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A longitudinal study of the effect of 
short-term meditation training on 
functional network organization of 
the aging brain
Francesca A. Cotier1,2, Ruibin Zhang1,2 & Tatia M. C. Lee1,2,3

The beneficial effects of meditation on preserving age-related changes in cognitive functioning are well 
established. Yet, the neural underpinnings of these positive effects have not been fully unveiled. This 
study employed a prospective longitudinal design, and graph-based analysis, to study how an eight-
week meditation training vs. relaxation training shaped network configuration at global, intermediate, 
and local levels using graph theory in the elderly. At the intermediate level, meditation training lead 
to decreased intra-connectivity in the default mode network (DMN), salience network (SAN) and 
somatomotor network (SMN) modules post training. Also, there was decreased connectivity strength 
between the DMN and other modules. At a local level, meditation training lowered nodal strength in 
the left posterior cingulate gryus, bilateral paracentral lobule, and middle cingulate gyrus. According 
to previous literature, the direction of these changes is consistent with a movement towards a more 
self-detached viewpoint, as well as more efficient processing. Furthermore, our findings highlight the 
importance of considering brain network changes across organizational levels, as well as the pace at 
which these changes may occur. Overall, this study provides further support for short-term meditation 
as a potentially beneficial method of mental training for the elderly that warrants further investigation.

There has been considerable work evidencing both cognitive and neural decline in elderly populations1, 2. Studies 
have shown deterioration of performance in a number of cognitive tasks3, as well as significant changes in brain 
structure and function4. Numerous training programs have been developed to counter this age-related decline5. 
Whilst the effectiveness of some of these programs has yet to be verified6, several of them have been clearly shown 
to incur positive effects7. Thus, these suggest that the elderly brain may still undergo neuroplastic changes.

One form of training that has gained increasing popularity in recent years is meditation8. The effectiveness of 
meditation in reducing cognitive decline in elderly individuals has been examined extensively, and improvements 
in several areas of cognitive function have been found9. Researchers have also begun to investigate the impact of 
mediation on the elderly brain. There is evidence that elderly meditators do not suffer from the same extent of 
reductions in gray matter volume as their age-matched controls10, 11; reductions in age-related decline regarding 
fractional anisotropy in several white matter fibre tracts have also been found12. Shao, et al.13 explored the impact 
of an 8-week meditation training on the elderly, and found increased positive connectivity between the pons and 
PCC/precuneus. Together, these findings suggest that meditation incurs significant neurocognitive effects on the 
aging brain.

One approach to examining the impact of aging on the brain is through graph-based analysis. Graph theory 
postulates that the structure of the brain is dependent on a trade-off between minimizing cost and maximizing 
efficiency14. A number of studies have examined age-related changes in network-organization and, in general, 
point towards reductions in small worldness, or a less ‘optimal’ trade-off between cost and efficiency with increas-
ing age15, 16.
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Few studies have examined changes in brain functional organization in relation to meditation in elderly pop-
ulations. Most recently, Jao, et al.17 compared network topology of Taoist meditators during states of resting and 
meditation respectively. Interestingly, no differences were found at a global level. However, at the level of individ-
ual nodes and hubs, significant expertise-dependent reorganisation was seen during meditation particularly in 
areas of the default mode network (DMN). Whilst this study points towards meditation state-related changes in 
brain network organization, conclusions that can be made are limited by the absence of a control group from the 
study. On the other hand, Gard, et al.9 employed an age-matched control group to examine age-related changes in 
terms of fluid intelligence and brain functional organization (e.g. small worldness) in expert yoga and meditation 
practitioners. The combined results indicated that meditators and yoga practitioners have a relatively small-world 
like organizational structure compared to the controls. Again, whilst this study provides insight into how med-
itation may impact elderly brain configuration, given the cross-sectional design, it is possible that the observed 
differences already existed prior to the meditation. In order to address these issues, a prospective longitudinal 
design was employed to explore how an eight-week meditation training program shapes network configuration 
in the elderly brain, as compared with training in relaxation. Specifically, we examined brain network configura-
tion changes in response to meditation at three levels; 1) a global level (whole brain topology), 2) an intermediate 
level (intra-module and inter-module connectivity) and 3) at a local level (nodal strength). Based on the research 
thus far, we hypothesized that at a global level the meditation group will show significantly more small world-like 
organizational structure compared to controls. At intermediate and local levels, significant network reorganiza-
tion (particularly within the DMN), specific to meditation, was also predicted.

Results
Study Population. There were no major differences in gender, age or years of education between the med-
itation training (MT) group and relaxation training (RT) group. The demographic characteristics of the subjects 
in each group are presented in Table 1. Details regarding the number of participants randomized to each group, 
and the number of participants entered in the final analysis can be seen in Fig. 1.

Outcome Estimation. Neuroimaging assessments. Global Level: Whole brain topology. No group differ-
ences at baseline were found on the primary outcome measures. ANOVA analysis showed that there were no 
main effects on the group and time factors, while interaction effects were detected in several network metrics, 
including network cost, global efficiency (Eglob), local efficiency (Eloc), shortest path length (Lp), cluster coef-
ficient (Cp), network strength (Sp), and overall modularity (Q) (p < 0.05) (Table 2). Tests of simple effects sug-
gested that after short term training, the RT group showed increased global efficiency, local efficiency, cluster 
coefficient, and decreased shortest path length (p < 0.05). There were, however, no significant changes before and 
after short term training in the MT group.

Intermediate level: Intra-module and inter-module connectivity profile. Based on the group-averaged functional 
connectivity matrixes from the pre-test data, we identified five modules (Q = 0.54, p < 0.001): default mode net-
work (DMN), salience network (SN), fronto-parietal network (FPN), somatomotor network (SMN), visual net-
work (VN) (Fig. 2a). On the basis of this modular architecture, we applied ANOVA on the connectivity strength 
within each subnetwork or inter-connectivity strength. No main effects on time and group factors were detected, 
but interaction effects were found on the network connectivity strength in DMN, SAN, and SMN (p < 0.05) 
(Fig. 2b: see Fig. S2 in Supplementary for detailed results). Further tests of simple effects demonstrated that after 
training the MT group showed less intra-connectivity in these networks (p < 0.05), and the RT group showed 
increased connectivity strength compared with the baseline phrase (Pre) (Fig. 2b).

No main effects were detected in the inter-network connectivity strength, but group by timing interaction 
effects were found. Tests of simple effects showed that the DMN exhibited lower connectivity strength with sev-
eral other modules in the MT group after training, while in the RT group the DMN showed increased connectiv-
ity strength to other networks (p < 0.05, Fig. 2c).

Local Level: Nodal strength. There were no significant differences between the MT and RT groups at the base-
line phase. To localize the regional nodes with training effects, we contrasted the nodal strength for each node 
between the two groups. The mean nodal strength was heterogeneously distributed over the brain with the most 
highly connected regions in the prefrontal cortex and posterior parietal and occipital cortices; a common pattern 
to both groups (Fig. 3a,b,d,e). Nevertheless, 28 ROIs exhibited significant interaction effects between group and 
time factors (p < 0.005, uncorrected). These ROIs predominately encompassed the posterior cingulate gyrus, 
lateral prefrontal cortex, lateral temporal and parietal cortices, medial temporal lobe, supplementary motor area, 
bilaterally (Fig. 3g). Tests of simple effects suggested that after short term training, the MT group demonstrated 

MT RT X2/t, p

Gender 16 F/7 M 14 F/8 M X2 = 0.17, 
p = 0.67

Age (years) 64.78 ± 2.71 64.68 ± 2.19 t = 0.13, 
p = 0.89

Education (years) 11.90 ± 3.02 13.89 ± 3.93 t = −1.41, 
p = 0.16

Duration of 
practice (mins) 710 + 12.89 711.23 ± 15.89 t = 0.13, 

p = 0.70

Table 1. Demographic characteristic of meditation practitioners and control subjects. Note: MT/RT, meditation 
training/relaxation training group; F/M, female/male.
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lower nodal connectivity in the left posterior cingulate gyrus, bilateral paracentral lobule, and middle cingulate 
gyrus (Fig. 3h). While the RT group showed higher nodal connectivity in the right middle temporal gyrus, the left 
lingual gyrus, bilateral supplementary motor area, and bilateral paracentral lobule (Fig. 3i). Interestingly, these 
regions were mainly located in the SAN, DMN and SMN.

Validation and reproducibility. In general, both the global and nodal results reported in the main text were 
largely reproducible when: (1) data was pre-processed with 6 mm smoothing kernel; (2) networks were con-
structed with binary links. The detailed results on the global network metrics and 3D profile for nodal strength 
are characterized in Table S1 and Figures S3 and S4 in Supplementary.

Behavioural Assessments. Detailed results from the Emotion processing task (EPT) have been reported in 
reports previously produced by our lab (Shao et al.13). In brief, for the EPT task the MT group showed weaker 
valence and arousal responses after the 8-week training period (p < 0.05), but these measures remained 
unchanged in the RT group. For the Stroop task, no significant main or interaction effects were detected for either 
group (p > 0.05).

Discussion
The direct effects of an eight-week meditation training on neural network configuration was studied by employ-
ing a longitudinal design and an active control group. Our findings clearly indicate that only the intermediate 
and local levels of brain connectivity showed changes resulting from the meditation training. At the intermediate 
level, decreases in intra-connectivity in the default mode network (DMN), salience network (SAN) and somat-
omotor network (SMN) modules have been shown among the meditation group, as compared to the controls 
after training. The DMN was also shown to have decreased connectivity strength with other modules in the med-
itation group. At a local level, the meditation group showed lower nodal strength in the left posterior cingulate 
gryus, bilateral paracentral lobule, and middle cingulate gyrus post training. These findings highlight the impor-
tance of considering meditation-induced neural changes across different organizational levels, and the different 
paces at which they may occur. On a clinical level, the direction of these network changes is consistent with a 
movement towards a more self-detached viewpoint; and a more neutralized affective style as we have previously 
established13. The established changes are also indicative of potentially more efficient processing. Together these 

Figure 1. Flowchart of participant flow. Data from 23 subjects from the mediation training group (MT) and 22 
subjects from the relaxation training group (RT) were initially entered into the analysis. Amongst these subjects, 
4 subjects were excluded due to head motions larger than 3 mm or 3º. Thus, 22 subjects for MT and 19 subjects 
for RT were entered into the final network construction and analysis.

http://S1
http://S3
http://S4
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findings suggest that only 8 weeks of meditation training may have a significant positive impact on the elderly 
brain and thus further support the view that meditation may be beneficial for the elderly.

The findings reflect no significant changes in graph metrics at a global level in the meditation group, which 
is consistent with Jao et al.’s study17 that similarly found no differences in global network organization when 
comparing meditative and resting states in expert meditators. It seems that, contrary to our expectations, eight 
weeks of meditation may not have improved the small worldness of the brain organization of the elderly. There are 
several potential explanations for these findings. Firstly, it is possible that the lack of changes reflect a conservative 
effect of meditation on the brain. That is, rather than the network organizational structure showing reductions 
in small-worldness as may be expected in elderly populations15, the network topology remained the same which 
may suggest that the meditation training preserved the global network topology. Future studies may wish to 
employ a further non-active (no training) control group to examine how the network organizational structure of 
elderly individuals changes over a period as short as 8-weeks to assess the validity of this proposal. Another pos-
sible explanation is that the duration of training may have been too brief to reveal observable changes at a global 
level, which would suggest that network configuration changes may occur at different paces18. However, given the 
findings of Jao et al.17 it seems most likely that meditation training simply does not impact network organization 
at a global level and instead has more localized effects. A study employing further post-training follow ups would 
be needed to confirm this proposal, and establish how exactly network organizational structure may change fur-
ther with increasing expertise.

Our findings regarding reductions in intra-network connectivity within the DMN after meditation are con-
sistent with a recent study which found that functional connectivity between two components of the DMN, as 
identified by Independent Component Analysis, was negatively correlated with mindfulness in novice meditators, 
who completed a two-week attention training in breathing (Doll et al.23). Our findings are also in line with several 
studies which have found reduced connectivity within certain regions of the DMN in meditation experts com-
pared to novices19–21. Given the DMN’s established role in self-referential thinking22, these findings are thought 
to reflect a movement towards an increasingly self-detached viewpoint associated with meditation13, 23. The DMN 
also plays a role in determining the affective relevance of a specific stimulus. This reduced connectivity between 
regions of the DMN therefore may also reflect changes in how relevant to self an individual considers a stimulus23, 

24. This explanation is supported by our previously reported behavioural data which suggests meditation training 
‘neutralizes’ the affective processing of both positive and negative stimuli in the elderly13. Several other studies, 
however, have found increased connectivity within specific regions of the DMN25–28. As there have been consid-
erable differences in methodologies across the aforementioned studies, they all suggest intra-connectivity with 
the DMN may vary largely depending on factors including the specific regions examined, analytical approach 
(e.g. region vs. whole brain), meditation type and state (resting or meditative), rather than offering contradictory 
findings respectively. This highlights the importance of methodological specificity in examining intra network 
connectivity in relation to meditation.

Metrics

Main 
effects Group 

F (1, 
36), 
p, η

Interaction 
effects

Post test

MT RT

Timing 
F (1, 36), 
p, η

Timing * 
Group F (1, 
36), p, η

Post 
vs 
Pre

Post 
vs 
Pre

Cost
0.02 
(0.88), 
0.001

1.45 
(0.24), 
0.04

5.23 (0.02), 
0.12 ↓ ↑

Cost-efficiency
0.01 
(0.91), 
0.001

1.46 
(0.24), 
0.03

4.76 (0.03), 
0.11 ↑ ↓

Eglob
0.05 
(0.83), 
0.001

1.14 
(0.74), 
0.04

5.93 (0.02), 
0.14 ↓ ↑

Eloc
0.01 
(0.97), 
0.001

1.44 
(0. 23), 
0.04

4.98 (0.03). 
0.12 ↓ ↑

Lp
1.30 
(0.26), 
0.03

0.01 
(0.91), 
0.001

5.09 (0.03), 
0.12 ↑ ↓

Cp
1.43 
(0.24) 
0.03

0.01 
(0.92), 
0.001

4.19 (0.04), 
0.10 ↓ ↑

Sp
1.41 
(0.24), 
0.04

0.04 
(0.84), 
0.001

5.71 (0.02), 
0.13 ↓ ↑

Q
0.11 
(0.74), 
0.003

0.32 
(0.58), 
0.01

4.32 (0.04), 
0.11 ↑ ↓

Table 2. Global network topology between Time (Pre/Post) and Group (Mediation training, MT, and relaxation 
training, RT). Note: η, effect size; n.s., no significant difference; ↑(↓) compared with pre phrase, network metrics 
showed increased (decreased) trends after training (Post).
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The salience and somatomotor networks have received considerably less attention relative to the DMN 
in relation to meditation research. Farb, et al.29 compared neural activity and connectivity across three tasks 
(one focused on interoceptive attention and the other two focusing on other forms of attention) among indi-
viduals who had completed eight-week meditation training and waitlisted controls. In the meditation group, 
task-independent increased connectivity was found between the right posterior insula and the right anterior 
insula (regions in the SAN) after MBSR training. This finding suggested increased interoceptive awareness, 
regardless of external stressors, which is a key goal of meditation29. As this study focused on task-related activity 
whilst our study focuses on resting-state activity, it could be argued that these differences reflect differences across 
states, as has been demonstrated by Jao, et al.17.

Consistent with these findings of lower intra-connectivity within key meditation networks, our study also 
revealed lower nodal strength in regions, including the left posterior cingulate gyrus, bilateral paracentral lobule, 
and middle cingulate gyrus post-training in the meditation group. These findings indicate lower interconnectivity 
of these regions with other nodes30. These regions are found primarily within the DMN, SAN and SMN. The pos-
terior cingulate gyrus, for example, is a key hub of the DMN31. This suggests that targeting key hubs within these 
networks can be one manner in which meditation may impact the brain30.

Our findings of lower connectivity between the DMN and several other networks (including the SAN, SMN 
and VN) in the meditation group are in line with previous literature. A number of studies have examined con-
nectivity between the DMN and SAN at resting state, for example, and found indications of reduced connectiv-
ity with these modules20, 32. The aforementioned study by Doll, et al.23, for instance, found an anti-correlation 
between abilities of mindfulness and inter-intrinsic functional connectivity (IFC) among SAN, DMN and the 
central executive network (CEN) after two weeks of daily twenty-minute meditation. Given the DMN’s estab-
lished role in mind wandering33, this lesser connectivity with the SAN may indicate increased awareness to mind 
wandering23. In general, this lesser connectivity between key modules involved in meditation may be interpreted 
as a stronger distinction between networks that may result in better effective connectivity23, 34, and thus potentially 

Figure 2. The Effects of training on intermediate modular structure. Five modules were identified for the 
group-level mean network of pre-test phrase (a) including the default mode network (DMN), salience network 
(SAN), somotomotor network (SMN), fronto-pariteal network (FPN), and visual network (VN). Further 
statistical analysis revealed significant interactions between timing and group (p < 0.05, corrected) on the intra-
module and inter-module functional connectivity. Figures (b and c) show the post test for the intra-module/
inter-module functional connectivity showing interaction. The results represented on the brain surface were 
mapped using the BrainNet viewer52.
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more efficient processing. A possible focus for future studies would be to examine relationships between such 
measurements (e.g. processing speed) and inter-network connectivity within the DMN.

Our findings must be considered in light of several limitations. Firstly, although we have explained some of 
our results in terms of the differences associated with different levels of expertise in meditation, our study has 
only employed one post-training follow-up. Future studies employing further post-training follow-up points 
would be required to confirm this explanation. Secondly, we have focused solely on one form of meditation. There 
is, however, evidence wherein distinct neural activities may be attributed to the different types of meditation35. 
Thus, it would be interesting to explore the ways various meditation types influence brain network configuration. 
Thirdly, whilst our training groups were matched on several measures, future studies may wish to employ a more 
comprehensive range of cognitive and affective instruments to ensure greater matching across groups. Fourth, 
although our study aimed at examining topological changes in the elderly specifically, future studies could help 
further clarify the impact of meditation on the brain’s architecture across the lifespan by employing a wider age 
range of participants. Finally, given the exploratory nature of the study, for the intermediate and global level anal-
yses we used a fairly lenient correction method (1/N, N is the test counts) to control for multiple comparisons36, 37 
and no correction method was employed for the local level analyses. The results should thus be interpreted with 
caution and future studies may wish to employ larger sample sizes to allow for more stringent correction methods.

Overall, this study examined the direct effects of short-term training in meditation on functional network 
organization amongst the elderly. It was found that an eight-week meditation training caused significant changes 
to the neural network configuration, with lower intra-connectivity found in key meditation networks includ-
ing the DMN, SAN and SMN network. These findings are speculated to reflect a movement towards a more 
self-detached viewpoint as a result of the meditation practice. Less inter modular connectivity, particularly with 
the DMN, was also found, which suggests a greater distinction amongst networks and thus, according to previ-
ous literature, potentially better processing. Finally, no global level changes were found in the meditation group 
suggesting meditation may have a more localized influence on the brain, or that network changes may occur at 
different paces thus highlighting the need for further longitudinal studies to assess network changes at various 

Figure 3. The effects of training on local nodal strength. (a,b,d and e) Local nodal strength distribution before 
and after training. (c and f) Local nodal strength distribution before and after training. (g) ANOVA analysis 
demonstrated the regions showing interaction effects between Timing and Group (p < 0.005). (h and i) Showed 
the simple effect test for the mediation training (MT) and relaxation training (RT) group (p < 0.05). Of note that 
nodes showed interaction effects were decreased after training in MT compared with before training, while RT 
group showed increased nodal strength after training. The results represented on the brain surface were mapped 
using the BrainNet viewer52.
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time points. Together these findings highlight the importance of considering the neural impact of meditation at 
various topological levels and the varying pace at which these changes may occur, and provide further support for 
short-term meditation as a potentially beneficial method of mental training for the elderly that warrants further 
investigation.

Method
Study Design. The Institutional Review Board of The University of Hong Kong (HKU) and the Hospital 
Authority approved this study; and the methods were carried out in accordance with the approved guidelines. 
All participants gave their informed consent for participation. Participants were randomly assigned to receiv-
ing either meditation training (MT, n = 23; 16 females; mean age = 64.78 ± 2.71 years, range = 60–68 years) or 
relaxation training (RT, n = 22; 14 females; mean age = 64.68 ± 2.19 years, range = 61–69 years). All participants 
attended two data collection sessions (pre and post). In the pre-training session, participants were first screened 
for the exclusion criteria. Participants then completed the TONI-III IQ test and the HADS. The resting-state fMRI 
and structural MRI protocols were then conducted for the participants and behavioural measures were taken. 
Participants then received 8 weeks of either meditation or relaxation training, as detailed below. Within 3 weeks 
following the completion of training, participants underwent post-training imaging and behavioral assessments, 
which were performed under the same protocols as for the pre-training assessment. After study completion, par-
ticipants were debriefed, thanked and reimbursed 800 Hong Kong dollars.

Study Population. Forty-five healthy elderly adults with normal general intelligence and no prior medi-
tation or relaxation training experience were recruited through community newsletters. Demographically, the 
two groups were matched for age (p = 0.89), sex (p = 0.68), and years of education (p = 0.17). Furthermore, 
the meditation and relaxation groups performed similarly on the Test of Nonverbal Intelligence, third edition 
(TONI-III) (p = 0.91), and showed comparable levels of anxiety (p = 0.48) and depression (p = 0.66), as measured 
by the Hospital Anxiety and Depression Scale (HADS). All participants were right-handed, as assessed with the 
Edinburgh Handedness Inventory; had normal or corrected-to-normal vision and hearing; reported no history of 
major physical illnesses, neurological or psychological conditions, such as substance abuse, psychotic disorders, 
or affective disorders; and were suitable to enter a magnetic resonance image (MRI) scanner. In order to manage 
expectations across participant groups, both groups were led to believe that both interventions would lead to 
significant improvements. Specifically, at the beginning of the study, participants were informed that the purpose 
of the study was to investigate whether meditation and relaxation practice may promote healthy aging through 
slowing down brain degeneration and boosting immune functions, and that both interventions would lead to 
improvements. In the event that participants further questioned the benefits/improvements of both interventions 
the purpose of the study was restated and participants were again told that both interventions have several ben-
efits (e.g. more relaxation).

Study Interventions. Participants received either attention-based compassion meditation training or relax-
ation training in a group setting for 8 weeks. Relaxation training is a reliable active control for studying the effects 
of meditation as both forms of training involve similar experiences13. Furthermore, both training programs were 
designed to follow largely the same structure to minimize differences. Each type of training involved 22 classes: 
11 taught sessions, 10 group practice sessions and one intensive 3-hour session. Each of the taught and practice 
sessions lasted 1.5 hrs. Each participant therefore completed a total of 34.5 hrs training. Each taught class started 
with a guided meditation or relaxation practice for ~30 mins, didactic teaching for ~45 mins and ended with 
another guided practice for ~15 min. The structure of the group practice sessions was largely similar although 
meditation/relaxation sessions were guided by videotapes, and participants did didactic revision. All group prac-
tice sessions were videotaped. The 3 hrs intensive session was structured as follows: brief introduction (15 mins), 
guided meditation/relaxation (1 hr), tea break/noble silence (15 mins), meditation/relaxation practice (45 mins), 
Q & A (30 mins) and meditation/relaxation (15 mins). Participants were asked to practice outside of class on a 
daily basis for a minimum of 20 minutes (on days without sessions), and their practice durations were recorded. 
The total self-practice time was comparable between the meditation (average 710 mins) and relaxation groups 
(average 711 mins). Further details of the training programs are described below.

Meditation training. The meditation training was conducted by an experienced meditator with 14 years of med-
itation practice and 4 years of teaching experience. Meditation participants were taught to (1) cultivate mindful-
ness through paying attention to the surrounding sounds and one’s own breathing, feelings and sensations on the 
present moment, (2) try to apply non-judgmental and ‘acceptance’ attitudes on thoughts, feelings and sensations, 
(3) try to detach from a self-referential framework and observe one’s own thoughts and feelings from an outsider’s 
perspective, and (4) try to cultivate compassion and kindness towards self, family members, friends, strangers, 
and other living beings.

Relaxation training. Relaxation training was conducted by a registered clinical psychologist with 4 years of 
teaching experience. Relaxation participants were taught diaphragmatic breathing, progressive muscle relaxation 
and imagery relaxation techniques aimed at enhancing body awareness and reducing body tension.

Study Outcomes. Neuroimaging assessments. Data acquisition. All MRI datasets were obtained on a 3T 
Philips MR scanner with the use of a 12-channel phased-array receiver-only head coil. The R-fMRI datasets were 
acquired using a gradient echo EPI sequence with the following parameters: repetition time (TR) = 2000 ms, 
echo time (TE) = 30 ms, flip angle = 90o, field of view (FOV) = 224 × 224 mm2, data matrix = 64 × 64, thick-
ness = 4 mm, 32 transverse slices covering the whole brain, and 180 volumes acquired in 6 mins. During the 



www.nature.com/scientificreports/

8Scientific RepoRts | 7: 598  | DOI:10.1038/s41598-017-00678-8

R-fMRI scan, each subject was asked to keep their eyes closed but not to fall asleep and to relax their minds 
but not to think about anything in particular. We also collected high-resolution anatomical images of individu-
als using a T1-weighted three-dimensional volumetric magnetization-prepared rapidly acquired gradient-echo 
sequence: 192 slices; TR = 6.88 ms; TE = 3 ms; FA = 8o; slice thickness = 1 mm; no gap; matrix = 240 × 240; and 
FOV = 240 × 240 mm2.

Data preprocessing. The R-fMRI data were preprocessed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) and 
DPARSF38. For each subject, the first five volumes of the R-fMRI dataset were discarded to allow for MR signal 
equilibrium, leaving 175 volumes for further analysis. The remaining images were then corrected through the 
use of slice timing to control for the acquisition time delay between slices within the same TR, realigned to 
the first volume to correct the inter-TR head motions, and spatially normalized to a standard MNI template 
and re-sampled to a voxel size of 3 × 3 × 3 mm3. In accordance with previous studies, no spatial smoothing was 
applied16, 39. Finally, we performed band-pass filtering for each voxel in the frequency of 0.01~0.01 Hz to reduce 
low-frequency, drift and high-frequency physiological noise. The R-fMRI data for each subject were checked 
for head motion. Four subjects were excluded according to the criteria that the translation and rotation of head 
motion in any direction were not more than 3 mm or 3°. If Power frame displacement (FD) was found to be 
greater than 1, that time point was deemed a ‘bad’ time point, and the time points before and after that bad time 
point were scrubbed using each of the bad time points as a repressor40. Finally, a total of 41 subjects were entered 
into the data analysis, 22 subjects in meditation group, and 19 subjects in relaxation group (See Fig. 1).

Network construction. Using nodes and edges, as the basic elements of a network, we deployed the GRETNA 
toolbox41 to construct the brain functional network for each subject according to the AAl-1024 atlas, which con-
sists of 1024 regions. We calculated the time series for each ROI by averaging the time courses of all the voxels 
within a ROI, and performed a linear regression to remove the effects of the following covariates from each voxel’s 
time course: signals from the brain white matter and cerebrospinal fluid as well as 24-parameter head-motion 
profile. With respect to global signals, we referred to the Global Negative Index (GNI)42 as an indicator as to 
whether global signal regression was needed for the current study. This index recommends not performing global 
signal regression analysis when participants GNI are 3 or above. After examination of GNI profiles, which were 
estimated using the publicly available Matlab code (By Chen Gang, https://www.mathworks.com/matlabcentral/
fileexchange/36864-determine-the-necessity-for-global-signal-regression) we found the majority of participants 
to have a GNI greater than 3. Furthermore a paired t-test revealed that there were no significant difference pre and 
post intervention (p < 0.42). Based on these observations, we thus decided not to perform global signal regression 
analysis on this dataset. The GNI profile of each subject can be seen in Fig. S1 in Supplementary.

For each subject, we first used the residuals of the time series for each ROI to calculate a Pearson’s correla-
tion coefficient and the significance level (i.e., p value) of a given inter-regional correlation. Then we obtained a 
1024 × 1024 symmetric correlation matrix and the corresponding p value matrix for each subject. To de-noise 
spurious correlations, we retained only those correlations whose corresponding p values passed through a statisti-
cal threshold of p < 0.05 (Bonferroni correction); otherwise, we considered there to be no functional connectivity 
between the two regions. Notably, negative correlations were also excluded in this study because of the ambigu-
ities in their interpretation43 and detrimental effects on test–retest reliability44. Finally, we obtained a weighted 
1024 × 1024 FC matrix, which was used to conduct the subsequent analysis for each subject.

Network metrics. All network measures used in this study, including global efficiency, local efficiency, nodal 
efficiency, are explained in the context of a weighted network G with N nodes and K edges.

Global network parameters. Cost. For a network (graph) G with N nodes, the wiring cost is defined by the ratio 
between actual links of the network and the possible links of this network.

Network strength. For a network (graph) G with N nodes and K edges, we calculated the strength of G as:

∑=
=

S G
N

S( ) 1
(1)i

N

ip
1

where Si is the sum of the edge weights wij (i.e., correlation coefficients) linking to node i. The strength of a net-
work is the average of the strengths across all the nodes in the network.

Global efficiency. The global efficiency of G can be computed as:
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where Lij is the shortest path length between node i and j in G. The path length between node i and node j is 
defined as the sum of the edge lengths along this path, where each edge’s length was obtained by computing the 
reciprocal of the edge weight, 1/Wij. The shortest path length Lij between node i and j is the length of the path with 
the shortest length between the 2 nodes.

Local efficiency. The local efficiency of G is measured as45:

∑=
∈

E G
N

E G( ) 1 ( )
(3)i G

iloc glob

where Eloc(G) is the global efficiency of G(i); the subgraph composed of the neighbors of the node i (i.e., nodes 
linked directly to node i). The local efficiency measures the fault tolerance of the network, which indicates the 
capability of information exchange for each subgraph when the index node is eliminated.

Shortest path length. The weighted shortest path length Lp is defined as

http://www.fil.ion.ucl.ac.uk/spm/
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It is measured by using a “harmonic mean” geodesic distance between all pairs. It reflects the optimal path 
of information transfer from node i to j node and then economizes the cost of information transfer through the 
shortest path. Lp quantifies the ability of parallel information propagation or global efficiency of a network.

Cluster coefficient. The cluster coefficient Cp is defined as

∑=
−∈
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D D

( ) 1
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Ki is the number of edges in G(i); the subgraph consisting of the neighbors of node i.
Di is the degree, or the number of edges connected to the node i. Cp measures the cliquishness of a network.
Cost-efficiency. In our current study, we followed previous work14 and defined the cost-efficiency as the ratio 

between global efficiency (Eglob) and cost.

Intermediate level parameters. Modular analysis. Modules are defined as sets of nodes that are densely linked 
with each other and less so with other nodes in the network (that is, other modules). The modularity, Q, is defined 
as
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while NM is the number of modules, W is the total weight of the network, WS is the sum of the connectional 
weights nodal strength in module s (see the definition of nodal strength, Si). Q quantifies the difference between 
the weight of intra-modular edges in the real network and that of random networks46. To maximize Q value 
resulting in the best possible modular partitions, we used the spectral optimization algorithm proposed by 
Newman47 and reported the maximized value of Q for the brain networks. Higher values of Q indicate greater 
functional specialization of a brain network.

In this study, we estimated the most representative group-level modular partitions of all subjects at first scan-
ning. First, we averaged each edge weight across individuals to obtain the group-averaged weighted FC matrix for 
each group. Second, based on this group-mean FC matrix, we used a nonparametric sparsification method48 to 
extract the backbone network using p < 0.05. In this calculation, we selected those locally significant edges which 
could not be explained by random variations to form the backbone networks. Finally, the backbone network 
was used to identify the modular partition that captured underlying connectivity patterns for all subjects in the 
present study.

Local level parameters. Nodal strength. (Si) is a simple but test–retest reliable measure to characterize nodal 
centrality49 and is calculated as the sum of connectional weights (i.e., correlation coefficients) across all edges that 
directly link to a given node.

Behavioural assessments. The Stroop task50 was employed as a measure of non-affective attentional con-
trol and the Emotional processing task35 was used to assess affective style. Further details of these tasks can be 
found in our previous reports13, 50.

Sample Size and Statistical Analysis
Between-Group Differences. For the final brain network analysis, data from 41 subjects was analysed 
(MT = 22, RT = 19). Any statistical group differences at baseline were explored with ANOVAs, while descriptive 
statistics were used to explore group differences on nominal measures such as gender. Overall recovery between 
baseline and outcome assessment was analyzed as the factor ‘time’ in a repeated measurements ANCOVA for each 
of the outcome variables. To examine the training effects on the network metrics with training, we used ANOVA 
with time phrase (Pre, Post) as within factor, and Group (MT. RT) as between factor. For the global and interme-
diate analyses, the significance level was corrected with a false-positive correction p = (1/N)36, 37 where N is test 
counts. Given the exploratory nature of this study, and the number of tests run (1024) to examine nodal strength, 
it was decided the use of a more lenient threshold (p < 0.005) would be acceptable for local level analyses. All 
analyses were controlled for age, gender and years of education.

Robustness analysis. Different preprocessing strategies may affect the calculated network parameters of 
brain network51. Therefore, to test the robustness of the findings, we re-analysed the data using two additional 
pre-processing strategies, (1) Smoothing, and (2) binary network, as defined below. In the smoothing strategy, we 
constructed brain networks using the functional signals after smoothing (FWHW = 6 mm) the functional images. 
Finally, we constructed the binary functional network in which functional connectivity values passed through a 
statistical threshold of p < 0.01 (FDR corrected).
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