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In the included work the Unmanned Aerial Vehicle (UAV) mission is represented by energy graphs motivated by the 
analysis in [1]. The problem of the shortest path routing is revisited when a dynamically changing environment is 
considered. It is assumed that information about the map is received while on flight due to events. In addition, 
UAVs are required, while on mission, to "scout" areas of interest which involves extracting as much intelligence as 
possible and traversing it in the most safe flyable means. Hence, the UAV should be capable of integrating 
knowledge from a variety of sources and re-plan its mission accordingly in order to fulfil objectives. Motivated by 
the previous, depending on the decision making process, the notion of a "temporary" optimum path can be of 
physical and functional sense. The problem is modeled as a multistage decision making process, where each stage 
is triggered by an event and is characterized by a current starting point, an area for reconnaissance purposes and a 
final destination. Hence, given the current availability between paths, the objective is to devise a policy that leads 
from an origin or current known location to a destination node while traversing the unknown region of interest with 
the minimal energy demand. 

Index Terms: 
 

UAV, Dynamically changing environment, Reconnaissance mission, Energy Graphs, shortest path, cover-sets, 
Traveling Salesman Problem.  
 

1. Introduction   
 
Shortest path problems are usually adapted to the problem's requirements (application domain) 
while incorporating constraints and special conditions for its solution. Depending on the 
problem, the classic static shortest path algorithm can be proved inadequate. Especially for 
cases where for a dynamically changing environment a shortest path is required to be computed 
real time and adapt to variations occurring on the system. For instance, consider the case of the 
optimal management of an emergency service. Determining all possible routes and choosing 
the optimum, prior to a mission, from a minimum cost sense is not sufficient for the solution of 
the problem. In fact, additional information should be accounted for the embedded decision 
process, the re-optimization should be performed in deterministic manner and a real-time 
computational schema should not be neglected from the design phase. 

According to the application UAV missions can be divided in military or civilian served 
applications with different levels scenarios. The interested reader may refer to [2] for a thorough 
list of their classification. In this letter reconnaissance missions are investigated. Hence the 
problem is constrained to mandatory locations for reconnaissance, exploration or surveillance 



that the UAV should visit. Particularly for such missions the areas of interest can be totally 
unknown however priori information can be considered with respect to their location or 
environmental conditions affecting those. 

Among many interesting works, few papers have been proposed for solving the dynamic 
shortest path problem. Among these some authors considered a quasi static network where 
discrete changes in the availability of paths are involved [3] and [4]. Other interesting works 
have proposed models to describe the effect of a time-variant weight alterations. In [5] and [6] a 
discrete function of time was used. Then in [7] the varying delays in inter-node communication 
networks were represented by a continuous function of time. The problem was solved utilizing a 
modified version of the Dijkstra's algorithm [8]. In [9] the authors examined the problem of 
routing in a dynamic network from the control theory perspective and various decision making 
procedures. For the special case of time varied blocked paths, the problem is referred in 
literature as the Canadian Traveler problem which was first proposed by Papadimitriou and 
Yannakakis in 1991 in [10]. Furthermore in [11] the approach is focused in a railway timetable 
system where changes are assumed to be discrete and periodical. The main difference in 
references previously stated and the proposed scenarios described further on is the fact that the 
"events" are occurring completely in a random manner, at a random time instant and of random 
amount. Consequently the sense of an optimum path can not be determined initially. Motivated 
by the previous and an emergency refueling scenario over a dynamically changing environment 
illustrated in work [12], depending on the decision making process, the notion of a "temporary" 
optimum path can be of physical and functional sense until mission objectives are fulfilled. 

In section 2  preliminaries are included outlining the importance of the use of graph 
theory in the UAV context. In addition, the formulation of the dynamically changing energy cost 
matrix is stated. Then in 3  the re-optimisation of the routing problem is outlined and 
methodologies are stated for the reconnaissance mission. Those involve determination of 
mandatory nodes within the unknown area (Set covering problem) and their optimum tour to an 
origin through solving the Traveling Salesman Problem with genetic algorithms. Lastly a 
scenario is illustrating the whole analysis in section 4  and conclusions are stated in 5 .  

 
2. Preliminaries  
2.1 Graph theory - Dynamically changing Energy cost matrix   

 
Graph theory is mainly used in literature as a method for modeling complex networks with the 
edges associated to weights representing an oblique measurement in a space. For the UAV 
application discussed in this paper and motivated by the analysis in work [1], where the UAV 
energy route is employed through utilizing energy graphs the problem is extended to the one of 
an optimum route when a dynamically changing map is involved. The energy graph can be 
represented by an adjacency matrix which includes as elements the energy requirements, 
rather than just distances, for that specific UAV. In the case of a dynamically changing 
environment the adjacency matrix can be updated providing sensors, from lets say dispatch 
centers, send reports about events occurring. In addition it is valid to assume that in order for a 
UAV to travel at a constant speed, the propulsion thrust applied varies with time and is always 
opposed to the aerodynamic forces applied. 

Adopting the terminology in works [1] and [12], the energy adjacency matrix Λ  of order 
nxn  for a UAV traveling at a constant speed u  and impulse matrix F  during time interval 
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node j  to i , for all ni ,1,2,= K  and nj ,1,2,= K ,respectively. The energy demand can be 



obtained like proposed in work [13]. In the particular the weights assigned were obtained from 
utilizing the acceleration profile of the UAV when a standard type of trajectory is followed. The 
trajectory illustrated was a Bezier-Bernstein piecewise polynomial formed by consecutive Circle-
Line-Circle segments known as the Dubins path [14]. In the case where a dynamically changing 
environment is involved then that can alter by three different means blocked/unblocked edges, 
addition/elimination of nodes and their combinations. Hence provided that robust sensors can 
update both the connectivity matrix 

l
A  and the energy cost matrix 

l
W  at time index 

l
t  then for 

the general case the energy matrix is equal to )]().([= ,, ll
l

tAtW jijitΛ . Hence for blocked paths 

the updated energy cost matrix is calculated by the dot product of )(.=)( ktAtW 0W
l

, like 

illustrated in work [12], where 0W  represents the energy demand for the complete graph case 
calculated priori to the mission. Contrary when new nodes are added the energy cost matrix has 
to be re-calculated )(

l
tW . A graph can also be represented by the distance adjacency matrix 

)(GD  [12], which is going to be used in the included simulations. The distance adjacency matrix 
][= ijdD(G)  is an nn×  matrix which can be calculated using Floyd's algorithm [15]. Like 

mentioned above this paper is focused in reconnaissance purposes. The latter means to 
determine the adequate set of nodes to be visited (Covering sets) and to visit all of them at least 
once(Traveling Salesman Problem).  

 
3. Formulation of a dynamically changing map and the re-optimization of an energy path      
    subject to reconnaissance purposes 

 
3.1 Dynamically changing map 

 
Let a topological map be represented by a graph ),,( kkkk CEVG  for a time interval kt , with Nk ∈  

where kV  is a set of nodes of cardinality n , },),{(= kk VjijiE ∈∨  the set of edges with cardinality 

of m  and kC  a set of costs calculated for every kEji ∈),( . The problem of the shortest path (SP) 

can be defined as, given a source ks , a reconnaissance area },,,{= 21
r
m
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destination node z , where k
r
mk Vzas ∈,, , find the path 
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PP ⊆  where )},(,),,{(= 121 ppk iiiiP −K  is any simple path for kj Vi ∈ , kjj Eii ∈− ),( 1  and 

nj ,2,= K . In the objective function for 0=),( jixk  the edge ),( ji  does not belong to the set kE , 
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optimum sense at time kt . It should be noted that the optimum sequence within the 

reconnaissance area is obtained utilizing firstly equation (2) and thereafter (4). Then at time 1+kt  

the node 1+ks  is reached with total cost 1+kc  and a new event occurs. Hence the path 
kr

P  at time 



kt  ceases to be optimum and a new solution 
1+kr

P  for graph 1+kG  should be found for initial 

starting conditions node 1+ks  and terminal location the same, z . The previous procedure is 

repeated as soon as zs jk =+ . In addition the entry of the area of interest is also recalculated 

since the graph changed, providing that the vehicle has not entered or exited it yet. It should be 
noted that the solution is globally optimum at each time instant given local information. Apart 
from the three different scenarios mentioned previously, there is also the case of uncertainty or 
time-varied weights in each elementary path. The later has been addressed in [16] and many 
other interesting works. In the previous, the optimum energy route was shown to alter when 
uncertainty boundaries are assumed for the overall mission. The scenario involved a multi-
sourced vehicle topology with a focus on the feasibility of an overall mission. In this letter 
blocked paths and addition of new nodes are investigated.  

 
3.2 Cover sets for reconnaissance purposes and the Traveling Salesman Problem 

 
The set covering problem is one of the most important discrete optimization problem since it 
serves as a model for real world problems. Such problems include facility location, scheduling, 
resource allocation, vehicle routing etc. Particularly, for the reconnaissance problem discussed 
it serves as a tool to chose the minimum set of nodes that need to be visited to extract the most 
information out of the area. Hence under the assumption that a graph ),( EVG  can be 

represented by its adjacency matrix A , then if one computes its transpose TA  and set all 
1=, jia , for all Nji ,1,2,== K , then the problem of finding the minimum dominating set reduces 

to the one of choosing the least number of columns so that every row contains an entry of one 
under at least one of this set of columns. The later is referred in literature as the Set Covering 
Problem (SCP). Even though it seems a trivial problem it has been shown in Karp's work [17], in 
1972, as one of the twenty-one NP-Complete problems included in his list. Mathematically 
speaking, given a set },,,{= 21 mrrrR K  and a family of sets },,{= 1 nSS Kℑ , where RS j ⊂ , any set 
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yields the minimum value of ji
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},,{= 1 jkj SS Kℑ′ . In matrix form it results to a Mixed-Integer Linear Programming optimization. 

Thus the problem can be formulated as minimizing the objective function (2)  
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 Like mentioned earlier, when the UAV has already entered the area that needs to be scouted 
the tasks arising are to extract as much information as possible while visiting locations of 
interest and to exit that area safeflyably. Thus provided that cover-sets were determined through 
the previous regime the task for the UAV bears similarity to the traveling salesman problem 



(TSP). For the cover-set },,{= 1 jkj SS Kℑ′ , not necessarily ordered, that forms a complete graph 

),( EVG  whose edges are associated with arbitrary total costs Ccij ∈  of minimum sense to 

reach from one node to another, the problem is to find the optimum tour starting and ending at 
the origin node while visiting each node only and only once. In essence find the least cost 
Hamiltonian circuit using all nodes in the set. 

The traveling salesman problem also falls under category of NP-complete problems. The 
computational time to determine its exact solution is exponentially increasing with respect to the 
number of nodes. Hence for large architectures, obtaining the optimum tour can be prohibitively 
expensive and heuristics should not be neglected to reduce computational costs. For our 
analysis a Genetic Algorithm (GA) is used rather than a recursive deterministic procedure in 
order to solve such problems with complex fitness landscape and large search space. Genetic 
algorithms fall under category of evolutionary algorithms that use crossover and mutation 
operators to solve optimization problems by means of survival of the fittest. For further details 
such as adequate representations of individuals, crossover, mutation operators, their 
significance and means of halting the involving genetic algorithm the interested reader may refer 
to [18] and [19] books. The fitness function used in the GA is equal to (4):  
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 where x , y  depict the localization of the node and the additional term denotes a penalty in J . 
In essence it can depict sections within the area for the UAV to try to avoid or cross. For 
instance, when a military application is concerned it can feature stealthy operations if the 
particular depicts a road section, a border or even patrols within that area.  

 
4. Reconnaissance scenario 
   
     In this section a simulation example combining the formulation already stated is described. The 

problem to be solved is: 
Let a topological map being represented by a graph ),( EVG . A UAV with finite reserves 

of fuel has to travel from a start node to a goal. Find the shortest path to reach the goal, while 
conserving energy demand, when the map is dynamically changing with respect to time. 
Additional constraints involve the UAV to safeflyable traverse through an area of interest where 
priori information is assumed with respect to its location within the map. In addition, locate the 
most adequate nodes to visit, at least once, within the reconnaissance area in order to extract 
the most information. 

For the purpose of illustration the scenario is divided into three different phases. The first 
phase involves for the UAV to start its mission from a particular origin and enter the area of 
interest while conserving energy demand. By the second phase the UAV is receiving an event 
with respect to the environmental and topological conditions within the area in order to extract 
the most information and then safelyable exit it. Lastly the UAV has to reach its final destination 
( 2x ) staring from the exit point. In the scenario outlined topological alterations are considered in 
phases. 

Phase A : 
At 0t  there is a priori topological map represented as a graph ),,( 0000 WEVG  and a UAV that has 

a mission to start from a particular source node ks  ( 68x ) and reach an entry point recon
enter
recon Sx ∈ , 

while conserving energy. The area included within the formed circle is the one of interest for the 
UAV to scout. For the particular time instant an optimum path is calculated 

kr
P  from the preflight 



planning to reach the particular goal while entering the less energy demanding node enter
reconx . 

Then at zt , where zt  is a random time index where the UAV is reaching an intermediate 
waypoint, the UAV is receiving a report represented as a connectivity graph zC . zC  depicts that 
the graph has changed to ),,( zzzz WEVG , where zVV =0 , zEE ≠0  and zWW ≠0 . The task is to 

replan the mission from the node zs , that the changes occurred, and find the new shortest path 
z

kr
P  to reach the intermediate goal enter

reconx  with respect to energy demand. In addition the new 

entry point has to be redetermined. 
The determination of the new energy cost matrix can be provided as proposed in section 3.1 
and [13]. Due to reasons the problem is posed the Dijkstra's algorithm [8] is used for phase A  
and phase C , to determine the optimum path 

kr
P , since for only 9  nodes it yields to perform 

faster than Floyd's algorithm as proposed in the work [20]. Hence provided that the necessary 
calculations are performed the mission initializes. The reconfiguration mechanism is checking 
every instant that the vehicle is reaching a node if changes occurred in the map. The control is 
taking place following the previous proposed formulation. Hence as soon as an event occurred 
the mission is replanned by determining the new shortest path from the energy perspective with 
sole purpose to reach the intermediate goal. Then at 1t , where the UAV has traveled up to node 
19 , an event is received that alters the connectivity matrix and energy cost matrix, respectively. 
In addition enter

reconx  changes to node 95  since its closer from energy perspective. Then a re-
optimization takes place and the new optimum path to reach the reconnaissance area is 
determined. Thereafter the same procedure is performed as soon as the area of interest is 
reached. Results for Phase A  are included in table 1 with total energy demand of 27  and 
resulting path sequence 5},7,48,84,93,40,27,8137,73,20,7{68,19,65, . The entry point to the 
reconnaissance area is node 95 . The black dotted line in figures 2 depict the nodes traversed 
until the occurrence of a new event for 0t , 1t , 2t , 3t  and 4t , respectively. In addition the 
connectivity (left) and energy (right) adjacency matrices can be seen in figure 1. All the 
parameters taken into account are all SI units.                    

   
Figure  1: Connectivity matrices and Energy adjacency matrices at time instants 0t , 1t , 2t , 3t  and 4t . 

 
Figure  2: Phase A optimum routes for time indexes 0t , 1t , 2t , 3t  and 4t . 

Phase B : 
Like mentioned earlier as long as the UAV enters the unknown area of interest 95= xxenter

recon  an 
event is sent, from lets say dispatch centres or operators, denoting topological and 
environmental conditions within that area. In other words new nodes are determined within the 
area and a complete graph is created. Hence the tasks of the UAV is to describe the energy 



requirements, find the set of those to visit, visit them in a sequence of optimum sense and 
safeflyable exit the area. In essence, provided that sensors are robust, all node to node energy 
weights are determined based on [13]. Then by utilizing cover-sets the set of nodes, that are 
mandatory to be visited in order to extract the most information from the environment, is 
determined. Afterwards through solving the traveling salesman problem the optimum sequence 
is obtained, and, lastly, a safeflyable route is determined to exit the reconnaissance area. Hence 
assuming that the complete graph created ),,( reconreconreconrecon WEVG  is the one depicted in figure 3 
the Mixed-Integer Linear Programming illustrated in section 3.2  is solved the covering-set is 
obtained. ℑ′  is depicted in figure 3 in red circles. It should be noted that the application domain 
that is involved is the energy perspective. However an optimum tour to start and finish at an 
origin while visiting all nodes in the set ℑ′  at least once is still needed. The particular is solved 
utilizing genetic algorithms like formulated in section 3.2 . The setup of the GA requires three 
basic steps such as the design of a chromosome representation, a way of mapping a genotype 
to a phenotype and the means of evaluating an individual. The representation usually chosen 
for ordering/sequencing problems, as the TSP, is an order based representation. For the 
particular, every individual is represented as permutations of the set to be used (16  in order) 
and is compared. In addition valid operators are also utilized in order to have valid permutations 
for the individuals. The evaluation and selection are the most costly steps. The former one 
depends on a fitness criterion equal to (4) and by the latter through a tournament selection 
where individuals directly compete member of the population. Then an arbitrary part from the 
first parent is chosen and is copied to the first child. The remaining genes that are not selected 
initially they are copied, starting right from the cut point of the copied part, using the order of 
genes from the second parent and wrapping around at the end of the chromosome. Afterwards 
the previous is repeated for the case where the parents roles are reversed. The mutation 
operator is based on swapping. The basic intuition behind the latter two steps is due to the fact 
that with crossover operator it is less probable to be trapped in local optima and because the 
cost function is a highly nonlinear spiky environment the mutation is also required. In addition an 
exhaustive tuning was carried out for the best compromise of parameters. However its beyond 
the scope of the particular analysis. The fitness of the TSP is depicted in figure 5 whereas the 
distance matrix used is depicted in 4. The resulting optimum tour in depicted in solid red in 
figure 3 and the exit point is node 96= xxexit

recon . The total energy demand is 397  energy units. In 
addition a penalty term is involved in (4). Notice that it is only crossed twice.  

 
Figure  3: Reconnaissance area.  Figure  4: Distance matrix for the cover-set ℑ′ . Figure  5: Best fitness of GA         
                                                                                                                                    with respect to the generation         
                                                                                                                                    index and the total distance of   
                                                                                                                                    the sequence of nodes. 

Phase C : 
The last phase in the simulation involves the safeflyable route of the UAV to reach its final 
destination node 2x  from the exit point 96x . Generally it follows the same pattern as phase A , 
however the only differences are just the initialization and the terminal nodes. Hence utilizing 
the Dijkstra algorithm the optimum route with respect to energy is re-optimized whenever an 
event occurs. Figure 7 depict the succession of the mission until the final destination is reached. 
The updated adjacency matrices are depicted in 6, respectively. The results are summarised in 
table 1, where the overall sequence determined is 2},42,76,63,2,19,51,6033,12,77,6{96,84,83,  with 



total energy demand equal to 42 .  

 
Figure  6: Connectivity matrices and Energy adjacency matrices at time instants 0t , 1t , 2t , 3t  and 4t . 

 
Figure  7: Phase C optimum routes for time indexes 0t , 1t , 2t , 3t  and 4t . 

   
Table  1: Concentrated table with results from the whole simulation when new edges appear or disconnected paths 
occur in Phase A  and C , and the mission is subject to visit an area of interest, Phase B . From left to the right, 

event that occurs, number of node the event occurred ( )(, kji ta ), optimum path to reach the goal with respect to 

energy, total energy demand of the path, spent energy until the next event occurs, whether the node of interest is 
reachable, refueling node and total energy demand for the overall mission. 

  
5. Conclusion   

In this work a methodology was illustrated for reconnaissance purposes of a UAV when a 
dynamically changing environment is considered, while conserving energy requirements. The 
graph theory tools proposed were shown to describe all key features of the scenario thus 
strengthening the use of energy graphs in the UAV context. In addition, through a simulation 
example the whole analysis was illustrated. The particular was divided in three phases where a 
UAV was employed to leave an origin, scout an unknown area and safeflyably reach its final 
destination, while conserving energy. The tasks involved within the reconnaissance area were 
to determine which nodes are mandatory to be visited in order to extract the most information 
(Set Covering Problem), safely visit them (TSP with GAs) and exit it.  
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