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Aptamers are single-stranded oligonucleotides selected by evolutionary approaches frommassive libraries with significant potential
for specific molecular recognition in diagnostics and therapeutics. A complete empirical characterisation of an aptamer selection
experiment is not feasible due to the vast complexity of aptamer selection. Simulation of aptamer selection has been used to
characterise and optimise the selection process; however, the absence of a good model for aptamer-target binding limits this field
of study. Here, we generate theoretical fitness landscapes which appear to more accurately represent aptamer-target binding. The
method used to generate these landscapes, selective phenome growth, is a new approach in which phenotypic contributors are
added to a genotype/phenotype interaction map sequentially in such a way so as to increase the fitness of a selected fit sequence. In
this way, a landscape is built around the selected fittest sequences. Comparison to empirical aptamer microarray data shows that
our theoretical fitness landscapes more accurately represent aptamer ligand binding than other theoretical models.These improved
fitness landscapes have potential for the computational analysis and optimisation of other complex systems.

1. Introduction

1.1. Background. Aptamers are single-stranded nucleic acid
sequences capable of specific high-affinity binding [1–4].This
makes them attractive candidates as recognition molecules
in diagnostics and therapeutics. Aptamers are isolated by
systematic evolution of ligands by conventional exponential
enrichment (SELEX), which involves several iterative steps of
incubation with target, washing away of weak binders, and
PCR amplification of strong binders.

Aptamer selection is complex. Many variables such as
library size, quantity of target, temperature, selection buffer,
pH, degree of PCR amplification, and use of mutation or
recombination diversification need to be considered. Due
in part to these factors, less than 30% of classical SELEX
experiments are successful in isolating aptamers with dis-
sociation constants less than 30 nM [5]. Understanding the
dynamics of the selection process is extremely important; but
what does this entail? The DNA required to fully represent
the number of permutations in a 75-base aptamer library
would be roughly equal to the mass of the moon [6]. In

order to represent this immense sequence space, an initial
SELEX library may contain up to 1015 molecules. A rigorous
empirical analysis of anything close to this number of library
members is simply not feasible.

Nevertheless, empirical analyses of smaller fractions of a
DNA aptamer libraries have been undertaken. The two
main empirical selection analysis techniques used are high
density DNA microarrays and high-throughput sequencing
(HTS). Briefly, high density microarrays can contain up to
approximately 1 million features, each representing an ap-
tamer in a library. After array incubation with fluorescent
target and a washing step, the binding affinity score of all
aptamers on the array can be measured by fluorescence
scanning. Platt et al. [7], Knight et al. [8], and Rowe et al.
[9] usedmicroarrays to both evolve aptamers and gain insight
into an aptamer binding landscape. Additionally, DNA
microarray data has been applied to aptamer specificity land-
scapes [10], fitness landscape morphology [11], and aptamer
affinitymaturation [12]. In comparison, the possible sequence
space coverage using HTS is much greater, with Illumina’s
HiSeq HTS capable of yielding sequence data for more than
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70 million sequences from a single lane [13]. Using this
approach the copy number of a sequence is used as a proxy
for its target binding strength so that the fitness of individuals
in the library pools can be estimated. Cho et al. used
this HTS approach tomonitormicrofluidic aptamer selection
rounds and gauge enrichment [14]. PCR bias may distort this
copy number/binding correlation but, by using a motif based
statistical framework such asMPBind [15], the binding poten-
tial of aptamers can be predicted, eliminating error from
PCR bias. Although both DNA microarrays and HTS led to
major breakthroughs in understanding library sequence
space fitness and selection, these techniques are only capable
of analysing a small fraction of a given library’s sequence
space. Another approach to analysing aptamer selection is
via computational simulation. The challenge in simulating
aptamer selection is the design of a suitable model for
aptamer binding fitness.

Computational approaches to model aptamer fitness by
virtue of folding include secondary structure prediction by
minimum free energy [16] and inverse folding [17]. These
approaches can be computationally expensive and while
being excellent models for folding they may not capture the
higher complexity of molecular binding. Hoinka et al. coded
a program to simulate the aptamer selection process called
“AptaSim” [18]. The binding model used chose aptamer
affinities at random without relevance of sequence. While
AptaSim was an important step forward in simulating selec-
tion enrichment andmutation copy number, AptaSim cannot
appropriately represent heritability or represent binding cor-
relation between related sequences required for the study of
genetic systems. Oh et al. used a string matching function as
a binding fitness model to simulate aptamer selection [19].
This model does include heritability and binding correlation
between related sequences, but as only close range epistasis is
possible by using one “optimal solution” aptamer the land-
scape is cone shaped and would often be unrepresentative of
a true aptamer binding landscape.

Kauffman’s 𝑁𝐾 model is a robust mathematical model,
related to study of autocatalytic sets, which serves as an
objective function relating genotypic sequence to phenotypic
fitness [20]. Derivations of the original𝑁𝐾model have been
used to describe complex interacting systems in areas as
diverse as immunology [21], evolutionary biology [22], and
economics [23]. The𝑁𝐾model describes a fitness landscape
whose size is determined by the number of components in
system (𝑁) and the ruggedness of the landscape can be
tuned using the degree of interaction of these components
(𝐾). This system is perhaps best described when used to
represent problems in evolutionary biology as originally
intended by Kauffman. A population of genomes where each
contains N genes are given fitness values based on the sum of
fitness contributions from each of their genes. The fitness
contribution of each gene is determined by its interaction
with 𝐾 other genes within its own genome. The interacting
genes can be positioned sequentially, randomly, or by some
other gene interaction pattern predetermined by an interac-
tion map. The allelic sequence of these interacting genes is
designated a fitness contribution, usually from a generated
random distribution. In this way, the allelic substitution of

one interacting gene means there will be a completely
different fitness contribution score for the entire collection of
interacting genes. In the 𝑁𝐾 model by increasing 𝐾, the
number of interactions between genes, the complexity of the
system, and the ruggedness of the landscape are increased. In
addition to the value of 𝐾, the position of these interactions
on the interaction map is of great importance to the fitness
landscape.

Typically the𝑁𝐾model is used as a scoring system for a
population of genomes which can evolve via diversifications
such asmutation or recombination. In thisway the𝑁𝐾model
is an objective function for a complex system. As mentioned
earlier the𝑁𝐾model can be adapted to many other areas of
study. In this paperwe use the𝑁𝐾model to represent binding
of an aptamer to a target analyte. In this representation
𝑁 would be equal to length of the aptamer in the library
and 𝐾 would be equal to the interactions of bases within
each aptamer. Many modifications to the original𝑁𝐾model
have been made, some to optimise the model for a given
research area. Herein we will describe some modifications to
the 𝑁𝐾 model which are aimed at optimising the model to
represent binding of an aptamer to a target analyte. The 𝑁𝐾
model was believed to resemble molecular fitness landscapes
similar to the binding of an aptamer to an analyte [24]. In
the 𝑁𝐾 model mutational additivity usually holds for non-
interacting positions in sequences.This mutational additivity
is biologically accurate as has been demonstrated for several
proteins [25–33].

Wedge et al. used an 𝑁𝐾 model for the simulation
of protein directed evolution (DE) [36], a similar field to
aptamer selection. Binary strings of length 40 and 100 were
used with random epistatic interactions varying from 𝐾 = 0
to 10. Genetic algorithms utilising mutation, crossover, dif-
ferent library sizes, and selection pressures were simulated
and compared to deduce general rules for protein directed
evolution, which are of great use to DE experiments. As
noted in this study, the “No Free Lunch Theorem” (NFL)
[37] establishes that all search algorithms perform exactly the
same when averaged over all possible problems. This infers
that, for an optimisation algorithm, any elevated performance
in one class of problem is exactly paid for in performance in
another class. If there is discrepancy between a real life system
and a model used to describe it, any elevated performance
in optimisation using simulation of the model is exactly paid
for in performance for the real life system.This illustrates the
need for an accurate model when using simulation results to
improve empirical ligand selection experiments.

Despite this biological accuracy in regard to mutational
additivity, the classical 𝑁𝐾 model may have limitations in
representing some biological systems.The𝑁𝐾model’s great-
est utility is that ruggedness can be tuned using the epistasis
variable 𝐾. However, this epistasis is quite uniform through-
out the sequence. For some biological applications, a higher
amount of epistasis is desirable. As𝐾 increases the landscape
tends to become more multipeaked and rugged, to the point
where it is too chaotic to allow adaptation. Kauffman refers to
this phenomena as the “complexity catastrophe” [38]. Kauff-
man goes further to say “the complexity catastrophe is averted
in the 𝑁𝐾 model for those landscapes which are sufficiently
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smooth to retain high optima as𝑁 increases” [38]. Thinking
along these lines provided a solution to the complexity
catastrophe, creating complex landscapes which retained a
smoother surface.

1.2. Constructional Selection of 𝑁𝐾 Landscapes. Altenberg
developed an evolutionary approach to selecting epistatic in-
teraction, thereby creating landscapes which were smoother
than classic𝑁𝐾 landscapes with the same degree of epistatic
interaction [34]. Altenberg achieved this using selective
genome growth, a type of constructional selection, to cre-
ate modular interaction matrices. These selected matrices
have reduced epistasis which give rise to smoother fitness
landscapes [34, 39]. Selective genome growth is a process
by which the genome of the fittest individual is expanded
one gene at a time (Figure S1a in Supplementary Material
available online at https://doi.org/10.1155/2017/6760852). The
new gene is only kept if the fitness of a selected optimum
genome is increased. In this way the probable global optima
of the landscape is constructed and all other points on the
landscape are relative to this optimisation. A similar method
for creating landscapes was devised by Hebbron et al., which
uses preferential attachment growth process to add genes to
a genome [40]. A problem with these two approaches, when
applied to specific applications, is that due to the increasing
returns of the selection system these methods attribute
extremely high pleiotropy to a handful of genes (vertical lines
in Figure 2(c)). This phenomenon of increasing returns of
gene control is biologically appropriate and accurate for a
system describing a group of genomes, but when describing
the binding of an aptamer to an analyte this high aggregated
pleiotropy is not biologically appropriate. Each base in an
aptamer has a relatively low number of interactions due to
its spatial capacity, meaning that high aggregated pleiotropy
is not biologically representative for an aptamer.

Herein we have created a newmodel that we have termed
“selective phenome growth.” Selective phenome growth is
a constructional selection technique in which phenotypic
contributing factors are added to a genotype-phenotype
interactionmap incrementally (Figure S1b) in such a way that
each new phenotypic contributing factor increases the fitness
of global or local optima. Additionally, comparison is made
between selective phenome growth landscapes and aptamer
binding landscapes.

2. Model and Methods

2.1. Selective Phenome Growth to Create a Genotype/Phenome
InteractionMap. Selective phenome growth is a newmethod
of constructing an interaction matrix one phenotypic con-
tributor at a time.Themethod or representing the interaction
map is the same as Altenberg’s [34], with slight modification
to represent aptamers, and is as follows:

(1) The aptamer consists of 𝑛 binary valued bases that
have influence over 𝑓 phenotypic functions, each of
which contributes a component to the total fitness.

(2) Each base controls a subset of the 𝑓 fitness com-
ponents, and, in turn, each fitness component is

controlled by a subset of the 𝑛 bases. This genotype-
phenotype map can be represented by a matrix,

𝑀 = 󵄩󵄩󵄩󵄩󵄩𝑚𝑖𝑗
󵄩󵄩󵄩󵄩󵄩 , 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑓, (1)

of indices 𝑚𝑖𝑗 ∈ {0, 1}, where 𝑚𝑖𝑗 = 1 indicates that
base 𝑖 affects fitness component 𝑗.

(3) The columns of 𝑀, or epistasis vectors, 𝑔𝑗 =
‖𝑚𝑖𝑗‖, 𝑖 = 1, . . . , 𝑛, give the bases controlling each
fitness component 𝑗.

(4) The rows of𝑀, or pleiotropy vectors, 𝑝𝑖 = ‖𝑚𝑖𝑗‖, 𝑗 =
1, . . . , 𝑓, give the fitness components controlled by
each base 𝑖.

(5) If any of the bases controlling a given fitness compo-
nent is altered, the new value of the fitness component
will be uncorrelated with the old one. Each fitness
component 𝜑𝑖 is a uniform pseudo-random function
of the genotype, 𝑥 ∈ {0, 1}𝑛.

(6) If a fitness component is affected by no genes, it is
assumed to be zero.

(7) The total fitness is the normalized sum of the fitness
components:

𝑤 (𝑥) = 1
𝑓

𝑓

∑
𝑖=1

𝜑𝑖 (𝑥) . (2)

Similarly to Altenberg’s selective genome growth [34], a
test sequence of length 𝑁 is randomly generated. In the
phenotype selection loop (Figure 1), 𝐾 positions from a total
of 𝑁 are selected at random and added as a phenotypic
contributor to the interaction matrix. If the new addition
decreases the overall fitness of the test sequence it is removed;
if the new addition increases or does not change the overall
fitness of the test sequence it is kept in the interaction matrix.
The selection loop is usually repeated until 𝑁 phenotypic
contributors are selected.

Selective phenome growth can be seen as randomly
selecting one sequence as the fittest member of a prospective
landscape and evolving the interaction map and therefore
the fitness landscape around this fittest sequence. In this way
phenotypic contributors are sequentially added in such a way
that each increases the fitness of the selected fittest sequence.

2.2. Characterising Landscapes. Adaptive walks were used to
find the two measures, accessibility of local optima and
hamming distance from fittest optima similarly to Kauffman
1993 [38]. 100,000 adaptive walks from randomly selected
points on each landscape were performed and the frequency
each local optimum reachedwas recorded.Themore adaptive
walks terminating at an optimum, the larger the basin of
attraction. In this way the accessibility of a local optimum is a
measure of its basin of attraction. For the same 100,000 adap-
tive walks the hamming distance from the fittest optimum
found for all other optima found was calculated. Hamming
distance from fittest optima is a measure of peak clustering.

https://doi.org/10.1155/2017/6760852
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Adapt the selected sequence to an optimum
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sequence’s �tness

Add a new phenotype
to the interaction map

Start: randomly
generate sequence

Figure 1: Schematic of the selective phenome growth algorithm: a
flowchart representing the algorithm used in the selective phenome
growth of interactionmatrices.The scheme is similar to that used by
Altenberg [34].

Mean path divergence (MPD) is a measure developed by
Lobkovsky et al., 2013, which quantifies the degree of similar-
ity amongmonotonic evolutionary trajectories with the same
endpoints [11]. MPD was used to gauge the roughness of a
given landscape.

2.3. Breaking the One-Gene One-Phenotypic Contributor
Paradigm. Previously in 𝑁𝐾 model literature the number
of phenotypic contributors has been equal to the number of
genes.This rigid framework is not representative of biological
systems as the number of phenotypes may be lower or may
exceed the number of genes in a genome.This one phenotype
per gene paradigmmade sense with earlier interpretations of
the 𝑁𝐾 model with local interactions, as each numbered
row in an interaction matrix corresponded to a phenotypic
contributor determined by its gene interacting with other
genes. This one phenotype per gene paradigm where each
locus always contributes to its own fitness contribution can
be seen as the red diagonal lines in Figures 2(a) and 2(b).

Altenberg’s genome growth constructional selected inter-
action maps do not have this pattern of each locus always
contributing to its own fitness contribution as all interacting
genes for a given phenotypic contributor are selected at
random. In Altenberg’s genome growth interaction maps the
number of phenotypic contributors is usually predetermined
and equal to the number of genes [34]; however this is not
necessarily the case for our phenome selected interaction
maps.

In the case of our phenome selected interaction maps the
phenotypic contributors are added sequentially and so their
number can be varied. This in effect varies the complexity of
the landscape in such a way that the landscape can be tuned
by adding or subtracting phenotypic contributors. The effect
of this landscape tuning via adding or subtracting phenotypic
contributors was analysed in Results and Discussion (Fig-
ure 6).

3. Results and Discussion

3.1. Comparison of Epistatic Maps. From Figure 2 the differ-
ent types of interaction map can be compared. For locally
distributed interactions (Figure 2(a)) the rows, or epistasis
vectors, are equal to the columns, or pleiotropy vectors, which
are equal to the 𝐾 value plus one. For randomly distributed
interactions (Figure 2(b)) the epistasis vectors are equal to
the𝐾 value plus one and the pleiotropy vectors are a Poisson
distribution with a mean of𝐾.

For genome selected interactions (Figure 2(c)) the epista-
sis vectors are equal to the selected 𝐾 values plus one which
yields a mildly skewed distribution (Fisher-Pearson coeffi-
cient of 0.13). The pleiotropy vectors for genome selected
interactions are heavily skewed (Fisher-Pearson coefficient
of 1.90) towards a handful of loci which can be seen as
the vertical lines in Figure 2(c). For phenome selected
interactions (Figure 2(d)) the epistasis vectors are equal to the
selected 𝐾 value plus one which yields a skewed distribution
(Fisher-Pearson coefficient of 0.69). The pleiotropy vectors
for phenome selected are a normal distribution (Fisher-
Pearson coefficient of 0.07). From Figure 2 it can be seen
that phenome selected growth produces an interaction map
with less aggregated pleiotropy when compared to genome
selected maps.

In order to make a relevant comparison between genome
selected and phenome selected landscapes the complexity
of phenome selected growth interaction map was limited to
be equal to that of the genome selected landscape. This was
achieved by limiting the number of phenotypic contribu-
tors such that the total number of base interactions was
limited to that of a previously generated genome selected
interaction map. As the number of interactions a phenotype
has is randomly selected, the actual number of interacting
bases selected for phenome selected growth is greater than
the enforced limit relating to the genome selected interac-
tion map. Consequently, as the genome selection map was
involved in 577 interactions, the phenome selected map was
involved in 588 interactions.

3.2. Comparison of Theoretical Landscapes. The accessibility
of local optima was used as a comparison for different
landscapes. Explained briefly, 100,000 adaptive walks from
randomly selected points on each landscape were performed
and the number of times each local optimumwas reachedwas
recorded.The larger the basin of attraction of a local optimum
is, themore adaptive walks will terminate at that optimum. In
this way the accessibility of local optimum is a measure of an
optimum’s basin of attraction.
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Figure 2: Comparison of interaction maps: in the interaction maps each row represents a phenotypic contributor with interacting loci
coloured blue. The columns of each interaction map represent pleiotropy vectors while the rows represent epistasis vectors. In this context
pleiotropy is a single base (dark squares) affecting multiple phenotypic contributors (rows), and epistasis is multiple bases (dark squares)
affecting a single phenotypic contributor (row). (a) Kauffman’s local interaction map [35] in which both the epistatic and pleotropic vectors
are equal to the𝐾 value of 5. (b) Kauffman’s random interaction map [35] in which the epistatic vectors are equal to the𝐾 value of 5 and the
pleiotropic vectors are a Poisson distribution with a mean of the 𝐾 value of 5. (c) Altenberg’s genome selected interaction map [34] which
is highly pleiotropic at a few loci (Fisher-Pearson coefficient of 1.76) as indicated by the vertically connected dark squares. Epistatic vectors
are relatively equal (Fisher-Pearson coefficient of 0.13). (d) Our novel phenome selected interaction map, presented in the current study, in
which both pleotropic and epistatic vectors are relatively equal (Fisher-Pearson coefficient of 0.07 and 0.69, resp.).

From Figure 3 the comparison of the accessibility of local
optima demonstrates the difference in basin size between
different types of binding landscapes. For low 𝐾 value
landscapes such as 𝐾 = 2 (Figure 3(a)), the model exhibits a
range of basin sizes, with an optimum’s basin size loosely
correlating to its fitness. At higher 𝐾 value (Figure 3(b)) the
correlation between an optimum’s basin size and its fitness is

abolished.The basin size was reduced sufficiently that during
the adaptivewalk simulation only a single adaptivewalker can
reach each local optimum.

The landscape derived from selective genome growth
(Figure 3(c)) exhibits a wider range of basin sizes than a
random 𝐾 = 2 landscape (Figure 3(b)) with a maximum
walker tally of 9 and a mean walker tally of 1.006 with a
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Figure 3: Comparison of basins: the accessibility of local optima discovered by 100,000 independent adaptive walks on four types of𝑁 = 96
landscape, shown in blue. (a)The𝐾 = 2 random landscape, 99249 unique optima. (b)The𝐾 = 8 random landscape, 100,000 unique optima.
(c) The Genome selected landscape, 99381 unique optima. (d) Phenome selected landscape, 98977 unique optima. The log scale panel shows
the same phenome selected landscape data in black. Red horizontal lines show mean and grey horizontal lines show one standard deviation
from the mean.

standard deviation of 0.113. In this landscape an optimum’s
basin size correlates to its fitness.

The landscape derived from our selective phenome
growth (Figure 3(d)) exhibits a much wider range of basin
sizes than the genome selected landscape (Figure 3(c)) with a
maximumwalker tally of 407 and amean walker tally of 1.010
with a standard deviation of 1.735. These statistical results
indicate that the phenome selected landscape has a larger
range of basin sizes when compared to genome selected land-
scapes. Furthermore, the distribution of these basin sizes has
more variation in phenome selected landscapes when com-
pared to genome selected landscapes.

In the phenome selected landscape there is a stronger
correlation between an optimum’s basin size and its fitness
when compared to genome selected landscapes. Additionally

there are a lower number of unique optima for phenome
selected (98977) compared to genome selected (99381) land-
scapes. This lower number of unique optima found for
phenome selected landscape indicates a lower number of
basins corresponding to a smoother, less chaotic landscape.

One major criticism of 𝑁𝐾 landscapes when used as
fitness landscapes is that with larger 𝐾 values they become
excessively chaotic and an unrealistic representation of real-
ity. This observed smoothness of the genome and phenome
selected landscapes despite the landscape complexity suggests
that the model is more similar to that of a real binding
landscape.

From Figure 4 the correlation between an optimum’s
fitness and its similarity to the fittest optima found can be seen
for different landscapes. Typically hamming distance from
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Figure 4: Hamming distance from fittest optima comparison: red points are the hamming distance from fittest optima found to other
optima found over 100,000 adaptive walks. Yellow points are the hamming distance from fittest optima found to 100,000 randomly generated
sequences. Blue points are the hamming distance from fittest optima found to the minima found over 100,000 downhill adaptive walks. (a)
𝐾 = 2 local landscape; (b) 𝐾 = 8 local landscape; (c) Genome selected landscape; (d) Phenome selected landscape.

fittest optima plots only includes other points from optima
reached during adaptive walks, shown as red in Figure 4 [35,
40], but here we have included the two additional groups in
order to better represent the landscapes. The first is a
random sequence group, shown as yellow in Figure 4, which
gives some indication of the average sequence within the
landscape. The second is a minima group, shown as blue in
Figure 4, which gives some indication of the troughs or
valleys in the landscape.

For the 𝐾 = 2 landscape (Figure 4(a)) the optima group,
displayed as red points, show an inverse correlation between
fitness of an optimum and its distance from the fittest optima.
This correlation is indicative of the “Massif Central” global
structure described by Kauffman [35]. The 𝐾 = 2 random
group, displayed as yellow points, show a range of fitness

values and no discernable relationship between fitness of a
random sequence and its distance from the fittest optima.
The 𝐾 = 2 minima group, displayed as blue points, are all
of a similar fitness which indicates a convergence on a small
number of related low fitness sequences. This may be an
artefact of the low complexity of the𝐾 = 2 landscape.

For the higher complexity 𝐾 = 8 landscape (Figure 4(b))
the optima group, displayed as red points, show no corre-
lation between fitness of an optimum and its distance from
the fittest optima. The absence of this correlation shows a
disruption of the “Massif Central” type landscape observed
with higher𝐾 values.

In such a landscape, optima’s position in sequence space
occurs more randomly in a chaotic fashion. The 𝐾 = 8
random group displayed as yellow and the minima group
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displayed as blue show sequences with the same similarity of
the fittest optima as the optima group. This is indicative of a
chaotic landscape.

For the genome selected landscape (Figure 4(c)) the
optima group, displayed as red points, show an inverse
relation between fitness of an optimum and its distance
from the fittest optima. The line of best fit for this relation
shows a decreasing exponential-like trend with a decreasing
rate of fitness increase with closer hamming distance to the
fittest optima found. This seems to represent a landscape in
which many similar fitness optima exist at a relatively distant
hamming proximity from the fittest optima found, indicative
of a plateaued “Massif Central” fitness landscape.

The genome selected random group displayed as yellow
points show quite an even distribution with a slight skew
towards the inverse relation between fitness of a random
point and its distance from the fittest optima. The genome
selected minima group displayed as blue points show a
relation between fitness of an optimum and its distance from
the fittest optima. This relation is the exact opposite to that
the optima group displayed. Intriguingly, this indicates that
lowest minima are found closer to the fittest optima than the
average minima. This pattern was observed on multiple
genome selected interaction maps, so it is not an arte-
fact.

One explanation for this effect is that for genome selected
interaction maps the high pleiotropy attributed to a few
loci means that there exist sequences with great sequence
homology to the fittest optima but with relatively low fitness
as these high pleiotropy and high fitness contributing loci are
not optimised. To test this the optimum sequence was
mutated at each of the high pleiotropy loci according to the
interactionmap and it was found that just 9mutations yielded
a sequencewith a fitness score of 0.35.This sequencewas not a
minimumas it was not represented by one of the blueminima
points in Figure 4(c). This example shows that it is useful to
investigate minima and not just optima when characterising
a landscape.

For the phenome selected landscape in Figure 4(d) the
optima group, displayed as red points, show an inverse
relation between fitness of an optimum and its distance from
the fittest optima. The line of best fit for this correlation
shows an increasing exponential-like trend with a higher
rate of fitness increase with closer hamming distance to the
fittest optima found. This seems to represent a landscape
in which fitness level drops steeply from the fittest optima
and gradually levels out. This phenome selected steeple type
“Massif Central” landscape shows the opposite effect of
the plateaued “Massif Central” described for the genome
selected landscape. As mutational additivity is observed in
empirical landscapes [25–33], the most realistic theoretical
aptamer binding landscapes are Mount Fuji-like in nature
[42]with fewer distinct fittest sequences.The steeple nature of
the phenome selected landscape fits this Mount Fuji-like
approximation well. Furthermore mutational additivity, or
gradient of the red lines of best fit in Figure 4, holds
for phenome selected landscape sequences close to the
fittest sequence (Figure 4(d)); however, for genome selected

landscapes mutational additivity for sequences close to
the fittest sequence does not hold (Figure 4(c)). This dif-
ference indicates that phenome selected landscapes are a
more accurate representation of aptamer binding fitness
landscapes.

The phenome selected random group displayed as yellow
points show a slight skew towards the inverse relation
between fitness of an optimumand its distance from the fittest
optima, similar to that of the optima group. The phenome
selected minima group displayed as blue points show an even
distribution with no discernable correlations.

3.3. Optimising Phenome Selected Landscapes. As described
earlier, phenome selected landscapes have the unique capa-
bility to alter the number of phenotypic contributors
thereby dismissing the one-locus one-phenotype contributor
paradigm. By changing the number of phenotypic contrib-
utors in an interaction map another mechanism, aside from
altering𝐾 value, can be used to tune the landscape. Similarly
to using 𝐾 value to tune a landscape, the number of pheno-
typic contributors can be used to tune the landscape from
states of relative order to states of relative chaos. In Figure 5(a)
four interaction maps with varying numbers of pheno-
typic contributors were used to create fitness landscapes.
These landscapes were assessed in two ways, firstly by their
accessibility of optima (Figure 5(b)) and secondly by their
optima’s hamming distance from the fittest optima found
(Figure 5(c)).

For a low number of phenotypic contributors (Fig-
ure 5(a)(i)) local optima are inaccessible (Figure 5(b)(i)).
At such low numbers of phenotypic contributors there exist
loci in the interaction map which are not represented in
any phenotypic contributors. This means that they have no
bearing on sequence fitness. Mutational relatives in which
these loci are altered are, from a phenotypic scoring point
of view, equal but, from a sequence point of view, different.
Therefore convergence on a single sequence representing a
scoring optima is more difficult. Additionally, for a low
number of phenotypic contributors, the optima’s hamming
distance from the fittest optima (Figure 5(c)(i)) shows an
inverse relation between fitness of an optimum and its dis-
tance from the fittest optima. However, despite this relation
there is a relatively large fitness and hamming distance gap
between the fittest optima and the next fittest optima. This
gap reflects a large evolutionary jump from the optima to the
fittest optima found.

For a low to intermediate number of phenotypic con-
tributors (Figure 5(a)(ii)) the local optima (Figure 5(b)(ii))
are accessible with a reasonably large basin size for the
fittest individuals and a range of basin sizes which correlate
to fitness. This observed reasonably large basin size and
basin size correlation to fitness are indicative of a well-
tuned landscape. Additionally, the hamming distance from
fittest optima (Figure 5(c)(ii)) shows a strong inverse relation
between fitness of an optimumand its distance from the fittest
optima.The distance between the fittest optima and the other
optima is minimal indicating good mutational additivity and
a well-tuned landscape.
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Figure 5: Comparison of numbers of phenotypic contributors for interaction map: (a) comparison of examples of interaction map relative
dimensions. (b) Comparison of basin sizes by accessibility of local optima. For each of the four interaction maps 100,000 adaptive walks were
used to discover the accessibility of the fitness landscape’s local optima. (c) Comparison of hamming distances from fittest optima. For each
of the four interaction maps 100,000 adaptive walks were used to discover optima and the hamming distance of the fittest optima to all other
optima versus optima fitness plotted.The four interactionmaps compared are (i) 46 phenotypic contributors, (ii) 76 phenotypic contributors,
(iii) 96 phenotypic contributors, and (iv) 136 phenotypic contributors.

For the intermediate to high range of phenotypic contrib-
utors (Figure 5(b)(iii)) the local optima (Figure 5(b)(iii)) are
accessible albeit with a skewed distribution of basin sizes.The
hamming distance fromfittest optima (Figure 5(c)(iii)) shows
an inverse relation between fitness of an optimum and its

distance from the fittest optima. There is a relatively large
fitness and hamming distance gap between the fittest optima
and the next fittest optima. This gap indicates overoptimisa-
tion towards the lead aptamer sequence, with the landscape
becoming more rugged and optima being of a lower score.
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Figure 6: Comparison of mean path divergences among theoretical
and empirical landscapes: mean path divergences, a measure of
landscape smoothness, were compared between theoretical and
empirical landscapes. The empirical landscape was binding data
(black squares) for 10-base aptamers against the protein allophyco-
cyanin [41]. The theoretical landscapes were genome-selected [34]
(blue triangles) and the novel ones were phenome-selected (red
circles), both with a string size of 𝑁 = 10 in order to correspond
with the empirical dataset. The phenome selected landscape is more
similar to the empirical dataset.

For the high number of phenotypic contributors (Fig-
ure 5(a)(iv)) only one local optimum (Figure 5(b)(iv)) is
accessible and its basin size is extremely large. This is
indicative of landscape that has been overoptimised for the
lead aptamer sequence to the point that is has converged
on a singularity. The hamming distance from fittest optima
(Figure 5(c)(iv)) shows an inverse relation between fitness of
an optimum and its distance from the fittest optima.However
there is a larger fitness and hamming distance gap between
the fittest optima and the next fittest optima. This gap
indicates severe overoptimisation towards the lead aptamer
sequence, with the landscape becoming increasingly rugged
and the optima being of a lower score.

This progression through the number of phenotypic
contributors depicted in Figure 5 shows that there is an
optimal number of phenotypic contributors when designing
an interaction map for a fitness landscape.

3.4. Comparison to an Empirical Binding Landscape. To com-
pare theoretical bindingmodels to empirical aptamer-protein
binding, DNA microarray data was used. Previously, Rowe
et al. analysed a complete DNA-protein affinity landscape
using DNA microarrays [41]. In this study all possible DNA
oligomer variants of 10 bases were synthesised onto a
microarray. The microarray was incubated with fluorescent
allophycocyanin protein and fluorescent scanning performed
to reveal the entire protein-binding landscape [41]. We used
this complete empirical binding dataset for comparison to
our theoretical landscapes.

To compare theoretical and empirical aptamer binding
datawe usedmeanpath divergence ofmonotonic trajectories,
amethodofmeasuring smoothness of a landscape [11]. Briefly
described, a monotonic function is entirely nonincreasing or
nondecreasing; ergo a monotonic trajectory starts at point A
and finishes at point B without changing the polarity of its
slope. Path divergence is calculated by averaging the deviation
within a set of monotonic trajectories between two set points,
one point being a local maximum. Mean path divergence
(MPD) is the average of path divergence values between
all possible points on a landscape [11]. MPD is defined by
Lobkovsky et al. as

𝐷 =
∑𝑖 𝑃𝑖𝑑 (𝑝𝑖, 𝑝0)
∑𝑖 𝑃𝑖

, (3)

where 𝑃𝑖 is the probability the occurrence of 𝑝𝑖 and 𝑑(𝑝1, 𝑝2)
is the distance between the trajectories 𝑝1 and 𝑝2 [11]. The
current selected local maximum is 𝑝0. In this way MPD is
a measure of the smoothness of landscape, one important
feature for which theremay be disparity between a theoretical
model and empirical data. Each individual path divergence
measurement is binned according to its hamming distance
between the two given points before averaging so amean path
divergence profile is produced. The mean path divergence
for selected and empirical landscapes is similar (Figure 6).
Closer to the local maximum lower, MPD is observed. MPD
increaseswith distance from the localmaximum, levelling out
at a local maximum distance of around 3.

The phenome selected landscape is more similar in
path divergence to the empirical data than the previously
described genome selected landscape (Figure 6). This sim-
ilarity to empirical data in terms of mean path divergence
shows that the phenome selected landscape is more similar in
smoothness to the empirical landscape and therefore a more
realistic representation of aptamer-protein binding.

4. Conclusions

Herein we have described a method for generating genotype-
phenotype interactionmapswith lower aggregated pleiotropy
vectors which yield smooth fitness landscapes. These fitness
landscapes have a steeple type “Massif Central” structure
which appears to be more biologically accurate when repre-
senting the binding of an aptamer to an analyte.

Furthermore we have removed the one phenotype per
gene paradigm that is the norm for𝑁𝐾model literature and
used the varying number of phenotypic contributors to tune
our new fitness landscapes. Comparisons between phenome
selected landscapes and the similarly constructed genome
selected landscapes have been made. The most striking
difference is the complementary correlation line of best fit
for hamming distance to fittest sequence (Figure 4). Perhaps
future work would combine both approaches, construction-
ally selecting both genotypic and phenotypic contributors, to
yield a landscape with a linear correlation line of best fit for
hamming distance to fittest sequence. This difference seen
in the correlation line of best fit for hamming distance to
fittest sequence between genome and phenome relates to both
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mutational additivity and the global landscape structure. In
situations where a higher number of divergent fitness optima
should occur, such as genome evolution, genome selected
landscapes seem more representative. In situations where a
lower number of convergent fitness optima should occur,
such as the binding of an aptamer to a specific analyte,
phenome selected landscapes seemmore representative. Our
phenome selected landscape seems to model aptamer-target
binding better than any other tested model. A future applica-
tion of the phenome selected fitness landscape model would
be its use in simulation of aptamer selection. As the model
seems to be more accurate, the simulation would be a more
accurate representation of real life aptamer selection so any
selection condition optimisations should be more applicable
and transferable to real life aptamer selections. Although phe-
nome selected landscapes seem to represent this biological
system more accurately than their standard 𝑁𝐾 landscape
counterparts, caution should be used when applying them to
other biological systems as they may not be well described.
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