1	Using daily excessive concentration hours to explore the short-term mortality effects of
2	ambient PM _{2.5} in Hong Kong
3	
4	Hualiang Lin ^a , Wenjun Ma ^a , Hong Qiu ^b , Xiaojie Wang ^c , Edwin Trevathan ^d , Zhenjiang Yao
5	^c , Guang-Hui Dong ^e , Michael G. Vaughn ^f , Zhengmin Qian ^{f,*} , Linwei Tian ^{b,*}
6	
7	^a Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease
8	Control and Prevention, Guangzhou, China
9	^b School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong,
10	Hong Kong, China
11	^c School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
12	^d Division of Pediatric Neurology, Deptment of Pediatrics, Vanderbilt Institute for Global
13	Health, Vanderbilt University School of Medicine, Nashville, TN 37232, US
14	^e School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
15	^f College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63104,
16	US
17	
18	

19 ABSTRACT

We developed a novel indicator, daily excessive concentration hours (DECH), to explore the 20 21 acute mortality impacts of ambient particulate matter pollution (PM_{2.5}) in Hong Kong. The DECH of PM_{2.5} was calculated as daily concentration-hours $>25 \ \mu g/m^3$. We applied a 22 generalized additive models to quantify the association between DECH and mortality with 23 adjustment for potential confounders. The results showed that the DECH was significantly 24 associated with mortality. The excess mortality risk for an interquartile range (565 25 μ g/m³*hours) increase in DECH of PM_{2.5} was 1.65% (95% CI: 1.05%, 2.26%) for all natural 26 mortality at lag 02 day, 2.01% (95% CI: 0.82%, 3.21%) for cardiovascular mortality at lag 03 27 days, and 1.41% (95% CI: 0.34%, 2.49%) for respiratory mortality at lag 2 day. The 28 associations remained consistent after adjustment for gaseous air pollutants (daily mean 29 30 concentration of SO₂, NO₂ and O₃) and in alternative model specifications. When compared to the mortality burden of daily mean PM_{2.5}, DECH was found to be a relatively conservative 31 indicator. This study adds to the evidence by showing that daily excessive concentration 32 hours of PM_{2.5} might be new predictor of mortality in Hong Kong. 33

34

Keywords: Excessive concentration hours; PM_{2.5}; Mortality; mortality burden; Hong Kong
 36

37 Capsule: Excessive concentration hours of PM_{2.5}, as one new indicator, is significantly
38 associated with increased mortality in Hong Kong.

1. Introduction

41	Associated with China's rapid social and economic development, ambient air pollution
42	has become the fourth most significant contributor to disability adjusted life years lost
43	(DALYs) in China, behind dietary factors, high blood pressure and tobacco smoking (Yang et
44	al., 2013). Serious air pollution in China, specifically in urban areas like Hong Kong, has
45	increased interest in assessing the health impacts of air pollution (Chen et al., 2013).
46	The previous studies mainly employed daily mean concentration to represent the
47	exposure (Pope et al., 2006; Schwartz et al., 2017). This approach ignores the enormous
48	variations among different hours within one day (Moreno et al., 2009). A few studies have
49	proposed other indicators, such as daily peak concentration (Delfino et al., 2002; Lin et al.,
50	2016a; Madsen et al., 2012). It is believed that the peak concentration may play a more
51	important role in overwhelming certain body defense mechanisms, and may better capture the
52	adverse effects of outdoor air pollution exposures (Delfino et al., 2002). Both approaches
53	have their own advantages, but neither approach can adequately represent the complex
54	exposure patterns of ambient air pollution, particularly the different exposure intensities and
55	durations among different days even with the same daily mean concentration.
56	In this study, we developed a novel indicator, daily excessive concentration hours
57	(DECH), to quantify the acute mortality effects of daily $PM_{2.5}$ in Hong Kong, China.
58	
59	2. Methods
60	

2.1 Air pollution

62	The hourly monitored concentrations of air pollution were retrieved from Hong Kong
63	Environmental Protection Department between January 1, 1998 and December 31, 2011 (Qiu
64	et al., 2012). A total of 14 stations were operated to monitor the daily concentrations of
65	particulate matter of 10 microns in diameter or smaller (PM ₁₀), nitrogen dioxide (NO ₂), sulfur
66	dioxide (SO ₂), and ozone (O ₃). Hourly concentrations of $PM_{2.5}$ were only monitored in four
67	stations (Central (CL), Tung Chung (TC), Tap Mun (TM), and Tsuen Wan (TW)) (Figure 1).
68	The air pollution data from these four stations were used in this study. Hong Kong covers an
69	area of 1100 km ² , however, most of the population live in the central areas of Hong Kong,
70	which are nearby the four air monitoring stations.
71	We developed a new indicator, DECH of $PM_{2.5}$, which was calculated as the daily total
72	concentration-hours >25 μ g/m ³ . The concentration threshold of 25 μ g/m ³ was chosen
73	according to the guideline of the World Health Organization (WHO) (World Health
74	Organization, 2006). When calculating DECH, any overages of the threshold contributed
75	concentration-hours to the daily total while any concentrations below the threshold did not.
76	For instance, one hour with an hourly concentration of 26.5 μ g/m ³ would contributed 1.5
77	concentration-hours to the daily total; while hours with the concentrations equal to or lower
78	than 25 μ g/m ³ did not contribute to the daily total.
79	The daily mean concentrations of ambient NO_2 , SO_2 and O_3 were also calculated using
80	the data from these four stations. Daily mean temperature ($^{\circ}C$) and relative humidity (%),
81	were also retrieved from the Weather station of Hong Kong.
82	

83 2.2 Mortality

84	Daily count of mortality was retrieved from the Hong Kong Census and Statistics
85	Department over the period of 1998-2011. The causes of death were recorded in accordance
86	with the International Classification of Diseases (ICD), the 9 th revision was applied for
87	1998-2000 and the 10 th revision was for 2001-2011. We constructed the daily time series for
88	mortalities for all diseases (ICD-9: 001-799 or ICD-10: A00-R99), cardiovascular diseases
89	(ICD-9: 390-459 or ICD-10: I00-I99) and respiratory diseases (ICD-9: 460-519 or ICD-10:
90	J00-J99). Daily count of hospitalizations for influenza was also utilized to represent the
91	influenza outbreaks.
92	
93	2.3 Statistical analysis
94	We employed a generalized additive model (GAM) with a quasi-Poisson to assess the
95	association between DECH of $PM_{2.5}$ and mortality. A penalized spline function was used to
96	adjust the seasonal pattern and long-term trend in daily mortality and the non-linear mortality
97	effects of the weather. The influenza outbreaks was coded as a dummy variable based on
98	whether the weeks with the hospitalization number more than the 75 th percentile of a year
99	(Qiu et al., 2012). We also coded both day of the week and public holidays as dummy
100	variables in the model.
101	In line with previous air pollution time series studies, we conducted the model
102	specification and selected the degrees of freedom (df) for smoothing functions (Peng et al.,
103	2008). For example, we applied a df of 6 per year for temporal trends, a df of 6 for the mean
104	temperature of the same day (Temp ₀) and average temperature of the previous three days
105	(Temp ₁₋₃), and a df of 3 the relative humidity (Humidity ₀) of the same day.

106	First we examined the concentration-response relationships graphically using a
107	smoothing function. The curves showed an approximately linear relationship, we thus
108	estimated the linear effects with across different lag days. We also investigated the mortality
109	effects using moving averages for the same day (lag_0), previous one day (lag_{01}), two days
110	(lag_{02}) , and three days (lag_{03}) . We conducted both single-pollutant and two-pollutant models
111	to examine the associations. In the single-pollutant model, DECH of $PM_{2.5}$ was included
112	alone in the model; while in the two-pollutant models, the daily mean contraptions of other
113	air pollutants were included separately in the model, such as SO ₂ , NO ₂ and O ₃ . However,
114	when two pollutants had a high correlation coefficient (>0.80), they were not be included in
115	the same model simultaneously to avoid the possible multicollinearity (Li et al., 2016b).
116	To compare the mortality effect of the new indicator with that of daily mean
117	concentration, we also examined the short-term mortality effects of daily mean concentration
118	of $PM_{2.5}$ using the same method as described above.
119	
120	2.4 Mortality burden attributable to daily mean $PM_{2.5}$ and DECH
121	To examine the advantage of the new indicator, we compared the mortality burdens
122	attributable to daily DECH of $PM_{2.5}$ and daily mean $PM_{2.5}$ (Li et al., 2016a). Population
123	attributable fraction (PAF) and attributable mortality (AM) were applied (Zhu et al., 2013).
124	The formulas were shown below:
125	AM= baseline mortality * $[exp(\beta * \Delta PC)$

126 PAF= AM/overall mortality

127 where baseline mortality refers to daily death count at days with reference $PM_{2.5}$

concentration (or zero DECH); $\triangle PC$ represents the differences in concentrations between the 128 measured and reference concentrations of $PM_{2.5}$ (or DECH higher than zero $\mu g/m^3$ *hour); 129 reference is zero $\mu g/m^3$ *hour for DECH and 25 $\mu g/m^3$ for daily mean PM_{2.5}, and β represents 130 a coefficient. The difference between the mortality burden of DECH and mean $PM_{2.5}$ was 131 tested by calculating the 95% confidence interval as: $(b_1 - b_2) \pm 1.96 * \sqrt{(SE_1)^2 + (SE_2)^2}$, 132 where b_1 and b_2 were the effect estimates for each variable, and SE_1 and SE_2 were the 133 standard errors (Lin et al., 2016b). 134 135 2.5 Sensitivity analysis 136 The robustness of the key findings was assessed using different degrees of freedom in the 137 smoothing functions. We used "mgcv" package in R to conduct the time series analysis. 138 139 **3. Results** 140 We obtained 496,042 deaths from all-natural causes in the study population. Among them, 141 there were 138,067 cardiovascular disease deaths and 95,857 respiratory disease deaths. On 142 average, there were 97 all-natural deaths per day, 27 cardiovascular deaths, and 19 respiratory 143 death (Table 1). 144 There were 44 days without valid monitoring data at CL station, 456 days at TC station, 145 90 days at TM station, and 190 days at TW station, corresponding to 0.9%, 8.9%, 1.8%, and 146 3.7% of the overall study period, respectively. For all the four stations, there was only one 147

day without valid PM_{2.5} concentrations. The average DECH of PM_{2.5} was 370 μ g/m³*hours,

the PM_{2.5} daily mean was 38 μ g/m³. The daily mean concentrations of NO₂, SO₂ and O₃ were

150 56, 18, and 45 μ g/m³, respectively. The daily mean relative humidity and temperature were 151 78%. and were 24 °C.

According to the Pearson correlation (Table 2), there was a high correlation of DECH of PM_{2.5} with daily mean PM_{2.5} concentration (r=0.99), and moderate correlation with NO₂ (r=0.79) and SO₂ (r = 0.53). Low to moderate correlations existed between other air pollutants and weather variables.

We observed an approximately linear dose-response relationship between DECH of 156 PM_{2.5} and mortality (Figure 2). Figure 3 shows the linear associations between DECH of 157 PM_{2.5} and mortality across different lag days in models without adjustment for other air 158 pollutants. We found significantly positive associations between DECH of PM_{2.5} and 159 all-cause mortality and cardiovascular mortality across all the lag days. For example, an 160 interquartile range (IQR) (565 μ g/m³*hours) increase in lag₀₂ DECH of PM_{2.5} corresponded 161 to a 1.65% (95% CI: 1.05%, 2.26%) increase in all-cause mortality; an IQR increase in lag₀₃ 162 DECH of PM_{2.5} was associated with a 2.01% (95% CI: 0.82%, 3.21%) increase in 163 cardiovascular mortality. While the association between DECH of PM_{2.5} and respiratory 164 mortality was only found to be statistically significant at lag 2 day, the corresponding excess 165 risk was 1.41% (95% CI: 0.34%, 2.49%). Table 3 reports the effect estimates from 166 two-pollutant models and the results were comparable and statistically significant. 167 Figure s1 illustrated the short-term mortality effects of daily mean concentrations of 168 PM_{2.5}. The analysis found that daily mean PM_{2.5} was also significantly associated with 169 all-cause mortality, cardiovascular and respiratory mortality. For example, each IQR (27 170 μ g/m³) increase in daily mean PM_{2.5} at lag₀₃ corresponded to 2.13% (95% CI: 1.45%, 2.82%) 171

172	increase in all-cause mortality, 2.77% (95% CI: 1.50%, 4.05%) increase in cardiovascular
173	mortality, and 2.07% (95% CI: 0.49%, 3.67%) increase in respiratory mortality.
174	Table 4 illustrates the estimated AM and PAF associated with both DECH and daily
175	mean concentration of $PM_{2.5}$. We obtained a relatively greater mortality burden attributable to
176	daily mean $PM_{2.5}$ than DECH of $PM_{2.5}$, though the differences were not statistically
177	significant. Based on daily mean concentration of $PM_{2.5}$, we estimated that about 1.14% (95%
178	CI: 0.77%, 1.51%) of all-cause mortality were attributable to higher daily $PM_{2.5}$
179	concentrations above 25 μ g/m ³ , corresponding to 5635 (95% CI: 3821, 7466) attributable
180	deaths; and about 1.04% (95% CI: 0.62%, 1.45%) of the mortality (5142, 95% CI: 3088,
181	7216) could be attributed to daily DECH in $PM_{2.5}$ in the study population.
182	The additional analyses with varying DF for the smoothing functions produced consistent
183	results (Table 3). All these sensitivity analyses indicated that the observed associations
184	between DECH of $PM_{2.5}$ and all mortality categories were robust.
185	
186	4. Discussion
187	This study developed DECH as a new exposure indicator to measure the short-term
188	mortality impacts of ambient $PM_{2.5}$, which, to our knowledge, was the first time to do so.
189	Using 14 years of data with about half million deaths, our analysis suggested that DECH may
190	serve as an important health predictor of air pollutants.
191	We observed a high correlation between the DECH of $PM_{2.5}$ and $PM_{2.5}$ daily mean
192	concentrations, and it was hard to exclude the possible confounding effects of daily mean
193	concentration of $PM_{2.5}$. Though some may argue that the observed effects of DECH of $PM_{2.5}$

may possibly serve as one proxy of daily mean concentration of PM_{2.5}, our purpose was not 194 to clarify that the mortality effects of daily excessive concentration hours of PM_{2.5} were 195 196 independent of daily mean PM_{2.5}. Instead, the findings of this study may suggest that the previous reported adverse health impacts of daily mean concentration of PM_{2.5} might have 197 been driven by DECH of PM_{2.5}. These hourly excessive concentrations should be considered 198 in environmental policy-making to reduce the ambient PM_{2.5} concentrations and in 199 epidemiological health impact analysis (Lin et al., 2016a). 200 Furthermore, besides providing similar information to the daily mean PM_{2.5}, it was likely 201 202 that the DECH of PM_{2.5} represented additional independent exposure information, making it possible to serve as a new exposure indicator. In addition, the collinearity issue may exist 203 when both PM_{2.5} mean and PM_{2.5} DECH were included in the same model. This could result 204 205 in effect estimates in two directions, either larger or smaller, especially when several other important covariates were included in the same model. 206 We did an additional comparison of the mortality burden between these two variables, 207 and observed a relatively conservative effect estimate of daily excessive concentration hours 208 of PM_{2.5}. For example, about 1.04% and 1.14% of all-cause mortality was estimated to be 209 attributable to DECH of PM_{2.5} and daily mean PM_{2.5}, respectively. This finding may suggest 210 that, compared with daily DECH, daily mean PM_{2.5} might have over-estimated the mortality 211 212 burden of $PM_{2.5}$ in the study population.

The results of our analysis indicated that days with a greater frequency and severity of higher hourly air pollution level tended to lead to higher mortality risks than those with more moderate hourly air pollution distributions in Hong Kong. The results were in agreement with

216	previous studies that have used daily mean concentration to examine air pollution-mortality
217	associations (Guo et al., 2013; Lin et al., 2016c; Qiu et al., 2013). For example, a study from
218	Shanghai reported that $PM_{2.5}$ was significantly associated with increased risk of mortality,
219	with a corresponding excess risk for mortality of 0.36% (95% CI: 0.11%, 0.61%) for each 10
220	$\mu g/m^3$ increase in the daily mean concentration of PM _{2.5} (Kan et al., 2007). One recent Hong
221	Kong study demonstrated that an IQR increase in the daily mean concentration of $PM_{2.5}$
222	corresponded to a 1.86% (95% CI: 0.85%, 2.88%) increase in cardiovascular morbidity (Qiu
223	et al., 2013). Our recent analysis found the excess risk of cardiovascular mortality was 6.11%
224	(95% CI: 1.76%, 10.64%) for a 31.5 μ g/m ³ increase in the daily mean concentration of PM _{2.5}
225	in Guangzhou, China (Lin et al., 2016c).

The strongest mortality effects of DECH of PM_{2.5} were observed at lag 2 or 3 days' 226 227 exposure and a 3-day moving average (lag_{02}) . Given that the time course of human body response and subsequent mortality risk can be on the order of hours to days for late-stage 228 reactions (Bhaskaran et al., 2011; Yorifuji et al., 2014), this result corresponded with our 229 expectations that the mortality was acutely related to airborne particulate pollution within 3 230 days of exposures. We further observed slightly stronger associations with a three-day 231 moving average than with single lag days, suggesting cumulative effects to some degree, 232 which was consistent with previous studies (Pun et al., 2014). 233 A few biological mechanisms supported the observed acute mortality effects of DECH of 234

PM_{2.5}. For instance, it was possible that people may inhale higher dose of the fine particles on days with higher DECH of PM_{2.5}, as during the hours with higher concentrations of PM_{2.5}, as one may inhale air with more dense particles. Another possibility might be that the higher PM_{2.5} exposures may adversely affect the capacity of adapting to the extremely high pollution concentrations during the days with higher DECH of PM_{2.5}. Such adaptation capacity may be adversely affected by existing cardiopulmonary conditions. One of our recent studies found that daily peak concentration of PM_{2.5} was significantly associated with increased mortality risk among Chinese population (Lin et al., 2017), thus exposure to high concentrations above the threshold ($25 \mu g/m^3$) may share similar pathways.

This study possessed a few advantages. Results of this study supported the necessity of 244 considering relatively higher hourly concentrations of air pollution in both environmental 245 246 management and air pollution epidemiology studies. Furthermore, harmful effects of air pollution have been observed below the standards/guidelines set by various countries and 247 World Health Organization (WHO) (Chan et al., 2005; Moreno et al., 2009), taking the 248 249 findings of our study into consideration, it was possible that the effects of high air pollution levels of some hours within one day might have been omitted. More specifically, though the 250 daily mean concentration attained the standards in a given day, some hours may have higher 251 252 concentrations than the standards, which might have been the underlying reasons for the adverse health effects. 253

A few limitations should also be considered. Being an ecological study, we could not establish the causal relationship. The exposure assessment based on the average of a few stations might have caused non-differential exposure misclassifications, leading to an under-estimation of the association. Furthermore, due to the limited observations with the PM_{2.5} concentrations lower than 25 μ g/m³ in the study area, making it difficult to examine the health effects of the air pollution lower than the threshold and limit the ability to control for

260	them	in	the	mode

261

262 **5. Conclusions**

- In summary, this study adds to the evidence by showing that daily excessive
- concentration hours of $PM_{2.5}$ may work as a new predictor of mortality.

265

266 Acknowledgments

- 267 This study was funded by Guangdong Provincial Medical Foundation (No.: A2017269)
- and Key Special Project of National Key Research and Development Plan Program (No.:

269 2016YFC0207000).

270

271 **References**

- 272 Bhaskaran, K., Hajat, S., Armstrong, B., Haines, A., Herrett, E., Wilkinson, P., Smeeth, L.,
- 273 2011. The effects of hourly differences in air pollution on the risk of myocardial infarction:
- case crossover analysis of the MINAP database. BMJ 343, d5531.
- 275 Chan, C.C., Chuang, K.J., Su, T.C., Lin, L.Y., 2005. Association between nitrogen dioxide
- and heart rate variability in a susceptible population. European Journal of Cardiovascular
- 277 Prevention & Rehabilitation 12, 580-586.
- Chen, Z., Wang, J.N., Ma, G.X., Zhang, Y.S., 2013. China tackles the health effects of air
 pollution. The Lancet 382, 1959-1960.
- 280 Delfino, R.J., Zeiger, R.S., Seltzer, J.M., Street, D.H., McLaren, C.E., 2002. Association of
- asthma symptoms with peak particulate air pollution and effect modification by

- anti-inflammatory medication use. Environmental health perspectives 110, A607.
- Guo, Y., Li, S., Tian, Z., Pan, X., Zhang, J., Williams, G., 2013. The burden of air pollution on
- years of life lost in Beijing, China, 2004-08: retrospective regression analysis of daily deaths.
- 285 BMJ 347, f7139.
- 286 Kan, H., London, S.J., Chen, G., Zhang, Y., Song, G., Zhao, N., Jiang, L., Chen, B., 2007.
- 287 Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China.288 Environ Int. 33, 376-384.
- Li, L., Yang, J., Song, Y.-F., Chen, P.-Y., Ou, C.-Q., 2016a. The burden of COPD mortality
- due to ambient air pollution in Guangzhou, China. Scientific reports 6, 25900.
- 291 Li, R., Lin, H., Liang, Y., Zhang, T., Luo, C., Jiang, Z., Xu, Q., Xue, F., Liu, Y., Li, X., 2016b.
- The short-term association between meteorological factors and mumps in Jining, China.Science of The Total Environment 568, 1069–1075.
- 294 Lin, H., Liu, T., Xiao, J., Zeng, W., Guo, L., Li, X., Xu, Y., Zhang, Y., Chang, J.J., Vaughn,
- 295 M.G., Qian, Z., Ma, W., 2016a. Hourly peak $PM_{2.5}$ concentration associated with increased
- cardiovascular mortality in Guangzhou, China. J Expos Sci Environ Epidemiol 27, 333-338.
- 297 Lin, H., Liu, T., Xiao, J., Zeng, W., Li, X., Guo, L., Zhang, Y., Xu, Y., Tao, J., Xian, H.,
- Syberg, K.M., Qian, Z., Ma, W., 2016b. Mortality burden of ambient fine particulate air
 pollution in six Chinese cities: Results from the Pearl River Delta study. Environment
 International 96, 91-97.
- Lin, H., Ratnapradipa, K., Wang, X., Zhang, Y., Xu, Y., Yao, Z., Dong, G., Liu, T., Clark, J.,
- 302 Dick, R., Xiao, J., Zeng, W., Li, X., Qian, Z., Ma, W., 2017. Hourly peak concentration
- measuring the $PM_{2.5}$ -mortality association: Results from six cities in the Pearl River Delta

- study. Atmospheric Environment 161, 27–33.
- 305 Lin, H., Tao, J., Du, Y., Liu, T., Qian, Z., Tian, L., Di, Q., Rutherford, S., Guo, L., Zeng, W.,
- Xiao, J., Li, X., He, Z., Xu, Y., Ma, W., 2016c. Particle size and chemical constituents of
- ambient particulate pollution associated with cardiovascular mortality in Guangzhou, China.
- 308 Environmental Pollution 208, 758-766.
- Madsen, C., Rosland, P., Hoff, D.A., Nystad, W., Nafstad, P., Næss, Ø.E., 2012. The
 short-term effect of 24-h average and peak air pollution on mortality in Oslo, Norway.
 European journal of epidemiology 27, 717-727.
- Moreno, T., Lavín, J., Querol, X., Alastuey, A., Viana, M., Gibbons, W., 2009. Controls on
 hourly variations in urban background air pollutant concentrations. Atmospheric environment
 43, 4178-4186.
- Peng, R.D., Chang, H.H., Bell, M.L., McDermott, A., Zeger, S.L., Samet, J.M., Dominici, F.,
- 2008. Coarse particulate matter air pollution and hospital admissions for cardiovascular and
 respiratory diseases among Medicare patients. JAMA: The Journal of the American Medical
 Association 299, 2172.
- Pope, C.A., Muhlestein, J.B., May, H.T., Renlund, D.G., Anderson, J.L., Horne, B.D., 2006.
 Ischemic heart disease events triggered by short-term exposure to fine particulate air
 pollution. Circulation 114, 2443-2448.
- Pun, V.C., Yu, I.T.S., Qiu, H., Ho, K.F., Sun, Z., Louie, P.K., Wong, T.W., Tian, L., 2014.
 Short-Term Associations of Cause-Specific Emergency Hospitalizations and Particulate
 Matter Chemical Components in Hong Kong. American Journal of Epidemiology 179,
 1086-1095.

- Qiu, H., Yu, I.T., Tian, L., Wang, X., Tse, L.A., Tam, W., Wong, T.W., 2012. Effects of Coarse
- Particulate Matter on Emergency Hospital Admissions for Respiratory Diseases: A Time
 Series Analysis in Hong Kong. Environmental Health Perspectives 120, 572-576.
- Qiu, H., Yu, I.T., Wang, X., Tian, L., Tse, L.A., Wong, T.W., 2013. Differential Effects of Fine
- and Coarse Particles on Daily Emergency Cardiovascular Hospitalizations in Hong Kong.
- 331 Atmospheric Environment 64, 296-302.
- 332 Schwartz, J., Bind, M.-A., Koutrakis, P., 2017. Estimating Causal Effects of Local Air
- Pollution on Daily Deaths: Effect of Low Levels. Environmental health perspectives 125,23-29.
- World Health Organization, 2006. Air Quality Guidelines: Global Update 2005: Particulate
 Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide.
- 337 Yang, G., Wang, Y., Zeng, Y., Gao, G.F., Liang, X., Zhou, M., Wan, X., Yu, S., Jiang, Y.,
- Naghavi, M., 2013. Rapid health transition in China, 1990–2010: findings from the Global
- Burden of Disease Study 2010. The lancet 381, 1987-2015.
- Yorifuji, T., Suzuki, E., Kashima, S., 2014. Cardiovascular emergency hospital visits and
 hourly changes in air pollution. Stroke 45, 1264-1268.
- 342 Zhu, Y., Xu, Q., Lin, H., Yue, D., Song, L., Wang, C., Tian, H., Wu, X., Xu, A., Li, X., 2013.
- 343 Spatiotemporal Analysis of Infant Measles Using Population Attributable Risk in Shandong
- 344 Province, 1999-2008. PloS one 8, e79334.
- 345
- 346

347 **Table 1**

Variable	Variabla	Observation	MaardeD	Percentile				
variable	Variable		Mean±SD	Min	P ₂₅	P ₅₀	P ₇₅	Max
Daily mort	ality							
All natur	al	5113	97±17	51	85	95	108	180
CVD		5113	27±7	8	22	26	31	68
Respirato	ory	5113	19±6	4	14	18	22	58
Air polluti	Air pollution (μg/m ³)							
PM _{2.5} DI	ECH	5112	370±418	1.0	25	235	590	3398
PM _{2.5}		5112	38±20	5.8	22	34	49	170
SO_2		5112	18±11	0.1	11	15	23	120
NO_2		5112	56±21	7.7	40	54	68	150
Ozone		5112	45±24	1.1	26	42	61	140
Weather fa	actors							
Tempera	ture (°C)	5113	24±5.0	8.2	20	25	28	32
Relative	humidity	5113	78±10	28	73	79	85	98

348 Basic characteristics of the daily mortality, weather variables and air pollution in Hong Kong

Abbreviation: SD, standard deviation; P_x, xth percentile; Min, minimum; Max, maximum;

350 CVD, cardiovascular diseases; DECH, daily excessive concentration hours.

351

352 **Table 2**

353 Correlation coefficients between daily DECH of PM_{2.5}, weather factors and air pollution in

Pollutants	PM _{2.5} DECH	PM _{2.5} mean	SO_2	NO ₂	O ₃	Temperature
PM _{2.5} mean	0.99**					
SO_2	0.53**	0.52**				
NO ₂	0.79**	0.78**	0.56**			
O ₃	0.55**	0.56**	-0.02	0.43		
Temperature	-0.46**	-0.46**	-0.13**	-0.50**	-0.19**	
Humidity	-0.44**	-0.45**	-0.34**	-0.40**	-0.45**	0.13**
NO ₂ O ₃ Temperature Humidity	0.79** 0.79** 0.55** -0.46** -0.44**	0.32** 0.78** 0.56** -0.46** -0.45**	0.56** -0.02 -0.13** -0.34**	0.43 -0.50** -0.40**	-0.19** -0.45**	0.13**

Abbreviation: DECH, daily excessive concentration hours. **p < 0.01, *P < 0.05.

356

357 **Table 3**

358 ER in mortality for an IQR increase in daily excessive concentration hours (DECH) of $PM_{2.5}$

of lag 02 day in different models.

Model	All natural mortality	CVD mortality	Respiratory mortality			
Model-single*	1.65 (1.05, 2.26)	2.01 (0.82, 3.21)	1.41 (0.34, 2.49)			
Two-pollutant model						
With PM _{2.5} -mean	1.48 (0.55, 2.42)	1.84 (0.19, 3.50)	2.13 (0.06, 4.25)			
With SO ₂	1.74 (1.11, 2.38)	2.09 (0.86, 3.33)	1.42 (0.35, 2.50)			
With NO ₂	1.46 (0.78, 2.14)	1.81 (0.51, 3.13)	1.32 (0.24, 2.41)			
With O ₃	1.62 (0.96, 2.27)	1.80 (0.53, 3.09)	1.59 (0.49, 2.71)			
Degree of freedom of temporal trend adjustment						
df=5/year	1.51 (0.91, 2.11)	1.95 (0.75, 3.16)	1.59 (0.52, 2.68)			

	df=7/year	1.54 (0.93, 2.15)	2.24 (1.05, 3.45)	1.17 (0.09, 2.25)
	df=8/year	1.41 (0.81, 2.02)	1.86 (0.66, 3.08)	1.18 (0.10, 2.27)
360	* Results obtained from single-pollutant models.			
361	Abbreviations: ER, excess risk; IQR, interquartile range; CVD, cardiovascular.			
362				
363	Table 4			
364	The attributable fraction and attributable all natural mortality due to daily excessive			
365	concentration hours and daily mean PM _{2.5} in Hong Kong during 1998-2011.			
		PM _{2.5} DECHs	Daily mean PM	M _{2.5} P value
	ER * (%)	1.65 (1.05, 2.26)) 2.13 (1.45, 2.8	2)
	Attributable fraction (%) 1.04 (0.62, 1.45)) 1.14 (0.77, 1.5	1) >0.05
	Attributable mortality	5142 (3088, 721	.6) 5635 (3821, 74	466) >0.05
366	The reference $PM_{2.5}$ concentrations were the WHO's Ambient Air Quality guidelines (25			
367	μ g/m ³). * ER is the excess risk of mortality for per IQR increase in daily excessive			
368	concentration hours of PM _{2.5} (565 μ g/m ³ *hours) and in daily mean PM _{2.5} (27 μ g/m ³).			
369				
370				
371	Figure legends:			
372				
373	Figure 1. Geographical distribution of air pollution monitoring stations in Hong Kong.			
374				
375	Figure 2. Exposure-response curves for daily excess concentration hours (DECH) of $PM_{2.5}$			
	19			

and mortality in Hong Kong. A natural spline smoother with 3 df was applied.

377

- **Figure 3**. Excess risk of mortality for per IQR increase in daily excess concentration hours
- 379 (DECH) of $PM_{2.5}$ (565 µg/m³*hours) at different lag days in single-pollutant models.