
Title Robust and rapid algorithms facilitate large-scale whole genome
sequencing downstream analysis in an integrative framework

Author(s) Li, M; LI, J; Li, J; Pan, Z; HSU, SJ; Liu, D; Zhan, X; Wang, JJ;
Song, Y; Sham, PC

Citation Nucleic Acids Research, 2017, v. 45 n. 9, p. e75

Issued Date 2017

URL http://hdl.handle.net/10722/246021

Rights This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.



Published online 23 January 2017 Nucleic Acids Research, 2017, Vol. 45, No. 9 e75
doi: 10.1093/nar/gkx019

Robust and rapid algorithms facilitate large-scale
whole genome sequencing downstream analysis in an
integrative framework
Miaoxin Li1,2,3,4,*,†, Jiang Li5,†, Mulin Jun Li2, Zhicheng Pan3, Jacob Shujui Hsu3, Dajiang
J. Liu6,7, Xiaowei Zhan8, Junwen Wang2,9,10, Youqiang Song2,5 and Pak Chung Sham2,3,4,*

1Department of Medical Genetics, Center for Genome Research, Center for Precision Medicine, Zhongshan School
of Medicine, Sun Yat-sen University, Guangzhou, 510080, China, 2The Centre for Genomic Sciences, the University
of Hong Kong, Pokfulam, Hong Kong, 3Department of Psychiatry, the University of Hong Kong, Pokfulam, Hong Kong,
4State Key Laboratory for Cognitive and Brain Sciences, the University of Hong Kong, Pokfulam, Hong Kong, 5School
of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong, 6Division of Biostatistics and
Bioinformatics, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA,
7Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA 17033, USA, 8Quantitative
Biomedical Research Center, Department of Clinical Science, Center for the Genetics of Host Defense, University of
Texas Southwestern Medical Center, Dallas, TX 75390, USA, 9Department of Health Sciences Research and Center
for Individualized Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA and 10Department of Biomedical Informatics,
Arizona State University, Scottsdale, AZ 85259, USA

Received October 09, 2016; Revised December 14, 2016; Editorial Decision January 04, 2017; Accepted January 06, 2017

ABSTRACT

Whole genome sequencing (WGS) is a promising
strategy to unravel variants or genes responsible
for human diseases and traits. However, there is a
lack of robust platforms for a comprehensive down-
stream analysis. In the present study, we first pro-
posed three novel algorithms, sequence gap-filled
gene feature annotation, bit-block encoded geno-
types and sectional fast access to text lines to ad-
dress three fundamental problems. The three algo-
rithms then formed the infrastructure of a robust par-
allel computing framework, KGGSeq, for integrating
downstream analysis functions for whole genome
sequencing data. KGGSeq has been equipped with a
comprehensive set of analysis functions for quality
control, filtration, annotation, pathogenic prediction
and statistical tests. In the tests with whole genome
sequencing data from 1000 Genomes Project, KG-
GSeq annotated several thousand more reliable non-
synonymous variants than other widely used tools
(e.g. ANNOVAR and SNPEff). It took only around half
an hour on a small server with 10 CPUs to access
genotypes of ∼60 million variants of 2504 subjects,
while a popular alternative tool required around one

day. KGGSeq’s bit-block genotype format used 1.5%
or less space to flexibly represent phased or un-
phased genotypes with multiple alleles and achieved
a speed of over 1000 times faster to calculate geno-
typic correlation.

INTRODUCTION

Whole genome sequencing (WGS) is becoming a main-
stream strategy for characterizing DNA variants of human
disease and trait variation (1–5). Given sequence variants
called from WGS data by tools like GATK (6), a down-
stream analysis plays a key role in finding responsible DNA
variants. However, currently two major issues are challeng-
ing the downstream analysis of whole-genome sequence for
genetic mapping. First, the amount of sequence and ge-
nomic annotation data are often very huge. For example,
the 1000 Genomes Project Phase 3 contains over 88 mil-
lion variants (7) and has over 16 GB genotypes data in vari-
ant call format (VCF) even after compression by the GNU
Zip Format. When processed by conventional algorithms, it
often demands unfeasibly large computing time and space.
Second, given tens of millions of sequence variants on the
entire genome, it is also rather difficult to discriminate the
causal variants of a disease or trait from so many neutral or
irrelevant ones.

*To whom correspondence should be addressed. Tel: +86 87335080; Email: limiaoxin@mail.sysu.edu.cn
Correspondence may also be addressed to Pak-Chung Sham. Tel: +852 28315425; Fax: +852 28185653; Email: pcsham@hku.hk
†These authors contributed equally to this work as the first authors.

C© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

Downloaded from https://academic.oup.com/nar/article-abstract/45/9/e75/2937943/Robust-and-rapid-algorithms-facilitate-large-scale
by University of Hong Kong user
on 11 October 2017



e75 Nucleic Acids Research, 2017, Vol. 45, No. 9 PAGE 2 OF 11

While adopting advanced general infrastructure (such as
the cloud computing (8)) was a promising scheme, mak-
ing use of characteristics of the sequencing data themselves
to boost the capacity of existing systems is also a nontriv-
ial strategy. For example, an algorithm was developed to
compress sequencing text data by blocks so that one can
quickly access part of sequencing data through an index file
(Tabix) (9). Currently, sequence variants are usually stored
in text formats, e.g. VCF, which are convenient for human
read and pre-process. However, loading and parsing these
data are often the bottleneck of computing speed. Although
the compressed data by blocks provides a foundation for
concurrent computing, the parallel algorithm to speed text
processing for WGS study is not readily available. Recently,
some algorithms were developed to represent genotypes of
bi-allelic variants as compressed bitmap indices (10) or in-
teger matrix by the positional Burrows–Wheeler transform
(11), which were able to reduce the computational burden
of variant queries and/or storage space. However, the com-
pressed bitmap indices algorithm did not work for phased
genotypes, and the positional Burrows–Wheeler transform
approach was not designed for variants with more than two
alleles, which will limit their applications to many down-
stream analyses in practice. Therefore, advanced algorithms
for relieving the huge burden of computing space and time
are in demand.

Recently a number of methods have been proposed for
identifying risk alleles in sequencing studies. These include
methods for annotation (12), pathogenic prediction (13)
and statistical analysis (14,15). Meanwhile, it is reaching a
consensus that an integrative analysis with multiple func-
tions and resources will be more powerful than individual
methods alone (16–18). ANNOVAR is a widely-used tool
with various genomic resources to annotate sequence vari-
ants (19). SnpEff is a genetic variant annotation toolbox
that supports multiple species and predicts coding effects
(20). VEP also provides many unique resources to anno-
tate sequence variants (21). PLINK/SEQ and RVTESTS
(22) are toolboxes containing multiple methods for gene-
based association analysis with rare variants. However,
genetic mapping tools for a one-stop integrative down-
stream analysis from quality control, genomic annotation,
pathogenic/functional prediction and statistics association
is still limited although there have been some integrative
analysis tools (21,23). Moreover, most of these tools are of-
ten very slow for large-scale WGS data due to lack of robust
algorithms for the big data.

Finally, yet importantly, a problem often overlooked in
a downstream analysis is the accurate annotation of gene
features (e.g. stoploss or missense). Although high-quality
reference sequence data have been published, there are still
many gaps because of the repetitive regions or lying on the
centromeres and short arms of acrocentric chromosomes
that are difficult to clone or assemble (5,24). These intrinsic
gaps in the human reference genome may result in many er-
rors in the gene-feature annotation of variants. It has been
noted that the gene-feature annotation of different tools is
quite inconsistent for around 20% of exonic variants (25).
More accurate gene feature annotation is fundamentally
crucial for the following annotation and prioritization anal-
ysis of the sequence variants.

Figure 1. An example that the reference genome has a gap compared
to the latest reference cDNA provided by the refGene database. Note:
The alignment result was copied from a webpage of UCSC (https:
//genome.ucsc.edu/cgi-bin/hgc?hgsid=570008099 N9gTjX22Iv9RKMv
0HA8tgBeJn4Oj&g=htcCdnaAli&i=NM 001146344&c=chr1&l=12884
617&r=12891264&o=12884617&aliTable=refSeqAli&table=refGene).
The rectangle in red denotes the amino acid codon used for gene feature
annotation. For SNPEff, the UCSC reference genome hg19 was used.

In the present study, we proposed three novel algorithms
to solve three bottlenecks (gene feature annotation inaccu-
racy, space and speed burden) in a large-scale WGS data
analysis. These three fundamental algorithms formed a ro-
bust infrastructure of a framework that flexibly integrates
multiple analysis functions to prioritize sequence variants
in WGS studies jointly. All algorithms and analysis meth-
ods have been implemented in a biological Knowledge-
based mining platform for Genomic and Genetic studies us-
ing Sequence data (KGGSeq, http://grass.cgs.hku.hk/limx/
kggseq/). These algorithms were tested with the whole se-
quencing data from the 1000 Genomes Project for perfor-
mance comparison to existing tools. All of the source codes
implementing the algorithms are deposited in the GitHub
repository (https://github.com/limx54/KGGseq).

MATERIALS AND METHODS

A gap-filled gene-feature annotation algorithm

In some consensus coding sequence regions, the reference
genome has short sequence deletions and/or insertions
compared to the reference coding DNA that is updated peri-
odically by the Bioinformatics Center of University of Cal-
ifornia, Santa Cruz (UCSC) (See an example in Figure 1).
However, sequence reads produced by sequencing machine
are often mapped onto a reference genome (e.g. Human
Reference Genome HG19) and the coordinates of variants
are given according to the reference genome. Therefore, the
relative distance of a variant to the protein coding starting
position has to be adjusted for the insertion or deletion gap
on the reference genome. Otherwise, it will result in an in-
correct calculation of involved amino acid residue in a tran-
script. Therefore, we developed a gap-filled gene-feature an-
notation algorithm to adjust the coordinate shifts in protein
coding regions. The complete source codes are in the Gene-
FeatureAnnotTask.java file of our deposited source codes
in the GitHub repository.

Downloaded from https://academic.oup.com/nar/article-abstract/45/9/e75/2937943/Robust-and-rapid-algorithms-facilitate-large-scale
by University of Hong Kong user
on 11 October 2017

https://genome.ucsc.edu/cgi-bin/hgc?hgsid
http://grass.cgs.hku.hk/limx/kggseq/
https://github.com/limx54/KGGseq


PAGE 3 OF 11 Nucleic Acids Research, 2017, Vol. 45, No. 9 e75

1. Generate coding DNA sequence according to the
reference genome. Extract the DNA sequences from
the reference genome according to exon coordinates in
the RefGene file from UCSC (e.g. http://hgdownload.
cse.ucsc.edu/goldenpath/hg19/database/refGene.txt.gz).
For transcripts on the reverse strand, the extracted
sequences are converted to reverse complementary
sequences.

2. Mark the gaps in the extracted coding DNA. Align
the generated coding DNA sequence with the lat-
est reference coding DNA sequences from UCSC
(e.g. http://hgdownload.soe.ucsc.edu/goldenPath/hg19/
bigZips/refMrna.fa.gz) by Smith–Waterman local align-
ment algorithm. In scoring profile, the mismatch and the
match are given score −4 and 5, respectively. To produce
fewer gaps, a deletion or insertion is given a high penalty
score −50. The resulting deletion- and insertion-gaps in
the coding regions of extracted coding DNA sequences
are marked, compared to the coding DNA sequences.

3. Compute the positions of affected amino acid while con-
sidering the gaps. Check whether a variant is in a protein-
coding region according to its coordinate and the bound-
aries of exons in a gene model database. If it is in a cod-
ing region, calculate its relative distance (l) to the pro-
tein coding start site. If there are n bp insertions and m
bp deletions between the protein coding start site and
the position of the variant in the coding DNA, the ac-
tual relative distance is equal to f = l+n−m. Compute
the affected amino acid residue by the variant according
to f and infer the exact mutation type, e.g. start loss, stop
loss, stop gain, missense or synonymous.

Note that the steps 1 and 2 are only need to be done once.
The step 3 has to be done for each variant but is very fast.
We have implemented step 3 in a parallel computing frame-
work so that millions of variants can be annotated in min-
utes through multiple CPUs.

Besides the RefGene model, KGGSeq also provides the
compiled resource data for two other widely used gene
models, UCSC Known Genes (26) and GENCODE (27).
However, the gap-filled gene feature annotation algorithm
is only necessary for the former two because their cod-
ing DNA sequences are updated even weekly. As the cod-
ing DNA sequences of GENCODE are directly extracted
from the reference genome, there would be no relative gaps
for the GENCODE model. Moreover, KGGSeq also al-
lows for a customized genome model when the input gene
model file with the same format is provided (See KGGSeq
online manual, http://grass.cgs.hku.hk/limx/kggseq/doc10/
UserManual.html#GeneFeatureFiltering).

Genotype bit-block encoding algorithm

Encoding of phased and unphased genotypes into parsimo-
nious bit-blocks. We developed a new encoding to flexi-
bly represent and store genotypes in RAM and hard disk
by minimal computer bits. For unphased genotypes, the
number of possible genotypes is s = [n*(n−1)/2+n] given
the allele number n. The minimal number of bits required
to denote all possible genotypes (including missing geno-
type) is equal to the ceiling of log(s+1)

2 . The genotypes

are then simply encoded into binary bits according to as-
cending order of alphabets. The missing genotype was in
the last place. The encoding details can be seen in the
online manual, http://grass.cgs.hku.hk/limx/kggseq/doc10/
UserManual.html#BinaryOutputs.

For phased genotypes, the number of possible genotypes
is s = (n*n) given the allele number n. The minimal number
of bits required to denote all possible genotypes (including
missing genotype) is also equal to the ceiling of log(s+1)

2 . The
genotypes are then encoded into binary bits according to
the ascending order of alphabets as well. The missing geno-
type was in the last place. The encoding details can be seen
in the online manual, http://grass.cgs.hku.hk/limx/kggseq/
doc10/UserManual.html#BinaryOutputs.

To speed up the analyses for genotypes, e.g. comput-
ing pairwise genotype correlation or counting homozygous
genotypes in patients, we designed a unique structure, bit-
block, to store the encoded bit genotypes. Assume a variant
needs b bits to denote one genotype and it has m genotypes
of different subjects. The first bit of each encoded genotype
is extracted and put into a bit block of size m. The second bit
of each encoded genotype forms the second bit block. This
procedure is repeated until all of the b bits of a genotype
are extracted. The b bit blocks are stored consecutively into
t bytes, where t is equal to the ceiling of b*m/8 (Illustrated in
Figure 2). The bits can be conveniently retrieved by blocks
for further analyses. We demonstrate the usage of bit-block
genotypes to enhance the speed of pairwise genotype corre-
lation substantially. When the frequencies of all alternative
allele are low (say <3%), the binary genotypes will be com-
pressed by replacement of bytes recoding the position of ‘1’
bits. Each of such position is denoted by three bytes.

The encoded genotypes (either compressed or not) are
saved in a file with an extension name of ‘ked’. At the
same time, the pedigree information and variant informa-
tion are saved in a file with an extension name of ‘kam’
and a file with an extension name of ‘kim’, respectively. The
encoded genotypes can be further compressed by standard
compression algorithms, say, GNU Zip Format. The three
files make up a KGGSeq binary genotype file set. The com-
plete source codes are in the VCFParseTaskFast.java file of
our deposited source codes in the GitHub deposit.

Rapid computing pairwise genotype correlation by bit-blocks.
The genotypic correlation is often used to approximate
the linkage disequilibrium of variants with unphased geno-
types. Assume genotypes are denoted by the number of al-
ternative alleles, xi, for a biallelic variant. The Pearson geno-
type correlation of two variants, Vi and Vj, can be calculated
according to the following formula:

ri,j = n
(∑

xixj
) − (

∑
xi)

(∑
xj

)
√[

n
(∑

x2
i

) − (
∑

xi)
2
]

∗
[
n

(∑
x2

j

)
− (∑

xj
)2

]

1. Assume the two bit blocks of a variant i are saved in two
bit vectors, bi1 and bi2.

2. Produce an accessory bit vector, bi3 = bi1 |bi2 and non-
missing genotype bit vector bi4 = ∼ (bi1&bi2), where |,
& and ∼ are bitwise inclusive OR AND and COMPLE-

Downloaded from https://academic.oup.com/nar/article-abstract/45/9/e75/2937943/Robust-and-rapid-algorithms-facilitate-large-scale
by University of Hong Kong user
on 11 October 2017

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/refGene.txt.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/refMrna.fa.gz
http://grass.cgs.hku.hk/limx/kggseq/doc10/UserManual.html#GeneFeatureFiltering
http://grass.cgs.hku.hk/limx/kggseq/doc10/UserManual.html#BinaryOutputs
http://grass.cgs.hku.hk/limx/kggseq/doc10/UserManual.html#BinaryOutputs


e75 Nucleic Acids Research, 2017, Vol. 45, No. 9 PAGE 4 OF 11

Figure 2. Illustration of the bit-block encoding of genotypes in KGGSeq. Note: (A) The genotypes in a text file with the standard variant cell format
(VCF) format; Genotypes of three subjects at three different variants are shown as an example. The first two variants have missing genotypes ‘./.’. (B) The
genotypes are encoded into binary bits (http://grass.cgs.hku.hk/limx/kggseq/doc10/UserManual.html#BinaryOutputs) and stored by blocks. The size of a
block is equal to the number of subjects. The consecutive blocks are marked by different colors. (C) For rare variants, say, minor allele frequency <1%,
only a tiny fraction of bits has the value ‘1’. The corresponding indices of bit ‘1’s are stored in a hash set and the original space storing the genotype bits
is cleaned. (D) The bit block variants can be used to speed up some time-consuming analyses. (E) The bit blocks can be stored in a hard disk in binary
format by the unit of bytes. A byte contains 8 bits. The first two bytes are magic numbers for validating the KGGSeq bit-block format. The third byte tells
whether genotypes are unphased (00000000) or phased (00000001). The genotypes start from the fourth byte. In this example, the fourth and fifth bytes
denote genotypes of V1 and V2. The sixth and seventh bytes denote genotypes of V3.

MENT, respectively. The same can be done for variant
j.

3. For variant i and variant j, the non-missing genotypes
variant i and variant j at are denoted by bc = bi4 &bj4.
We will have,(∑

xi

)
= count (bi1&bc) ∗ 2 + count (bi2&bc) ,

(∑
x2

i

)
= count (bi1&bc) ∗ 4 + count (bi2&bc) ,

(∑
xj

)
= count

(
bj1&bc

) ∗ 2 + count
(
bj2&bc

)
,

(∑
x2

j

)
= count

(
bj1&bc

) ∗ 4 + count
(
bj2&bc

)
, and

(∑
xixj

) = count(bi1&bj1) ∗ 2+
count(bi3&bj3) ∗ 2 − count(bi2&bj2) ,

where count(x) is a function of counting the number of
bits with value ‘1’, which is very fast on computers. Given
these components, the genotype correlation can be calcu-
lated by the above formula straightforwardly. The imple-
mentation was in LDCalcTask.java of the GitHub deposit.

Fast accessing and parsing text algorithm

Sectional and random access of compressed text lines. The
input variants data and annotation data in WGS analysis
organized by lines are commonly compressed by GNU Zip
format in blocks, which can save storage space in hard disks.
We developed a new algorithm to read the compressed text
lines in parallel. The algorithm made use of the features of
blocked compression format (Blocked GNU Zip Format, or
BGZF for short (9)) to read and parse the data by blocks.
The following are the main steps of the algorithm. The spe-
cific source codes are in the BGZFInputStream.java file of
our deposited source codes in the GitHub deposit.

1. Calculate initial positions in a compressed file for a given
number, n, to partition the file into approximately equal
parts.

2. Search valid start and end reading positions
around the initial positions for each part by
matching the block identifier code of BGZF, e.g.
00011111100010110000100000000100 (in bits).

3. Read and parse the compressed data from the valid start
reading positions by lines after reserving data from the
valid start reading position to the first new line delimiter
(except for the first part).

Downloaded from https://academic.oup.com/nar/article-abstract/45/9/e75/2937943/Robust-and-rapid-algorithms-facilitate-large-scale
by University of Hong Kong user
on 11 October 2017

http://grass.cgs.hku.hk/limx/kggseq/doc10/UserManual.html#BinaryOutputs


PAGE 5 OF 11 Nucleic Acids Research, 2017, Vol. 45, No. 9 e75

4. Merge all reserved data across the parts to splice the
truncated lines between blocks after all parts have been
read out.

Moreover, to facilitate random access according to ge-
nomic coordinates, we also developed an algorithm to build
an index file for each BGZF file. The index file recorded
the chromosome name, starting position of a variant or re-
gion on the chromosome, and physical starting position of
a block in the BGZF file. The index records were sorted
according to the chromosome positions and file positions.
Given a chromosome position, the conventional binary
search algorithm was adopted to quickly locate the phys-
ical starting position of a block in the compressed file. This
function allowed that only interesting blocks were loaded
into memory and parsed.

Optimized text splitting and parsing. Attribute values of
the same variants are commonly organized by lines in a text
file (i.e. a variant-centred format), which is a space-efficient
way to store information. For example, genotypes of mul-
tiple subjects of a variant are organized by lines in a VCF
file and multiple populations’ minor allele frequencies of a
variant are stored by lines in an annotation resource file as
well. However, these attribute values must be parsed one by
one for analysis through a text splitting function. Accord-
ing to our observations, the text splitting procedure took
over 60% time when the text splitting functions (StringTok-
enizer or String.split) in Java library was employed. There-
fore, we designed a new text splitting algorithm to speed up
the text splitting. This new function made use of two im-
portant features to enhance the text splitting speed. First,
it directly reads bytes (rather than the standard computer
text) from hard disk and converts the bytes into a computer
text only when necessary. The bytes are converted to nu-
meric values much faster than text values. Second, in most
text files, each row has fixed number of values to be split.
So we use a shared array to temporally store the splitting
results for every line in a text file, which saves the time for
applying a temporary array to store each row. In our test
with the genotype splitting of text lines on chromosome 1
of 2504 subjects from 1000 Genomes Project, the optimized
splitting algorithm only needs ∼40% of the time, compared
to the standard Java library functions (StringTokenizer and
String.split). This algorithm has been combined with the
above algorithm for sectional and random access of com-
pressed text lines. See detailed implementation in the BZ-
PartReader.java file of the GitHub deposit.

Compare gene feature annotation results of different tools

In the present paper, we compared gene feature annotation
of different tools. It should be noted that an exact compar-
ison is difficult because some variants can be mapped onto
multiple transcripts or even multiple genes. To simplify the
comparison, we encode the features into numbers according
to http://grass.cgs.hku.hk/limx/kggseq/doc10/UserManual.
html#GeneFeatureFiltering, which roughly suggests the
potential effect of a variant on protein function. The top
five features (startloss, stoploss, stopgain, splicing and mis-
sense) are considered in the comparison. If one variant was

annotated with multiple features, the one with the highest
priority was used for comparison. The unique feature of
one tool refers to the feature annotated by this tool is dif-
ferent from others. The default parameters settings of each
tool were used for the annotation. For each kind of fea-
ture, KGGSeq was compared with other annotation tools
under both RefGene and GENCODE (v19) models. The
unique and overlapped variants with the same annotation
were counted. The unique variants were validated with the
variants in dbSNP (b144 GRCh37p13).

Data analysis on KGGSeq

The phased genotype data (phase 3 version 5, 2504 sub-
jects) in VCF format downloaded from 1000 Genomes
Project (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
release/20130502/) were used to test computing perfor-
mance and analysis functions of KGGSeq V1.0 throughout
of this paper. These data in the website had already been
compressed in BGZ format, which can be efficiently
processed by KGGSeq in parallel. The KGGSeq options
for an integrative gene-based association analysis between
Southern Asian and Eastern Asian with the 1000 Genomes
Project sample are listed in Supplementary Table S1.

Compare the speed with PLINK/SEQ and vcftools

The above mentioned whole genome VCF data from 1000
Genomes Project were used for the comparison. All tools
directly use the compressed data as input. We mainly com-
pared the speed of loading and paring the text for simply
counting allele frequency from VCF files. The default pa-
rameter setting was used for the tools. The key commands
used in PLINK/SEQ and vcftools were ‘counts’ and ‘–freq’.
KGGSeq was customized to not store intermediate data
into hard disk in the comparison. CPU frequency of the
computer was 3.457GHz. The version of Java running en-
vironment for KGGSeq was 1.7.

RESULTS

A sequence gap-filled gene feature annotation suggested more
functionally important variants

As accurately annotating non-synonymous and synony-
mous variants is essential for most downstream analyses,
we first investigated how our proposed sequence gap-filled
gene feature annotation algorithm (detailed in the Materi-
als and Methods section) worked among variants released
by 1000 Genomes Project. Here the gap refers to the se-
quence gap in the reference genome relative to coding DNA
in RefGene model. Among around 400 000 exonic variants
in the African (AFR) panel, which has the largest number
of variants among the five ancestrally different panels, the
algorithm considering sequence gap reported 549 unique
missense, 30 unique stopgain and 2 unique stoploss vari-
ants (Table 1, see details in the Supplementary Excel Ta-
ble S1), compared to the algorithm only not considering
sequence gap. More importantly, these unique annotations
are highly consistent with the annotations from an indepen-
dent resource, dbSNP, a widely-used third-part database in
which more information (flanking sequence) was used to

Downloaded from https://academic.oup.com/nar/article-abstract/45/9/e75/2937943/Robust-and-rapid-algorithms-facilitate-large-scale
by University of Hong Kong user
on 11 October 2017

http://grass.cgs.hku.hk/limx/kggseq/doc10/UserManual.html#GeneFeatureFiltering
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/


e75 Nucleic Acids Research, 2017, Vol. 45, No. 9 PAGE 6 OF 11

compute the gene features (https://www.ncbi.nlm.nih.gov/
books/NBK174586/). For example, the consistency rate of
missense annotation is as high as 95% among the 443 vari-
ants available in dbSNP. In contrast, when the sequence gap
was not considered, less than 2% annotations were consis-
tent with those in dbSNP although up to 1409 variants also
were reported to have unique non-synonymous and synony-
mous annotations. This comparison clearly shows that con-
sidering the genomic gap in reference genome substantially
improved the gene feature annotation of variants.

It may also be interesting to know how the gap-filled gene
feature annotation algorithm on KGGSeq works, com-
pared with other popular tools (ANNOVAR (19), SNPEff
(20) and VEP (21)). Again, among the ∼400 000 ex-
onic variants, the gap filled gene-feature annotation algo-
rithm uniquely annotated up to 4000 or 5000 more non-
synonymous variants in total than ANNOVAR and SNPEff
with RefSeq model (Table 2). Compared to KGGSeq,
ANNOVAR only annotated 122 unique non-synonymous
variants while KGGSeq annotated 4200 unique non-
synonymous variants against ANNOVAR. Around 97%
(3853 out of 3973) variants with KGGSeq’s unique anno-
tation have no exact annotation in ANNOVAR’s output
(see details in Supplementary Excel Table S2). ANNOVAR
seemed to not annotate a variant at which there is a se-
quence gap or inconsistency between the reference genome
and coding DNA in RefGene model. With the gap-filled an-
notation algorithm, KGGSeq correctly predicted the gene
feature after adjusting the sequence gaps. This may explain
why KGGSeq produced more non-synonymous annota-
tions. Moreover, the proportions of consistent annotations
with the dbSNP for the KGGSeq unique annotations were
also generally much higher than that of the unique annota-
tions of the ANNOVAR and SNPEff as well.

Interestingly, both KGGSeq and VEP produced around
13 000 unique missense annotations and both tools’ unique
missense annotations also have as high as 94% consis-
tency with the dbSNP annotation. After checking the de-
tailed annotation (as shown in the Supplementary Excel
Table S2), it turned out most of the VEP unique anno-
tations occur at transcripts from predicted mRNA model
(i.e. the ID starting with XM ). Because of the uncer-
tainty in the predicted mRNAs, KGGSeq (as well as AN-
NOVAR and SNPEff) does not use them for annotation.
For example, the variant rs377389746 is a missense vari-
ant of XM 005271074 while it is a synonymous variant
of NM 020888 and NM 001198972. Therefore, VEP gave
a missense and a synonymous annotation but KGGSeq
only had a synonymous annotation at this variant. No-
tably, VEP and SNPEff annotated many splicing variants
but the consistency rates to dbSNP’s annotation are only
0.4% and 3.18%, respectively. Probably, the two tools have
different definitions on a splicing variant from the dbSNP.
Under GENCODE model, KGGSeq produced less unique
non-synonymous than ANNOVAR and SNPEff. This is
because KGGSeq ignored all incomplete transcripts, e.g.
ENST00000390243 that is incomplete at 3′. This may ex-
plain why KGGSeq had much higher consistency with the
dbSNP than all of the three tools under GENCODE model
(see details of unique annotations the Supplementary Ex-
cel Table S2). To summarize, the higher consistency of KG-

GSeq’s annotations with dbSNP suggests that KGGSeq can
provide more accurate gene feature annotations than the
other popular tools.

A genotype bit-block encoding algorithm saves a lot of space
and time

Because genotypes in a large-scale WGS data set lead to a
huge storage and computing burden in downstream analy-
sis, we designed a new bit-block encoding algorithm to more
efficiently store genotypes (illustrated in Figure 2). Com-
pared to several existing genotype encoding algorithms
(10,28), the proposed algorithm is able to flexibly encode
both phased and unphased genotypes of variants with two
or more alleles while most of the former ones can only pro-
cess unphased genotypes of bi-allelic variants. As shown in
Table 3, the bit-block encoding algorithm only needs ∼1.5%
space to store the phased genotypes of 2504 subjects of 6 468
094 variants in chromosome 1, compared to the most popu-
lar format for sequence variants, VCF and the conventional
linkage format. For the unphased genotypes, the space is
even reduced to be ∼1.2%. Compared to another algorithm,
BGT which used a sophisticated transform to compress the
binary genotypes (29), the KGGSeq’s binary genotype set is
about 2 to 3 times larger. However, it should be noted BGT
does not work for variants with over two alleles.

More importantly, another appealing advantage of the
bit block genotypes is that it conveniently facilitates fast
computation of genotype-related analysis. The bit-block
uses bit vectors to represent genotypes of all subjects at each
variant. A lot of statistical analysis at genotypes, say, cal-
culating genetic correlation and counting alleles and geno-
types, can be carried out straightforwardly by these bit vec-
tors. As a vector contains genotypes of multiple subjects, a
single bit-wise logical operation at the bit-vectors conducts
analysis of multiple subjects in parallel. Therefore, these
bit vectors can dramatically improve the analysis speed of
many genetic analyses at genotypes. Table 4 shows the anal-
ysis speed for calculating genetic correlation on chromo-
some 22 of 2504 subjects from the 1000 Genomes Project.
The algorithm based on the bit-block (see details in the Ma-
terials and Methods section) is over 1300 times faster than
the conventional algorithm (directly calculating the Pearson
correlation with coded genotypes 0, 1 and 2) when there are
16 000 variants. That is, a 2-week job by a conventional ap-
proach is done in half an hour by the new approach.

A sectional accessing and optimized parsing text algorithm
substantially enhances data loading

Finally, WGS data analysis often involves thousands of
gigabytes data (including the variants’ genotypes, quality
scores and genomic annotations) saved in the hard disk in
text format. Because so huge amount of data have to be
loaded and parsed in RAM, the Input/Output speed is a
challenging issue. Based on the block-wise compressed data
(9), we developed an algorithm for sectional and random ac-
cess to compressed text lines, which allows KGGSeq to load
the compressed data into RAM in parallel directly. Besides,
we also optimized the parsing in a text line by directly ac-
cessing a primitive data type, byte, rather than the senior

Downloaded from https://academic.oup.com/nar/article-abstract/45/9/e75/2937943/Robust-and-rapid-algorithms-facilitate-large-scale
by University of Hong Kong user
on 11 October 2017

https://www.ncbi.nlm.nih.gov/books/NBK174586/


PAGE 7 OF 11 Nucleic Acids Research, 2017, Vol. 45, No. 9 e75

Table 1. Number of exonic variants uniquely annotated by KGGSeq using gap-filled gene-feature annotation algorithm

Unique without considering gap
(dbSNP#a, %b) overlapped

Unique with considering gap
(dbSNP#a, %b)

startloss 0 492 0
Stoploss 0 223 2(1, 100%)
Stopgain 87(66, 1.52%) 3905 30(22, 86.36%)
Splicing 0 2287 0
Missense 829(651, 2%) 225 145 549(443, 95%)
Synonymous 493(396, 0.25%) 166 857 858(672, 93.75%)
Total 1409 398 910 1439

Note: The RefGene model and reference coding DNA sequences were provided by UCSC on Oct 10, 2015 for KGGSeq. The splicing variants were the
variants within 2 bp sites of both ends of an intron. a: the number of variant available in dbSNP; b: proportion of variants with consistent annotations
between the dbSNP (b144 GRCh37p13) and KGGSeq among the dbSNP available variants.

Table 2. Compare non-synonymous gene feature annotation of three popular tools and two gene models for variants discovered in 1000 Genomes Project
AFR panel

RefGene

KGGSeq versus ANNOVAR (2015 Jun 17) KGGSeq versus SNPEff(v4 1k) KGGSeq versus VEP(v81)

KGGSeq
Unique
(dbSNP#a,
%b) overlapped

ANNOVAR
Unique
(dbSNP#a,
%b)

KGGSeq
Unique
(dbSNP#a,
%b) overlapped

SNPEff
Unique
(dbSNP#a,
%b)

KGGSeq
Unique
(dbSNP#a,
%b) overlapped

VEP Unique
(dbSNP#a, %b)

startloss c ––c, d –– c –– c, d 56 436 1 35 457 227
stoploss 7(5, 80%) 218 2(2, 100%) 21(15, 100%) 204 81(72, 2.78%) 15(10, 90%) 210 141(126, 62.7%)
stopgain 124(92,

71.74%)
3811 4(4, 50%) 171(139,

89.93%)
3764 128(118,

1.69%)
180(134,
83.58%)

3755 597(530, 83.58%)

splicing 96(90, 92.22%) 2191 3(2, 100%) 2286(2093,
98.09%)

1 1902(1764,
0.4%)

105(84,
73.81%)

2182 43 322(40 572,
3.18%)

missense 3965(87.08%) 222 213 113(94,
55.32%)

6422(5868,
96.1%)

219 272 1197(1027,
11.88%)

13 021(10 719,
94.88%)

212 673 12 978(11 885,
94.26%)

total 4192 228 433 122 8956 223 677 3309 13 356 219 277 18 275
GENCODE(v19)

startloss c ––c, d –– c –– c, d 73 580 94 0 653 44
stoploss 3(2, 100%) 337 7(5, 20%) 29(23, 52.17%) 311 129(115,

7.83%)
2(1, 100%) 338 40(25, 4%)

stopgain 30(23, 56.52%) 4222 156(52, 25%) 178(152,
84.21%)

4074 556(415,
13.01%)

10(7, 100%) 4242 163(58, 31.03%)

splicing 157(146,
73.29%)

2460 76(48, 31.25%) 2614(2360,
88.18%)

3 4283(3859,
0.34%)

18(14, 64.29%) 2599 49 203(41541,
1.56%)

missense 680(509,
75.64%)

231 245 5163(2121,
51.67%)

6773(6091,
94.07%)

225152 10 948(7239,
22.82%)

6873(6314,
94.04%)

225052 4679(1582, 40.39%)

total 870 238 264 5402 9667 230 120 16 010 6903 232 884 54 129

Note: The RefGene model was provided by UCSC on Oct 10, 2015 for KGGSeq; and for ANNOVAR and the latest RefGene model (by Oct 10, 2015) from their websites was used. a: the number of variant
available in dbSNP; b: the proportion of variants (out of the dbSNP available variants) with consistent annotations between the dbSNP (b144 GRCh37p13) and the tool. c: Because ANNOVAR has no
startloss category but annotates startloss as missense, no comparison was made for this category. d: Because dbSNP has no startloss category, no consistency was calculated for this category.

Table 3. Compare the size of genotypes in chromosome 1 of 1000 Genomes Project

VCF format
Plink linkage format
file set

Plink binary
genotype format file
set BGT format

KGGSeq binary
genotype format file set

Unphased 64.234 GB 66.093 GB 3.92 GB 342 MB 793 MB
Phased 64.234 GB 66.093 GB ––a 268 MB 990 MB

Note: Each file contained phased genotypes of 2504 subjects at 6 468 094 bi-allice variants in chromosome 1. a) The plink-binary genotype format cannot
encode phased genotypes.

Table 4. Time used by a bit-block based algorithm and the conventional algorithm for computing Pearson correlation of genotypes

Number of variants Bit-block Conventional Ratio

4000 0:0:2.59 50:01.36 1:1159
7000 0:0:7.59 2:31:56.48 1:1201
10 000 0:0:14.99 5:08:54.14 1:1236
13 000 0:0:23.60 8:43:17.78 1:1330
16 000 0:0:35.18 13:18:33.96 1:1362

Note: The variants were randomly drawn from chromosome 22 and genotypes of 2504 subjects were used to calculate the correlation. The time format
a:b:c.d stands for a hour(s), b minute(s) and c.d second(s), respectively. The version of Java running environment was 1.7. CPU frequency was 3.457 GHz.
a: For the conventional approach, the genotypes were encoded according to the number of alternative alleles, i.e. 0, 1 and 2 first. The Pearson correlation
coefficients were calculated for each pair of variants by a fast Java package Colt (https://dst.lbl.gov/ACSSoftware/colt/).

Downloaded from https://academic.oup.com/nar/article-abstract/45/9/e75/2937943/Robust-and-rapid-algorithms-facilitate-large-scale
by University of Hong Kong user
on 11 October 2017

https://dst.lbl.gov/ACSSoftware/colt/


e75 Nucleic Acids Research, 2017, Vol. 45, No. 9 PAGE 8 OF 11

Table 5. Compare the speed with PLINK/SEQ and vcftools for counting allele frequency of 1000 Genomes Project

Time Maximal RAM used

kggseq (v1.0) 10 CPUs 35 min 60 MB*
kggseq (v1.0) 1 CPU 3 h 24 min 36 MB*
PLINK/SEQ (v0.10)∧ 24 h 25 min 12 MB
vcftools(v0.1.14)∧ 17 h 46 min 6 MB

Note: ∧: The PLINK/SEQ and vcftools do not support multiple CPUs. *:KGGSeq was customized to not reserve the intermediate data in the comparison.
The version of Java running environment is 1.7. CPU frequency is 3.457 GHz.

data type, the Java text String. When using this algorithm
to load and parse genotypes data in compressed VCF file
from hard disk, KGGSeq was around 7 and 5 times faster
than two popular alternative downstream analysis tools,
PLINK/SEQ (with version 0.10, https://atgu.mgh.harvard.
edu/plinkseq) and vcftools (with version 0.1.14). It only
used around half an hour to process whole genome vari-
ants from the 1000 Genomes Project with 10 CPUs while
the other two alternative tools (which cannot run jobs in
parallel) need ∼24 and ∼18 h to produce the same results
(Table 5).

A comprehensive framework for an integrative downstream
analysis of WGS data

Based on the three key fundamental algorithms, we built
a robust parallel-computing framework for flexibly inte-
grating multiple analysis functions of WGS data. Cur-
rently, it has had five major modules: quality control, filtra-
tion, annotation, pathogenic prediction and statistic tests
(summarized in Figure 3). There are both shared and
unique functions for different types of diseases (e.g. Com-
plex disease, Cancers and Mendelian diseases). All of the
available methods and their usage are described in KG-
GSeq’s user manual (http://grass.cgs.hku.hk/limx/kggseq/
doc10/UserManual.html). Most of these individual meth-
ods have been published elsewhere. As these methods have
been evaluated in their original papers, e.g. filtration of ex-
onic variants for Mendelian diseases (18), regulatory vari-
ant prediction (13), gene-based association test for rare vari-
ants (30) and pathogenic prediction at genes (31), we would
not re-evaluate them in the present paper except for a sim-
ple compare of pathogenic prediction with two latest ap-
proaches REVEL (32) and M-CAP (33). As shown in Fig-
ure 4, the combined pathogenic prediction model of KG-
GSeq (13) had a similar area under the curve of receiver
operating characteristic with REVEL (0.938 vs.0.939) and
higher area under curve than M-CAP(0.938 versus 0.815)
when discriminating pathogenic variants from benign vari-
ants in ClinVar data set. More functions and methods
would be added to this framework in the future. To demon-
strate effectiveness of this integrative framework, we show
two examples here.

In the first example, KGGSeq was used to identify causal
mutation in an exome-sequencing trio in which the off-
spring was affected with a Mendelian disease, neonatal-
onset Crohn’s disease. This is a small data set. The purpose
of this example is to demonstrate the usefulness of KG-
GSeq for Mendelian diseases. The original study suggested
two compound heterozygous mutations in IL10RA caused
the disease (34). After the integrative analysis of KGGSeq,

Figure 3. Main modules in KGGSeq for three types of diseases. Note: KG-
GSeq integrates a series of functions for quality control, filtration, anno-
tation, pathogenic prediction and statistical tests for three types of hu-
man diseases: Mendelian diseases, complex diseases and cancers. Please
see more description of the pipelines in the Supplementary text.

those two causal mutations chr11: 117860219 and chr11:
117860269 were pinpointed accurately with multiple anno-
tations supporting their causality to the disease (see detailed
output in the Supplementary Excel Table S3). For the pur-
pose of comparison, we also used another tool, GEMINI,
to analyze the same exome sequencing data. The variants’
information saved in VCF file was decomposed and nor-
malized by a tool named VT (35) first and then annotated
by SNPEff. The result VCF file was loaded to GEMINI
and built an inside database. The ‘comp hets’ function was
called to identify potential compound heterozygotes and 17
genes including 60 variants were found in the data set of
variants with ‘impact = MED or HIHG’. However, the two
candidate variants were not in the final prioritized shortlist.
Moreover, for the whole analysis, KGGSeq just took 4 min
and 59 s, but GEMINI spent more than 1 h to run the anal-
ysis on the same machine. The detailed comparisons were
listed in the Supplementary Tables S1 and S2.

Downloaded from https://academic.oup.com/nar/article-abstract/45/9/e75/2937943/Robust-and-rapid-algorithms-facilitate-large-scale
by University of Hong Kong user
on 11 October 2017

https://atgu.mgh.harvard.edu/plinkseq
http://grass.cgs.hku.hk/limx/kggseq/doc10/UserManual.html


PAGE 9 OF 11 Nucleic Acids Research, 2017, Vol. 45, No. 9 e75

Figure 4. The performance comparison of KGGSeq’s pathogenic predic-
tion with REVEL and M-CAP. Note: (A) area under the curve of receiver
operating characteristic, (B) area under the curve of precision-recall. The
pathogenic variants (within the clinical significance category 5) and be-
nign variants (within the clinical significance category 2) in ClinVar (https:
//www.ncbi.nlm.nih.gov/clinvar/) were extracted as a benchmark data set.
After excluded overlapped variants with KGGSeq’s training data set, 1898
non-synonymous pathogenic variants and 2180 benign variants were re-
tained for the evaluation. A cut-off was used to produce the performance
measures, including true positive, false positive, precision and recall rates.
The curves were generated by varying the cut-off from the minimal score
and maximal score of each prediction tool.

In the second example, we show how an integrative gene-
based association analysis in the WGS samples of 1000
Genomes Project can be conveniently and efficiently car-
ried out on this framework. The analysis goal is to investi-
gate the degree of population stratification between south-
ern Asian and eastern Asian by the gene-based association
at rare and functionally important variants on autosomes.
Subjects from southern Asia and eastern Asia were assigned
into two groups for the association analysis.

We used KGGSeq to filter out common variants, an-
notate variants with gene features by RefGene and GEN-
CODE models, predict functional variants in both coding
and non-coding regions of autosomes, and perform gene-
based association analysis by statistical tests. The KGGSeq
options are listed in the Supplementary Table S3. The anal-
ysis was run on 10 CPUs with 3.07 GHz in parallel. KG-
GSeq only took 7 min to load and parse the 5.4 GB com-
pressed VCF data, which was 164.3 GB un-compressed text
of ∼40 million variants actually. After eliminating variants
with minor allele frequency >0.01 and on sex chromosomes,
∼29 million variants are left. In total, 18 629 256 variants
were mapped onto genes according to the two gene mod-
els in which variants within 5000 base pairs of transcription
start and end sites were included as upstream and down-
stream variants. The pathogenic and functional prediction
at coding variants and non-coding variants ranked variants
quantitatively (Supplementary Figure S1). As expected, the
stopgain variants tend to have higher posterior probabil-
ity than the other three types of non-synonymous variants.
Among the non-coding variant categories, the upstream
variants have the largest functional scores. After removing
variants with negative predictions, only 6 683 904 variants
are retained for gene-based association analysis.

It turned out that most genes have different allele fre-
quency at the rare variants between the southern Asian
and eastern Asian, which also suggest a substantial pop-

ulation stratification between the two sub populations in
Asian (Supplementary Figure S2A). According to a bur-
den test (CMC (15)), 14 252 genes (out of 55 676 genes)
have significant P-values (P ≤ 8.98 × 10−7, Bonferroni cor-
rection for family error rate 0.05). The variance-component
test, SKAT (14), reported even more significant genes (41
611) than CMC. The inflation disappeared when the popu-
lation membership was permuted among the subjects (Sup-
plementary Figure S2B). This result suggests that popula-
tion structure would be strictly controlled for gene-based
association tests event at rare variants. Otherwise, it would
introduce many false positives.

DISCUSSION

In the present study, we proposed three novel fundamen-
tal algorithms to improve gene feature annotation accuracy
and to substantially relieve computing space and time bur-
den in downstream analysis of large-scale whole genome se-
quence data. Moreover, these algorithms constitute the in-
frastructure of a robust analysis parallel-computing frame-
work, KGGSeq, for flexibly integrating diverse functions
to more effectively isolate genes or variants responsible for
human traits or diseases. When tested with the WGS data
from 1000 Genomes Project, KGGSeq annotated several
thousand more non-synonymous variants than other pop-
ular tools. Moreover, it was over 20 times or much faster
to load and parse sequence variants, and used ∼1.5% or
less space to flexibly represent phased or unphased geno-
types with multiple alleles, and achieved a speed of over
1000 times faster to calculate genotypic correlation. These
advanced algorithms enable a rapid process of large-scale
WGS data on computers that are affordable for most core
facilities and laboratories. Besides its substantial capacity
for large-scale sequencing data, KGGSeq is also a very com-
prehensive platform for integrative downstream analysis on
the whole genome of monogenic diseases or complex dis-
eases.

The bit-block algorithm provides an efficient way to store
and represent genotypes in both hard disk and RAM. Com-
pared with existing algorithms of binary encoding of geno-
types (e.g. PLINK (28) GQT (10) and BGT (11) formats),
our proposed algorithm has two unique features. First, it
can flexibly encode both the phased and unphased geno-
types with more than two alleles. In contrast, the exist-
ing algorithms either ignore multiallelic variants or collapse
different heterozygous genotypes as an over-simplified het-
erozygous genotype, which will lead to loss of genotype in-
formation. It has been noted that multi-allelic genotypes
are also important (36), which is common for Indels. Be-
sides, PLINK (28) and GQT (10) do not support analyses
of haplotypes. Second, it directly supports bitwise opera-
tion with bit-vectors, which can substantially speed up some
time-consuming analyses on genotypes as we demonstrated
in this paper. This is a powerful design to save both space
and time without sacrifice of any other side. As the algo-
rithm itself is generic, this genotype bit-block format will
also be very useful for other WGS tools.

Among the four widely used tools, KGGSeq annotated
the greatest number of unique non-synonymous variants
and achieved consistency with dbSNP’s annotations in most

Downloaded from https://academic.oup.com/nar/article-abstract/45/9/e75/2937943/Robust-and-rapid-algorithms-facilitate-large-scale
by University of Hong Kong user
on 11 October 2017

https://www.ncbi.nlm.nih.gov/clinvar/


e75 Nucleic Acids Research, 2017, Vol. 45, No. 9 PAGE 10 OF 11

scenarios. Besides the gap-filled algorithm, the accuracy
and completeness of reference gene models are also impor-
tant for an accurate gene feature annotation. The differ-
ences in background reference gene model databases sub-
stantially attribute to the several thousand different an-
notations of SNPEff and VEP, compared to KGGSeq.
Anyhow, a consideration of the sequence gap between
reference genome and coding DNA helped rescue ∼600
non-synonymous variants and correct ∼900 false non-
synonymous annotations in 645 African genomes from the
1000 Genomes Project. KGGSeq also covered the most ma-
jority of ANNOVAR’s annotations under RefGene model.
However, KGGSeq’s algorithm only worked for the known
gaps. There may be many unknown sequence gaps. Hope-
fully, the influence of reference databases on the annotation
will decrease as they become more and more accurate and
complete in the future. It is almost impossible to expect a
single algorithm and/or database to achieve 100% anno-
tation accuracy for all non-synonymous variants currently.
According to the comparison, it seems a combination of
KGGSeq and VEP under both the RefGene and Gencode
models will lead to a higher coverage of gene-feature anno-
tation with a relatively high accuracy in practice.

The fast text loading and parsing algorithm provides
an efficient solution for processing biological data. To
ease human reading and management, most bioinformat-
ics data are stored in covenantal text files and organized
by lines, e.g. the VCF format and the Browser Extensi-
ble Data (BED, https://genome.ucsc.edu/FAQ/FAQformat.
html#format1) format. However, processing text needs
more computing cost than other data types, e.g. integers.
The text data can be compressed into blocks (9) to facili-
tate random access. Note that the text lines are often trun-
cated between blocks, which complicates data parsing. The
proposed algorithm enhanced the computing speed of the
compressed data in two ways. First, it allows parallel load-
ing of the compressed blocks while automatically joining
the truncated text lines. Second, it makes use of a prim-
itive data type, byte, to circumvent unnecessary conver-
sions and operations of text data. Compared to alternative
tools (PLINK/SEQ and vcftools which are implemented in
C++), this algorithm substantially improved the speed of
loading and parsing text data. We believe this algorithm will
also be useful for other bioinformatics analysis tools.

KGGSeq was designed to integrate multiple methods and
resources for WGS downstream analysis. Although it has
integrated abundant functions for a comprehensive down-
stream analysis into five main functional modules (qualities
control, filtration, annotation, pathogenic prediction and
statistical tests), it is hard to conclude that these functions
have been sufficient for all scenarios. For example, some
methods using the tissue or cell-type specific gene expres-
sion or expression quantitative trait loci (37) may be added
after careful evaluations for genetic mapping. In any case,
a joint analysis by multiple powerful approaches tends to
produce results that are more reliable. However, as there are
so many individual methods available and even emerging,
a systematic evaluation of the best method combination is
unfeasibly difficult. Currently, we just integrated some rep-
resentative methods and resources in the five major mod-
ules according to our own and some other colleagues’ ex-

periences. The successful applications of KGGSeq to real
data (17,38) have conceptually proved the effectiveness of
this integrative strategy. In the present paper, we focus on
the robust infrastructure to facilitate method integration for
downstream analysis of large-scale WGS data.

AVAILABILITY

KGGSeq has a simple command-line interface to run
on most operating systems with Java running environ-
ment. It accepts multiple input formats of sequence vari-
ants with genomic coordinates of hg18, hg19 or GRCh38
(hg38) and output results for visualization and further
analysis flexibly. KGGSeq is free for academic and non-
profit usage, http://grass.cgs.hku.hk/limx/kggseq/. Built on
a combination of abundant bioinformatics resources,
bioinformatics/statistical methods and advanced comput-
ing algorithms, this software will play a useful role in genetic
mapping studies of both Mendelian diseases and complex
diseases (including cancer) with either small or large-scale
of WGS data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors acknowledge a number of institutes and
projects for their free data sets used in this study: 1000
Genomes Project, Online Mendelian Inheritance in Man,
dbNSFP, etc. The authors also thank the anonymous re-
viewers for their useful comments.

FUNDING

Hong Kong Research Grants Council [GRF 17128515,
HKU 776412M, N HKU736/14]; Hong Kong Re-
search Grants Council Theme-Based Research Scheme
[T12-705/11]; National Natural Science Foundation
of China [NSFC 91229105]; European Community
Seventh Framework Programme Grant on European
Network of National Schizophrenia Networks Studying
Gene-Environment Interactions (EU-GEI); HKU Seed
Funding Programme for Basic Research [201411159172,
201302159006, 201311159090]; Health and Medical Re-
search Fund [01121436, 01121726]; National Institute of
Health [R01HG008983, R21DA040177].
Conflict of interest statement. None declared.

REFERENCES
1. Cirulli,E.T. and Goldstein,D.B. (2010) Uncovering the roles of rare

variants in common disease through whole-genome sequencing. Nat.
Rev. Genet., 11, 415–425.

2. Willig,L.K., Petrikin,J.E., Smith,L.D., Saunders,C.J., Thiffault,I.,
Miller,N.A., Soden,S.E., Cakici,J.A., Herd,S.M., Twist,G. et al.
(2015) Whole-genome sequencing for identification of Mendelian
disorders in critically ill infants: a retrospective analysis of diagnostic
and clinical findings. Lancet Respir. Med., 3, 377–387.

3. Directors,A.B.o. (2012) Points to consider in the clinical application
of genomic sequencing. Genet. Med., 14, 759–761.

Downloaded from https://academic.oup.com/nar/article-abstract/45/9/e75/2937943/Robust-and-rapid-algorithms-facilitate-large-scale
by University of Hong Kong user
on 11 October 2017

https://genome.ucsc.edu/FAQ/FAQformat.html#format1
http://grass.cgs.hku.hk/limx/kggseq/


PAGE 11 OF 11 Nucleic Acids Research, 2017, Vol. 45, No. 9 e75

4. Genome of the Netherlands, C. (2014) Whole-genome sequence
variation, population structure and demographic history of the
Dutch population. Nat. Genet., 46, 818–825.

5. Lander,E.S. (2011) Initial impact of the sequencing of the human
genome. Nature, 470, 187–197.

6. DePristo,M.A., Banks,E., Poplin,R., Garimella,K.V., Maguire,J.R.,
Hartl,C., Philippakis,A.A., del Angel,G., Rivas,M.A., Hanna,M.
et al. (2011) A framework for variation discovery and genotyping
using next-generation DNA sequencing data. Nat. Genet., 43,
491–498.

7. Genomes Project, C., Auton,A., Brooks,L.D., Durbin,R.M.,
Garrison,E.P., Kang,H.M., Korbel,J.O., Marchini,J.L., McCarthy,S.,
McVean,G.A. et al. (2015) A global reference for human genetic
variation. Nature, 526, 68–74.

8. Zhao,S., Prenger,K., Smith,L., Messina,T., Fan,H., Jaeger,E. and
Stephens,S. (2013) Rainbow: a tool for large-scale whole-genome
sequencing data analysis using cloud computing. BMC Genomics, 14,
425.

9. Li,H. (2011) Tabix: fast retrieval of sequence features from generic
TAB-delimited files. Bioinformatics, 27, 718–719.

10. Layer,R.M., Kindlon,N., Karczewski,K.J., Exome Aggregation,C.
and Quinlan,A.R. (2016) Efficient genotype compression and
analysis of large genetic-variation data sets. Nat. Methods, 13, 63–65.

11. Li,H. (2016) BGT: efficient and flexible genotype query across many
samples. Bioinformatics, 32, 590–592.

12. Liu,X., Wu,C., Li,C. and Boerwinkle,E. (2016) dbNSFP v3.0: a
one-stop database of functional predictions and annotations for
human nonsynonymous and splice-site SNVs. Hum. Mutat., 37,
235–241.

13. Li,M.X., Kwan,J.S., Bao,S.Y., Yang,W., Ho,S.L., Song,Y.Q. and
Sham,P.C. (2013) Predicting mendelian disease-causing
non-synonymous single nucleotide variants in exome sequencing
studies. PLoS Genet., 9, e1003143.

14. Wu,M.C., Lee,S., Cai,T., Li,Y., Boehnke,M. and Lin,X. (2011)
Rare-variant association testing for sequencing data with the
sequence kernel association test. Am. J. Hum. Genet., 89, 82–93.

15. Li,B. and Leal,S.M. (2008) Methods for detecting associations with
rare variants for common diseases: application to analysis of
sequence data. Am. J. Hum. Genet., 83, 311–321.

16. Pabinger,S., Dander,A., Fischer,M., Snajder,R., Sperk,M.,
Efremova,M., Krabichler,B., Speicher,M.R., Zschocke,J. and
Trajanoski,Z. (2014) A survey of tools for variant analysis of
next-generation genome sequencing data. Brief. Bioinform., 15,
256–278.

17. Li,M.J., Deng,J., Wang,P., Yang,W., Ho,S.L., Sham,P.C., Wang,J. and
Li,M. (2015) wKGGSeq: a comprehensive strategy-based and
disease-targeted online framework to facilitate exome sequencing
studies of inherited disorders. Hum. Mutat., 36, 496–503.

18. Li,M.X., Gui,H.S., Kwan,J.S., Bao,S.Y. and Sham,P.C. (2012) A
comprehensive framework for prioritizing variants in exome
sequencing studies of Mendelian diseases. Nucleic Acids Res., 40, e53.

19. Wang,K., Li,M. and Hakonarson,H. (2010) ANNOVAR: functional
annotation of genetic variants from high-throughput sequencing
data. Nucleic Acids Res., 38, e164.

20. Cingolani,P., Platts,A., Wang le,L., Coon,M., Nguyen,T., Wang,L.,
Land,S.J., Lu,X. and Ruden,D.M. (2012) A program for annotating
and predicting the effects of single nucleotide polymorphisms,
SnpEff: SNPs in the genome of Drosophila melanogaster strain
w1118; iso-2; iso-3. Fly (Austin), 6, 80–92.

21. McLaren,W., Pritchard,B., Rios,D., Chen,Y., Flicek,P. and
Cunningham,F. (2010) Deriving the consequences of genomic

variants with the Ensembl API and SNP Effect Predictor.
Bioinformatics, 26, 2069–2070.

22. Zhan,X., Hu,Y., Li,B., Abecasis,G.R. and Liu,D.J. (2016) RVTESTS:
an efficient and comprehensive tool for rare variant association
analysis using sequence data. Bioinformatics, 32, 1423–1426.

23. Paila,U., Chapman,B.A., Kirchner,R. and Quinlan,A.R. (2013)
GEMINI: integrative exploration of genetic variation and genome
annotations. PLoS Comput. Biol., 9, e1003153.

24. International Human Genome Sequencing, C. (2004) Finishing the
euchromatic sequence of the human genome. Nature, 431, 931–945.

25. McCarthy,D.J., Humburg,P., Kanapin,A., Rivas,M.A., Gaulton,K.,
Cazier,J.B. and Donnelly,P. (2014) Choice of transcripts and software
has a large effect on variant annotation. Genome Med., 6, 26.

26. Hsu,F., Kent,W.J., Clawson,H., Kuhn,R.M., Diekhans,M. and
Haussler,D. (2006) The UCSC known genes. Bioinformatics, 22,
1036–1046.

27. Harrow,J., Frankish,A., Gonzalez,J.M., Tapanari,E., Diekhans,M.,
Kokocinski,F., Aken,B.L., Barrell,D., Zadissa,A., Searle,S. et al.
(2012) GENCODE: the reference human genome annotation for The
ENCODE Project. Genome Res., 22, 1760–1774.

28. Purcell,S., Neale,B., Todd-Brown,K., Thomas,L., Ferreira,M.A.,
Bender,D., Maller,J., Sklar,P., de Bakker,P.I., Daly,M.J. et al. (2007)
PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet., 81, 559–575.

29. Li,M.J., Pan,Z., Liu,Z., Wu,J., Wang,P., Zhu,Y., Xu,F., Xia,Z.,
Sham,P.C., Kocher,J.P. et al. (2016) Predicting regulatory variants
with composite statistic. Bioinformatics, 32, 2729–2736.

30. Ionita-Laza,I., Lee,S., Makarov,V., Buxbaum,J.D. and Lin,X. (2013)
Sequence kernel association tests for the combined effect of rare and
common variants. Am. J. Hum. Genet., 92, 841–853.

31. Hsu,J.S., Kwan,J.S., Pan,Z., Garcia-Barcelo,M.M., Sham,P.C. and
Li,M. (2016) Inheritance-mode specific pathogenicity prioritization
(ISPP) for human protein coding genes. Bioinformatics, 32,
3065–3071.

32. Ioannidis,N.M., Rothstein,J.H., Pejaver,V., Middha,S.,
McDonnell,S.K., Baheti,S., Musolf,A., Li,Q., Holzinger,E.,
Karyadi,D. et al. (2016) REVEL: an ensemble method for predicting
the pathogenicity of rare missense variants. Am. J. Hum. Genet., 99,
877–885.

33. Jagadeesh,K.A., Wenger,A.M., Berger,M.J., Guturu,H.,
Stenson,P.D., Cooper,D.N., Bernstein,J.A. and Bejerano,G. (2016)
M-CAP eliminates a majority of variants of uncertain significance in
clinical exomes at high sensitivity. Nat. Genet., 48, 1581–1586.

34. Mao,H., Yang,W., Lee,P.P., Ho,M.H., Yang,J., Zeng,S., Chong,C.Y.,
Lee,T.L., Tu,W. and Lau,Y.L. (2012) Exome sequencing identifies
novel compound heterozygous mutations of IL-10 receptor 1 in
neonatal-onset Crohn’s disease. Genes Immun., 13, 437–442.

35. Tan,A., Abecasis,G.R. and Kang,H.M. (2015) Unified representation
of genetic variants. Bioinformatics, 31, 2202–2204.

36. Campbell,I.M., Gambin,T., Jhangiani,S.N., Grove,M.L.,
Veeraraghavan,N., Muzny,D.M., Shaw,C.A., Gibbs,R.A.,
Boerwinkle,E., Yu,F. et al. (2016) Multiallelic positions in the human
genome: challenges for genetic analyses. Hum. Mutat., 37, 231–234.

37. Consortium,G.T. (2015) Human genomics. The genotype-tissue
expression (GTEx) pilot analysis: multitissue gene regulation in
humans. Science, 348, 648–660.

38. Heinen,C.A., Jongejan,A., Watson,P.J., Redeker,B., Boelen,A.,
Boudzovitch-Surovtseva,O., Forzano,F., Hordijk,R., Kelley,R.,
Olney,A.H. et al. (2016) A specific mutation in TBL1XR1 causes
Pierpont syndrome. J. Med. Genet., 37, 330–337.

Downloaded from https://academic.oup.com/nar/article-abstract/45/9/e75/2937943/Robust-and-rapid-algorithms-facilitate-large-scale
by University of Hong Kong user
on 11 October 2017


