wv or im ∈ D ∩Wv and ih ∈ D ∩Wv) at a time. The idea is to verify whether it
is possible and beneficial to shift one or more (that is, y in the algorithm) units of the original
quantity from im to ih, or vice versa. Lines 4-12 describe the situation in which both im and ih
are pick-up nodes, whereas lines 13-22 describe that in which im and ih are drop-off nodes. The
third case concerns a pair of adjacent nodes (im, im+1), where im is the depot and im+1 ∈ P∩Wv.
As the depot can also be viewed as a pick-up node, we evaluate whether it is possible to pick up
more (or less) from im+1 and less (or more) from the depot. Lines 24-33 depict this situation.
The last case concerns a pair of adjacent nodes (im, im+1), where im ∈ D ∩Wv and im+1 is the
depot. The idea is to evaluate the possibility of dropping off more bikes at im instead of at the
depot. Lines 34-39 depict this situation.

4 Computational experiments

The heuristic was coded in C++, and all computational experiments were carried out on a Dell
notebook with an Intel Core i5-2520M CPU@2.5 GHz. Three sets of instances were used to
validate the efficiency and efficacy of the proposed H-LNS heuristic. The three datasets are as
follows.

Set 1 This set contains instances of 75-200 stations and 2-3 vehicles with a vehicle capacity of
20. Two planning horizons were used: T = 9000 and T = 18000 seconds. The time for
picking up or dropping off a bike was set to 60 seconds. The set contains 24 instances, and is
available from https://sites.google.com/site/drsinho/instances/hlns-set1.zip.

Set 2 This set was first used by Forma et al. (2015), and its instances are available from http:

//www.eng.tau.ac.il/~talraviv/Publications/3step%20data.zip. The set contains
instances of 75-200 stations and 2-3 vehicles with a vehicle capacity of 25. The time for
picking up or dropping off a bike is 60 seconds, and planning horizon T is 18000 seconds.
The data also differentiate between light, real, and heavy workloads (i.e., s0

i is set closer
to sIi when the workload is light rather than heavy). The set contains 30 instances.

Set 3 This set is based on the largest bike-sharing system in the United States, Citi Bike in
New York. It contains instances based on geographical areas: Manhattan (302 stations);
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Algorithm 6 Adjustment

1: for v = 1, . . . , |V| do
2: for m = 0, . . . , nv − 1 do
3: for h = m+ 1, . . . , nv do
4: if im ∈Wv ∩ P and ih ∈Wv ∩ P then
5: y = arg minω=0,1,...,min{yPimv ,s

0
ih
−
∑

r y
P
ihr}

fim(s0
im
−
∑

r y
P
imr

+ω)+fih(s0
ih
−
∑

r y
P
ihr
−ω)

subject to yilil+1v − ω ≥ 0, l = m, . . . , h− 1
6: if y > 0 then
7: Set yPimv = yPimv − y, yPihv = yPihv + y and yilil+1v = yilil+1v − y (l = m, . . . , h− 1).
8: end if
9: y = arg minω=0,1,...,min{yPihv ,s

0
im
−
∑

r y
P
imr,k−yimim+1v

} fim(s0
im
−
∑

r y
P
imr
−ω)+fih(s0

ih
−∑

r y
P
ihr

+ ω) subject to yilil+1v + ω ≤ k, l = m, . . . , h− 1
10: if y > 0 then
11: Set yPimv = yPimv + y, yPihv = yPihv − y and yilil+1v = yilil+1v + y (l = m, . . . , h− 1).
12: end if
13: else if im ∈Wv ∩ D and ih ∈Wv ∩ D then
14: y = arg minω=0,1,...,min{yDimv ,cih−s

0
ih
−
∑

r y
D
ihr}

fim(s0
im

+
∑

r y
D
imr
− ω) + fih(s0

ih
+∑

r y
D
ihr

+ ω) subject to yilil+1v + ω ≤ k, l = m, . . . , h− 1
15: if y > 0 then
16: Set yDimv = yDimv − y, yDihv = yDihv + y and yilil+1v = yilil+1v + y (l = m, . . . , h− 1).
17: end if
18: y = arg minω=0,1,...,min{yimim+1v

,yDihv ,cim−s0im−
∑

r y
D
imr}

fim(s0
im

+
∑

r y
D
imr

+ ω) +

fih(s0
ih

+
∑

r y
D
ihr
− ω) subject to yilil+1v − ω ≥ 0, l = m, . . . , h− 1

19: if y > 0 then
20: Set yDimv = yDimv + y, yDihv = yDihv − y and yilil+1v = yilil+1v − y (l = m, . . . , h− 1).
21: end if
22: end if
23: end for
24: if im = 0 and im+1 ∈Wv ∩ P and yimim+1v > 0 then
25: y = arg minω=0,1,...,min{s0im+1

−
∑

r y
P
im+1r

,yimim+1v
} fim+1(s0

im+1
−
∑

r y
P
im+1r

− ω)

26: if y > 0 then
27: Set yPim+1v

= yPim+1v
+ y, yPimv = yPimv − y and yimim+1v = yPimv.

28: else
29: y = arg minω=0,1,...,min{k−yimim+1v

,yPim+1v
} fim+1(s0

im+1
−
∑

r y
P
im+1r

+ ω)

30: if y > 0 then
31: Set yPim+1v

= yPim+1v
− y, yPimv = yPimv + y and yimim+1v = yPimv.

32: end if
33: end if
34: else if im ∈Wv ∩ D and im+1 = 0 and yimim+1v > 0 then
35: y = arg minω=0,1,...,min{cim−s0im−

∑
r y

D
imr,yimim+1v

} fim(s0
im

+
∑

r y
D
imr

+ ω)

36: if y > 0 then
37: Set yDimv = yDimv + y, yDim+1v

= yDim+1v
− y and yimim+1v = yDim+1v

.
38: end if
39: end if
40: end for
41: end for
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Manhattan and Jersey City (349 stations); Manhattan, Brooklyn, and Queens (471 sta-
tions); and all four areas (518 stations). Asymmetric travel times (in seconds) between
the stations were obtained from the Open Source Routing Machine1. The convex penalty
functions were derived from the methodology proposed by Raviv and Kolka (2013) using
real-time data collected from the Citi Bike website2. The number of vehicles varies between
3 and 5, and the vehicle capacity is 25. The time for picking up or dropping off a bike is
60 seconds, and planning horizon T is 18000 seconds. The set contains 12 instances, and is
available from https://sites.google.com/site/drsinho/instances/hlns-set3.zip.

Unless otherwise specified, α was set to zero in most test instances to ignore the influence of the
second term, that is, total travel time (i.e., to ensure that minimizing the total penalty was of
the greatest importance). α was set to 1/900 in some of the test instances in Section 4.4 because
Forma et al. (2015) used that value, and we wanted to compare our heuristic with their math
heuristic.

4.1 Parameter tuning

Initially, the parameters were set as follows: λ = 0.1, ρ = 0.1, φ = 3, K = 100, γ = 50, and
q ∈ {1, d0.1× |N |e} (see Table 2). The three parameters to be tuned were λ, ρ, and φ. K and γ
did not required tuning, as it is obvious that the larger their values are, the better the solutions
that will be achieved, albeit at the expense of much greater computing time. Nevertheless, setting
K and γ to the above values provides a good trade-off between solution quality and computing
time. The larger q is, the more time needed to destroy and recreate a feasible solution. Hence,
we decided to allow q to be randomly drawn from a range bounded by 10% of the instance size.
The first parameter to tune was λ, which restricts the number of solutions that can be improved
by the tabu search. λ was set to take values from {0.05, 0.1, 0.15, 0.2}. The larger the value λ is
assigned, the more time is needed to execute the algorithm. By running each of the 24 instances
in Set 1 20 times for each value from the range, it is found that setting λ = 0.1 yields the best
average results. With λ set to 0.1, the next parameter to tune was ρ, which controls the level
of noise to be added to an evaluation function in the insertion operator “Time-based insertion
with noise”. ρ was set to take values from {0.025, 0.05, 0.1, 0.2, 0.4}. The larger the value that
ρ takes, the wider the range that noise is drawn from. Experiments showed that setting ρ to
0.1 yields the best average results. With λ = 0.1 and ρ = 0.1, the last parameter to tune was
φ, which controls the random removals in the operator “Neighbor graph removal”. φ can take
values from the set {1, 2, 3, 4, 5}. The higher the value φ is set to, the greater the chance that
the nodes with the largest scores are selected. Experiments indicated that setting φ to 2 yields
the best average results. Hence, the results shown in the remainder of the section were obtained
by setting λ = 0.1, ρ = 0.1, and φ = 2.

4.2 Contribution of each removal and insertion operator

The H-LNS heuristic utilizes five removal and five insertion operators. The usefulness of each
of these ten operators is documented in Table 3, which shows the degree to which the average
deviations from the lower bounds worsen when a particular operator is excluded from the al-
gorithm. Experiments were conducted on the 24 instances in Set 1, with each instance run 20
times. The most useful removal operator was found to be the cluster removal operator, whereas
“best insertion” constituted the most useful insertion operator. It was quite surprising that

1http://project-osrm.org/
2https://feeds.citibikenyc.com/stations/stations.json
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Table 2: Parameters used in the algorithm

Parameter Meaning

λ A solution is passed to TS if it is within λ% of the best known solution x∗

ρ Controls the amount of noise in “Time-based insertion with noise”
φ Controls the randomness in “Neighborhood graph removal”
K The number of consecutive iterations without improvement to x∗

γ The number of TS iterations
q The number of stations removed at each LNS iteration

excluding the regret insertion operator improved the average results. However, the results for
the second set of instances did not improve when this operator was excluded.

Table 3: Statistics for the operators

Operator % Degradation

Random removal 1 0.06
Random removal 2 0.01
Cluster removal 0.13
Radial ruin 0.07
Neighbor graph removal 0.04

Time-based insertion with noise 0.05
Best insertion 0.07
Biased random insertion 0.05
Regret insertion -0.03
Random insertion 0.02

4.3 Comparison between CPLEX and H-LNS

The results were obtained by setting λ = 0.1, ρ = 0.1, φ = 2, K = 100, γ = 50, and q ∈
{1, d0.1 × |N |e}. An instance is denoted as X Y Z, where X denotes the number of stations in
the instance, Y denotes the number of vehicles, and Z denotes the length of the planning horizon
(i.e., s stands for short, T = 9000, and l stands for long, T = 18000). As this set of instances has
only been applied by our method, we decided to compare the results obtained with the results
obtained from CPLEX 12.4. CPLEX was set to run for a maximum of 2 hours, and both the
lower and upper bounds are reported in Table 4 (if a feasible solution was obtained within the
maximum running time of 2 hours; otherwise, a hyphen, “-”, is written instead). CPLEX did
not find an optimal solution for any of the 24 instances in this dataset. To demonstrate that
H-LNS finds better solutions when more time is allocated to the search, Table 4 also compares
the results between K = 50 and K = 100, showing that the average gap from the lower bounds
for K = 50 is 5.12% using 23 seconds of computing time on average. The results are improved
when K is increased to 100 (reduced to 4.90%), but at the expense of almost doubling the
computing time required.
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Table 4: Results for the first set of instances with α = 0.

Instance LB UB H-LNS1 Gap2 H-LNS1 Gap2 CPU3 H-LNS4 Gap2 H-LNS4 Gap2 CPU3

Avg Best Avg Best

75 2 s 440.05 470.78 469.17 6.21 466.56 5.68 4.86 469.14 6.20 466.29 5.63 7.73
75 2 l 327.26 352.01 347.34 5.78 344.41 4.98 8.93 346.21 5.47 343.33 4.68 17.29
100 2 s 642.89 678.68 673.06 4.48 668.24 3.79 5.75 671.31 4.23 666.69 3.57 11.76
100 2 l 484.68 527.21 521.61 7.08 515.02 5.89 13.73 519.99 6.79 512.89 5.50 29.62
125 2 s 894.69 935.21 925.04 3.28 919.59 2.71 9.43 923.76 3.15 919.59 2.71 15.68
125 2 l 708.12 759.23 750.47 5.64 743.19 4.72 19.59 748.28 5.37 741.65 4.52 44.68
150 2 s 1115.64 1161.75 1149.06 2.91 1145.97 2.65 11.12 1147.41 2.77 1144.72 2.54 21.67
150 2 l 912.33 978.45 958.18 4.79 949.99 3.96 24.90 955.66 4.53 948.83 3.85 47.18
175 2 s 1270.85 - 1307.48 2.80 1302.99 2.47 12.98 1306.16 2.70 1302.94 2.46 23.84
175 2 l 1061.63 - 1111.23 4.46 1100.51 3.53 28.67 1109.75 4.34 1100.42 3.52 55.36
200 2 s 1491.33 - 1529.88 2.52 1526.09 2.28 16.74 1528.77 2.45 1525.00 2.21 27.15
200 2 l 1272.70 - 1323.04 3.80 1313.73 3.12 40.53 1322.78 3.79 1312.26 3.01 68.20
75 3 s 372.23 410.04 404.89 8.07 396.68 6.16 8.75 402.71 7.57 395.83 5.96 14.99
75 3 l 281.80 303.28 299.09 5.78 296.35 4.91 11.76 298.28 5.52 295.84 4.74 21.08
100 3 s 553.42 614.11 592.72 6.63 586.62 5.66 9.96 591.82 6.49 586.40 5.62 18.34
100 3 l 409.61 475.29 434.54 5.74 427.09 4.09 25.63 432.65 5.32 427.09 4.09 50.36
125 3 s 794.52 883.97 836.25 4.99 831.02 4.39 19.15 835.06 4.85 829.91 4.26 28.24
125 3 l 591.90 - 632.95 6.49 625.24 5.33 37.37 631.68 6.30 624.92 5.28 66.64
150 3 s 1008.36 - 1054.48 4.37 1048.48 3.83 22.71 1052.73 4.21 1046.85 3.68 43.96
150 3 l 766.10 - 818.78 6.43 808.64 5.26 40.18 817.15 6.25 805.87 4.94 76.85
175 3 s 1160.81 - 1213.04 4.31 1204.12 3.60 22.76 1207.95 3.90 1202.52 3.47 53.89
175 3 l 902.47 - 966.27 6.60 958.33 5.83 53.98 962.69 6.25 952.44 5.25 114.21
200 3 s 1377.33 - 1430.56 3.72 1422.41 3.17 27.25 1426.04 3.42 1419.94 3.00 57.51
200 3 l 1092.96 - 1161.36 5.89 1151.25 5.06 72.72 1159.51 5.74 1151.10 5.05 125.23

Average 5.12 4.30 22.89 4.90 4.15 43.39

1 K = 50
2 Deviation in % of the H-LNS results from the LB.
3 CPU time (in seconds) to run the H-LNS.
4 K = 100

4.4 Comparison among CPLEX, 3-step math heuristic, and H-LNS

Here, the results were obtained by setting λ = 0.1, ρ = 0.1, φ = 2, K = 50, γ = 50, and
q ∈ {1, d0.1× |N |e}. An instance is denoted as X Y Z, where X denotes the number of stations
in the instance, Y denotes the number of vehicles, and Z denotes the workload level. Two sets of
experiments were conducted with the second set of instances used by Forma et al. (2015). The
results of the first set are presented in Table 5, with α = 0. The H-LNS results are compared
only with the CPLEX results, as Forma et al. (2015) did not conduct any experiments for α = 0.
CPLEX did not manage to find an optimal solution for any of the 30 instances within the 2-
hour time limit. H-LNS obtained better feasible solutions than CPLEX, and also managed to
reduce the optimality gap to 3.09% on average (with a minimal gap of 2.69%). The second set
of experiments was run on the same set of instances, but with α set to 1/900. The 3-step math
heuristic of Forma et al. (2015) was the only method used to conduct computational experiments
on the second set of instances (with α = 1/900). However, there is a slight difference between
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their problem formulation and ours. In Forma et al. (2015), a station is not categorized as a
pick-up or drop-off station. Hence, in theory, an optimal solution derived from their problem
formulation could be better than that derived from ours. Nevertheless, comparing the results
from the H-LNS and math heuristic is reasonable.

Table 6 shows the lower and upper bounds obtained from CPLEX (on our mathematical model),
the results from the math heuristic, the results from the H-LNS, and the average deviations from
our results to the lower bounds and math heuristic, respectively. The average computing time
for running an instance is reported in the last column. Forma et al. (2015) did not specify the
time taken to run each instance, although perusal of the text suggests that it took more than an
hour to run, and their computer is faster than ours. For all 30 instances, our H-LNS managed
to find better solutions than their math heuristic. The average improvement was 1.06%, and
the maximum improvement was 1.48%. It is likely that greater improvement could be achieved
by increasing K and/or γ, but at the expense of increasing the computing time. Currently, the
average computing time is less than half a minute.

4.5 Comparison between LNS and H-LNS

The removal and insertion operators described in Sections 3.3 and 3.4 exhibit the effects of both
diversification and intensification, although their intensification effect is not strong. Hence, it is
necessary to apply a short TS to intensify the search in promising regions of the solution space.
To demonstrate the effectiveness of including TS in the resulting H-LNS algorithm, computa-
tional experiments were performed on a pure large neighborhood search with TS excluded (i.e.,
lines 11-16 of Algorithm 1 were omitted).

Table 7 reports the results for the first set of instances obtained by running LNS with K = 100
(columns 2-3) and K = 1000 (columns 5-6). To allow a fair comparison between LNS and H-
LNS, the average computing time between the two needed to be similar. Hence, we compared
LNS (with K = 1000) with H-LNS (with K = 50 and γ = 50; see Table 4), and found H-LNS to
obtain better solutions on all 24 instances. On average, the improvement was 0.79%, with LNS
requiring slightly more computing time.

Experiments were also conducted with LNS on the second set of instances. Table 8 presents the
LNS results with K = 100 (columns 2-3) and K = 1000 (columns 5-6). LNS (with K = 1000)
was compared with H-LNS (with K = 50 and γ = 50; see Table 6) as the average computing
times are similar. Again, H-LNS found better solutions than LNS for all 30 instances, with an
average improvement of 0.67%.

Finally, the results of experiments conducted on the third set of instances are reported in Table
9. This table shows the results from LNS with K = 1000 (columns 2-3) and H-LNS with K = 50
and γ = 50 (columns 5-6). As with the previous experiments, H-LNS obtained better solutions
than LNS for all 12 instances, with an average improvement of 0.49%.

5 Conclusion

This paper proposes a hybrid heuristic to solve the revised arc-index formulation of the multi-
vehicle static repositioning problem in Raviv et al. (2013), where station characteristics are
explicitly considered. The heuristic is based on large neighborhood search, but incorporates tabu
search and various insertion and removal operators to improve the algorithmic performance. To
illustrate the proposed heuristic’s performance, it was tested on three sets of instances with up
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to 518 stations and five vehicles. The results show our heuristic, hybrid large neighborhood
search, to obtain better results than the 3-step math heuristic proposed by Forma et al. (2015).
The average improvement over the math heuristic is 1.06%. In addition, the average computing
time of our heuristic is less than half a minute, whereas that of the 3-step math heuristic is more
than one hour. The computational results also confirm that our heuristic performs better when
tabu search is incorporated, and that each insertion and removal operator contributes to solution
accuracy. However, our heuristic cannot consider a situation in which it may be desirable to
pick up or drop off bikes at balanced stations to help to balance neighboring stations with higher
penalty costs. Therefore, a future research direction is to derive effective and efficient operators
to handle the loading and unloading quantities at balanced stations.
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A Repair procedure

The repair procedure is modified from Ho and Szeto (2014) for the multiple-vehicle case, and
operates on an individual route. It starts by initializing all of the pick-up/drop-off quantities
with zero, and then assigning the pick-up/drop-off quantity at each station with a minimal
number of bikes to ensure that the solution becomes feasible. Then, one pick-up station and
one drop-off station are selected, with their pick-up and drop-off quantities increased by at most
two to maximize the reduction of the objective value. The problem of determining this pair of
stations (p, d) in route v and the increase in pick-up/drop-off quantity ϕ is formulated as follows.

(p, d) = arg max
i∈Wv∩P,j∈Wv∩D

{fi(s0
i −

∑
r

yPir)− fi(s0
i −

∑
r

yPir − ϕ) + fj(s
0
j +

∑
r

yDjr)− fj(s0
j +

∑
r

yDjr + ϕ) :

ϕ = min{s0
i −

∑
r

yPir, cj − s0
j −

∑
r

yDjr, bτ/(U + L)c, 2}},

subject to capacity and loading constraints. Afterwards, the pick-up and drop-off quantities
(yPpv = yPpv +ϕ and yDdv = yDdv +ϕ) and τ are updated (τ = τ − (U +L)ϕ). The entire procedure
is repeated until τ permits no further increase in the pick-up/drop-off quantity of any station
or the objective value cannot be reduced.
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Table 5: Results for the second set of instances with α = 0.

Instance LB UB H-LNS Gap1 H-LNS Gap1 CPU2

Avg Best

75 2 light 489.78 501.75 493.29 0.71 492.56 0.57 7.37
75 2 real 489.78 494.20 490.58 0.16 490.37 0.12 8.78
75 2 heavy 552.35 595.80 588.40 6.13 582.95 5.25 8.52
75 3 light 489.78 501.24 491.00 0.25 490.42 0.13 9.38
75 3 real 489.78 492.12 489.80 0.00 489.78 0.00 8.19
75 3 heavy 508.87 565.10 537.86 5.39 534.27 4.75 10.08
100 2 light 650.51 676.32 667.90 2.60 666.31 2.37 14.69
100 2 real 647.89 670.48 653.73 0.89 652.36 0.69 12.21
100 2 heavy 759.30 825.60 806.64 5.87 800.04 5.09 11.55
100 3 light 647.71 - 654.64 1.06 652.93 0.80 17.97
100 3 real 647.71 - 649.09 0.21 648.88 0.18 15.88
100 3 heavy 695.16 - 738.79 5.90 732.71 5.12 20.62
125 2 light 817.68 895.01 845.41 3.28 843.38 3.05 16.28
125 2 real 810.52 848.83 825.38 1.80 822.97 1.51 16.97
125 2 heavy 1014.99 1145.56 1070.69 5.20 1064.13 4.62 14.29
125 3 light 809.21 - 827.41 2.20 824.91 1.90 28.12
125 3 real 809.10 - 814.49 0.66 812.64 0.44 27.90
125 3 heavy 914.10 - 990.55 7.72 980.79 6.80 22.53
150 2 light 998.88 - 1037.71 3.74 1034.79 3.47 25.99
150 2 real 989.81 - 1015.01 2.48 1011.89 2.18 18.45
150 2 heavy 1278.03 - 1336.01 4.34 1331.01 3.98 18.36
150 3 light 982.59 - 1012.99 3.00 1008.41 2.56 35.46
150 3 real 981.54 - 994.80 1.33 991.64 1.02 30.43
150 3 heavy 1154.59 - 1237.13 6.67 1227.66 5.95 30.56
200 2 light 1386.76 - 1433.25 3.24 1429.43 2.99 30.02
200 2 real 1369.52 - 1416.50 3.32 1412.28 3.03 22.62
200 2 heavy 1946.08 - 2004.01 2.89 1996.50 2.53 17.92
200 3 light 1352.34 - 1402.37 3.57 1395.83 3.12 50.27
200 3 real 1337.15 - 1379.33 3.06 1370.17 2.41 36.81
200 3 heavy 1792.09 - 1883.52 4.85 1869.91 4.16 30.80

Average 3.09 2.69 20.63

1 Deviation in % of the H-LNS results from the LB.
2 CPU time (in seconds) to run the H-LNS.
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Table 6: Results for the second set of instances with α = 1/900.

Instance LB UB Math heuristic H-LNS Gap1 Gap2 H-LNS Gap1 Gap2 CPU3

Avg Best

75 2 light 502.01 522.24 519.95 515.04 2.53 -0.94 513.39 2.22 -1.26 12.03
75 2 real 500.37 515.82 511.19 510.97 2.07 -0.04 509.94 1.88 -0.24 12.00
75 2 heavy 563.70 634.90 616.49 604.20 6.70 -1.99 601.23 6.24 -2.48 9.57
75 3 light 501.68 523.49 519.95 515.41 2.66 -0.87 513.86 2.37 -1.17 15.27
75 3 real 500.14 522.41 511.88 510.88 2.10 -0.20 509.82 1.90 -0.40 14.68
75 3 heavy 527.69 594.85 576.22 562.94 6.26 -2.30 557.13 5.28 -3.31 10.23
100 2 light 668.77 703.74 696.21 690.78 3.19 -0.78 689.45 3.00 -0.97 15.59
100 2 real 661.23 682.41 679.43 675.04 2.05 -0.65 673.82 1.87 -0.83 14.91
100 2 heavy 771.45 865.90 825.72 822.42 6.20 -0.40 815.01 5.35 -1.30 11.80
100 3 light 668.26 - 697.11 691.79 3.40 -0.76 689.43 3.07 -1.10 23.84
100 3 real 661.11 686.49 677.11 675.66 2.15 -0.21 674.05 1.92 -0.45 19.32
100 3 heavy 715.73 - 788.17 761.82 6.05 -3.34 754.17 5.10 -4.31 23.12
125 2 light 834.60 - 873.81 867.14 3.75 -0.76 864.62 3.47 -1.05 17.90
125 2 real 825.52 871.43 851.26 846.72 2.50 -0.53 845.08 2.31 -0.73 16.60
125 2 heavy 1025.63 1141.70 1100.12 1086.27 5.58 -1.26 1079.37 4.98 -1.89 13.26
125 3 light 832.04 - 872.28 863.72 3.67 -0.98 861.37 3.41 -1.25 27.26
125 3 real 825.05 - 850.04 846.38 2.52 -0.43 844.12 2.26 -0.70 30.54
125 3 heavy 931.80 - 1026.84 1015.63 8.25 -1.09 1005.25 7.31 -2.10 25.56
150 2 light 1014.78 - 1071.10 1059.58 4.23 -1.08 1057.61 4.05 -1.26 23.42
150 2 real 1003.24 - 1034.66 1034.03 2.98 -0.06 1032.16 2.80 -0.24 19.44
150 2 heavy 1290.01 - 1380.39 1351.62 4.56 -2.08 1347.18 4.24 -2.41 18.29
150 3 light 1005.83 - 1055.03 1046.73 3.91 -0.79 1044.41 3.69 -1.01 37.80
150 3 real 1000.75 - 1033.40 1027.55 2.61 -0.57 1025.29 2.39 -0.78 26.85
150 3 heavy 1172.70 - 1287.05 1262.55 7.12 -1.90 1250.81 6.24 -2.82 27.73
200 2 light 1400.58 - 1467.71 1453.31 3.63 -0.98 1450.71 3.46 -1.16 24.44
200 2 real 1382.96 - 1452.10 1437.01 3.76 -1.04 1434.60 3.60 -1.21 21.71
200 2 heavy 1950.54 - 2043.04 2020.82 3.48 -1.09 2011.08 3.01 -1.56 15.88
200 3 light 1375.23 - 1456.80 1433.85 4.09 -1.58 1429.55 3.80 -1.87 50.90
200 3 real 1358.88 - 1428.88 1410.21 3.64 -1.31 1405.59 3.32 -1.63 35.37
200 3 heavy 1808.03 - 1942.73 1909.78 5.33 -1.70 1885.42 4.10 -2.95 34.37

Average 4.03 -1.06 3.62 -1.48 21.66

1 Deviation in % of the H-LNS results from the LB.
2 Improvement in % of the H-LNS results over the math heuristic.
3 CPU time (in seconds) to run the H-LNS.
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Table 7: Results for the first set of instances using LNS with α = 0.

Instance LNS1 LNS1 CPU2 LNS3 LNS3 CPU2

Avg Best Avg Best

75 2 s 476.62 470.25 0.55 473.85 470.10 3.80
75 2 l 353.73 348.11 2.86 351.71 347.69 21.73
100 2 s 680.05 673.52 0.93 677.25 670.55 5.10
100 2 l 529.30 518.49 4.38 525.08 513.69 32.82
125 2 s 934.93 930.44 1.21 933.03 928.11 7.12
125 2 l 763.18 754.65 4.51 758.15 747.59 32.42
150 2 s 1156.83 1147.64 1.42 1152.77 1146.54 9.27
150 2 l 971.46 958.66 5.10 964.88 953.15 43.20
175 2 s 1315.71 1308.99 1.68 1311.32 1306.24 11.88
175 2 l 1126.96 1116.29 5.76 1120.64 1112.78 44.75
200 2 s 1535.81 1530.41 1.97 1533.72 1529.53 10.82
200 2 l 1337.68 1327.29 6.27 1332.31 1317.54 48.83
75 3 s 414.46 405.46 1.28 411.43 405.46 8.49
75 3 l 302.78 298.34 3.26 300.31 296.95 27.48
100 3 s 602.47 593.04 1.70 599.24 590.99 10.62
100 3 l 444.91 438.31 4.61 439.16 432.28 52.65
125 3 s 855.84 839.59 1.93 849.10 837.75 15.00
125 3 l 647.96 637.19 6.23 641.96 636.62 55.08
150 3 s 1066.66 1059.81 2.65 1060.60 1054.03 17.79
150 3 l 835.22 826.22 9.46 828.51 821.56 82.29
175 3 s 1222.95 1209.18 3.76 1215.78 1207.42 22.63
175 3 l 979.14 963.36 9.30 971.56 959.80 94.17
200 3 s 1444.49 1430.34 3.59 1434.09 1426.39 28.06
200 3 l 1179.04 1165.95 10.29 1169.61 1157.09 98.64

Average 3.95 32.69

1 K = 100
2 CPU time (in seconds) to run the LNS.
3 K = 1000
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Table 8: Results for the second set of instances using LNS with α = 1/900.

Instance LNS1 LNS1 CPU2 LNS3 LNS3 CPU2

Avg Best Avg Best

75 2 light 519.87 516.24 1.01 518.78 515.06 8.26
75 2 real 513.04 511.18 1.33 512.08 510.37 14.57
75 2 heavy 618.55 609.26 1.61 612.51 605.87 20.03
75 3 light 521.46 518.23 1.11 520.27 515.53 8.14
75 3 real 514.65 512.17 1.59 513.21 510.80 11.28
75 3 heavy 574.55 569.05 1.55 570.26 560.68 14.79
100 2 light 696.14 691.23 1.61 694.86 690.93 11.30
100 2 real 677.61 674.94 1.91 676.46 674.90 12.34
100 2 heavy 836.46 820.94 1.91 830.58 819.54 14.98
100 3 light 697.13 692.85 1.54 695.22 692.71 11.41
100 3 real 680.04 676.65 1.47 678.14 674.60 10.90
100 3 heavy 784.24 767.28 3.02 773.65 758.92 31.61
125 2 light 873.25 867.17 1.99 870.89 866.46 16.92
125 2 real 850.59 847.52 1.90 849.17 846.39 16.33
125 2 heavy 1107.05 1089.16 1.95 1100.67 1085.62 13.23
125 3 light 869.99 864.72 2.49 867.67 862.76 23.48
125 3 real 851.94 848.27 2.48 848.74 846.59 23.62
125 3 heavy 1046.59 1020.48 3.07 1032.21 1016.98 29.41
150 2 light 1068.72 1060.59 2.39 1064.76 1060.22 21.81
150 2 real 1040.32 1035.85 2.05 1037.70 1034.53 19.37
150 2 heavy 1379.66 1349.78 2.14 1369.52 1348.60 15.04
150 3 light 1054.52 1047.28 3.49 1051.52 1045.60 31.98
150 3 real 1032.21 1028.78 3.43 1030.33 1026.52 30.57
150 3 heavy 1280.18 1264.78 4.22 1272.75 1258.36 27.12
200 2 light 1462.34 1453.93 2.99 1457.87 1452.41 29.77
200 2 real 1446.30 1437.78 2.54 1442.98 1437.57 17.75
200 2 heavy 2039.69 2029.61 2.30 2031.92 2019.38 16.03
200 3 light 1445.89 1436.34 4.41 1442.93 1431.99 38.44
200 3 real 1417.40 1411.31 3.80 1414.65 1409.64 32.35
200 3 heavy 1936.43 1915.63 3.76 1924.35 1908.59 29.09

Average 2.37 20.06

1 K = 100
2 CPU time (in seconds) to run the LNS.
3 K = 1000
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Table 9: Results for the third set of instances using LNS and H-LNS with α = 0.

Instance LNS1 LNS1 CPU2 H-LNS3 H-LNS3 CPU2

Avg Best Avg Best

302 3 2399.32 2388.86 110.49 2388.50 2383.12 87.81
302 4 2345.54 2339.01 125.29 2335.51 2326.23 114.04
302 5 2300.32 2288.67 146.18 2288.59 2278.89 162.34
349 3 2545.47 2539.75 127.60 2536.83 2531.42 100.16
349 4 2490.62 2484.89 130.57 2478.19 2471.63 143.49
349 5 2438.82 2429.16 170.52 2427.88 2422.53 188.28
471 3 2687.49 2672.92 166.61 2669.94 2664.42 205.47
471 4 2627.11 2615.79 221.18 2614.49 2608.27 210.32
471 5 2578.14 2569.45 261.61 2566.67 2559.23 297.80
518 3 2836.49 2823.28 155.77 2817.17 2811.95 201.30
518 4 2770.36 2762.75 232.62 2757.68 2750.67 221.50
518 5 2716.89 2708.16 292.05 2704.72 2696.44 286.98

Average 178.37 184.96

1 K = 1000
2 CPU time (in seconds) to run the heuristic.
3 K = 50

36


	Introduction
	Mathematical formulation
	Notations
	Arc-indexed formulation
	Revised model

	The algorithm
	Solution representation
	Construction heuristic
	Removal operators
	Insertion operators
	Tabu search
	Intensification procedures

	Computational experiments
	Parameter tuning
	Contribution of each removal and insertion operator
	Comparison between CPLEX and H-LNS
	Comparison among CPLEX, 3-step math heuristic, and H-LNS
	Comparison between LNS and H-LNS

	Conclusion
	Repair procedure

