
Title Effective Community Search over Large Spatial Graphs

Author(s) FANG, Y; Cheng, CK; LUO, S; HU, J; LI, X

Citation

Proceedings of the 43rd International Conference on Very Large
Data Bases, Munich, Germany, 28 August - 1 September 2017. In
Proceedings of the VLDB Endowment (PVLDB), 2017, v. 10 n. 6,
p. 709-720

Issued Date 2017

URL http://hdl.handle.net/10722/243528

Rights

Proceedings of the VLDB Endowment (PVLDB). Copyright ©
Very Large Data Base (VLDB) Endowment Inc.; This work is
licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

Effective Community Search over Large Spatial Graphs

Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, Jiafeng Hu
Department of Computer Science, The University of Hong Kong, Hong Kong

{yxfang, ckcheng, xdli, sqluo, jhu}@cs.hku.hk

ABSTRACT
Communities are prevalent in social networks, knowledge graphs,
and biological networks. Recently, the topic of community search
(CS) has received plenty of attention. Given a query vertex, CS
looks for a dense subgraph that contains it. Existing CS solutions
do not consider the spatial extent of a community. They can
yield communities whose locations of vertices span large areas. In
applications that facilitate the creation of social events (e.g., finding
conference attendees to join a dinner), it is important to find groups
of people who are physically close to each other. In this situation,
it is desirable to have a spatial-aware community (or SAC), whose
vertices are close structurally and spatially. Given a graph G and a
query vertex q, we develop exact solutions for finding an SAC that
contains q. Since these solutions cannot scale to large datasets, we
have further designed three approximation algorithms to compute
an SAC. We have performed an experimental evaluation for these
solutions on both large real and synthetic datasets. Experimental
results show that SAC is better than the communities returned by
existing solutions. Moreover, our approximation solutions can find
SACs accurately and efficiently.

1. INTRODUCTION
With the emergence of geo-social networks, such as Twitter

and Foursquare, the topic of geo-social networks has gained a
lot of attention [1, 30, 26, 12]. In these networks, a user is
often associated with location information (e.g., positions of her
hometown and check-ins). These networks are collectively known
as spatial graphs. Figure 1 depicts a spatial graph with nine users
in three cities Berlin, Paris, London, and each user has a
specific location. The solid lines represent their social relationship,
and the dashed lines denote their hometown locations.

In this paper, we study the problem of performing online
community search (CS) on spatial graphs. Given a spatial graph
G and a vertex q ∈ G, our goal is to find a subgraph of G, called
a spatial-aware community (or SAC). Essentially, a community is
a social unit of any size that shares common values, or that is
situated in a close area [22]. An SAC is such a community with
high structure cohesiveness and spatial cohesiveness. The structure

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 6
Copyright 2017 VLDB Endowment 2150-8097/17/02.

Jack

Bob

Tom Jim

Jason

John
Eric

Leo

City1 City2 City3

Jeff

Jack

Bob

Tom Jim

Jason

John
Eric

Leo

Berlin Paris London

Jeff

Figure 1: A geo-social network.

cohesiveness mainly measures the social connections within the
community, while the spatial cohesiveness focuses on the closeness
among their geo-locations. Figure 1 illustrates an SAC with three
users {Tom, Jeff, Jim}, in which each user is linked with each
other and all of them are in Paris.

Table 1: Works on community retrieval.
Graph
Type

Community
Detection (CD)

Community
Search (CS)

Non-spatial [25, 14] [29, 7, 6, 21, 19, 11]
Spatial [16, 10, 4] SAC search

Prior works. The community retrieval methods can generally
be classified into community detection (CD) and community
search (CS), as shown in Table 1. Earlier CD methods [25,
14] mainly focus on link analysis without considering spatial
features. Some recent studies [2] have shown that, in networks
where vertices occupy positions in an Euclidian space, spatial
constraints may have a strong effect on their relationship patterns,
so some works [16, 10, 4] have considered the spatial features
for community detection. All these CD methods often detect
all the communities from an entire graph using some predefined
global criteria (e.g., modularity [20]), so their focus is beyond
personalized community search. Also, their efficiency is
inadequate for fast and online community retrieval since they
require to enumerate all the communities. To address these
limitations, some works [29, 7, 6, 19, 11] focus on online
community search, a query-dependent variant of community
detection, and they are able to find communities for a specific
vertex. However, almost all these CS works focus on link analysis
and do not consider the spatial features. In Figure 1, for example,
previous CS methods [29, 7] tend to put Jason and Tom, Jeff,
Jim into the same community, although Jason is located in
another city London. This community may not be very useful

709

2016/6/9 Circles

file:///C:/Users/Admin/Dropbox/SAC%20search/workspace/sac/info/1064.html 1/1

B

A

Map data ©2016 Google

(a) user1’s SACs (b) user2’s SACs

Figure 2: SACs in Brightkite dataset.

for some location-based services (e.g., setting up events). To
alleviate this issue, in this paper we study SAC search which
finds communities for a particular query vertex in an “online”
manner. Our later experimental results on real datasets show that,
the communities found by our methods are often in a much smaller
areas than that of previous CS methods, i.e., the radii of the spatial
circles covering communities found by [29] and [7] are 50 and 20
times larger than those of SAC search.

SAC search. We now discuss how to measure the structure
cohesiveness and spatial cohesiveness of an SAC. We adopt the
commonly used metric minimum degree [29, 7, 21] to measure the
structure cohesiveness. Note that in our method, the minimum
degree metric can be easily replaced by other metrics like
k-truss [19] and k-clique [6]. To measure the spatial cohesiveness,
we consider the spatial circle, which contains all the community
members. In particular, given a query vertex q ∈ G, our goal is to
find an SAC containing q in the smallest minimum covering circle
(or MCC) and all the vertices of the SAC satisfy the minimum
degree metric. The main features of SAC search are summarized
as follows.
• Adaptability to location changes. In geo-social networks
(e.g., Brightkite and Foursquare), a user’s location often changes
frequently, due to its nature of mobility. As a result, users’
spatially close communities change frequently as well. Let us
consider two real examples in Brightkite, which once was a popular
location-based social networking website. Figure 2(a) shows a
user’s two SACs in two consecutive days, when she moves from
place “A” to place “B” in US, in which each SAC is located in an
MCC denoted by a circle. Note that all the members are different
except the user itself. Figure 2(b) shows another user’s two SACs
in three days, when she moves from place “C” to place “D”. These
real examples clearly show that a user’s communities could evolve
over time. In our later experiments, we find that for two SACs with
time gap of six hours or more, the average Jaccard similarity of
these two community member sets decreases by 25%.

Moreover, the link relationship also evolves over time. So
the existing CD methods may easily lose the freshness and
effectiveness after a short period of time. On the contrary, our SAC
search can adapt to such dynamic easily, as it can answer queries in
an “online” manner. Also, our methods do not rely on any offline
computation, such as graph clustering or index structures.
• Personalization. SAC search allows a query user to find
a community that exhibits both high structure cohesiveness and
spatial cohesiveness. The parameter k, the minimum degree,
allows the user to control the strength of link intensiveness. For
example, SAC search can answer queries such as who are my

nearby friends so that we can form a particular club? In contrast,
existing CD methods [16, 10, 4] often use some global criteria (e.g.,
modularity), and consider the static community detection problem,
where the graph is partitioned a-priori with no reference to the
particular query vertices.
• Online search. Similar to other online CS methods, our
method is able to find an SAC from a large spatial graph quickly
once a query request arrives. However, existing CD methods for
spatial graphs, are generally slower, as they are often designed for
generating all the communities for an entire graph.

Applications. We now discuss the applications of SAC search.
• Event recommendation. Emerging geo-social applications such
as Meetup1, Meetin2, and Eventbrite3 allow social network users
to meet physically for various interesting purposes (e.g., party,
dinner, and dating). For example, Meetup tracks its users’ mobile
phone locations, and suggests interesting location-based events to
them [30]. Suppose that Meetup wishes to recommend an event
to a user u. Then we can first find u’s SAC, whose members
are physically close to u. Events proposed by u’s SAC member
v can then be introduced to u, so that u can meet v if she is
interested in v’s activity. Since u’s location changes constantly,
u’s recommendation needs to be updated accordingly. Also, these
applications often have to handle requests from a large number
of online users efficiently. Our high-performance SAC search
algorithms can therefore benefit these applications.
• Social marketing. As studied in [23], people with close social
relationships tend to purchase in places that are also physically
close. To boost sales figures, advertisement messages can be sent
to the SACs of users who bought similar products before. For
instance, if u has bought an item, the system can advertise this
item to u’s SAC members.
• Geo-social data analysis. A common data analysis task is
to study features about geographical regions. As discussed in
[5], these features are often related to the people located there.
For example, Silicon Valley can be characterized by “information
technology” because many residents/workers there are interested in
this topic. Hence, by analyzing members of an SAC, it is possible
to better understand the characteristics of a geographical area. As
also discussed in [27] and Figure 2, SAC search can be used to
monitor and analyze the movement of communities. We can thus
track the evolution and composition of u’s SAC as she moves.

Challenges and contributions. The SAC search problem is very
challenging, because the center and radius of the smallest MCC
containing q are unknown. A basic exact approach takes O(m ×
n3) time to answer a query, where n and m denote the numbers
of vertices and edges in G. This is very costly, and is impractical
for large spatial graphs with millions of vertices. So we turn to
develop efficient approximation algorithms, which are able to find
an SAC in an MCC of similar size with the smallest MCC. We first
develop a basic approximation algorithm AppInc, which achieves
an approximation of 2. Here, the approximation ratio is defined as
the ratio of the radius of MCC returned over that of the optimal
solution. Inspired by AppInc, we develop another approximation
algorithm AppFast, which is faster and also has a more flexible
approximation ratio, i.e., 2 + εF , where εF is an arbitrary small
non-negative value. However, AppInc and AppFast cannot
achieve even better accuracy with an approximation ratio less than
2. To tackle this issue, we further propose another approximation
algorithm AppAcc with an approximation ratio of 1 + εA, where

1https://www.meetup.com/
2https://www.meetin.org/
3https://www.eventbrite.hk/

710

0< εA <1. Overall, these approximation algorithms theoretically
guarantee that, the radius of the MCC containing the SAC found
has an arbitrary expected approximation ratio. Finally, inspired by
the design of approximation algorithms, we develop an advanced
exact algorithm Exact+, and our later experiments show that it is
four orders of magnitude faster than the basic exact algorithm.

We have implemented our algorithms and performed extensive
experiments on four real datasets and two synthetic datasets. We
develop several metrics to measure the quality of a community,
considering the spatial circles and distances among community
members, and compare existing CD and CS methods under these
metrics. These results confirm the superiority of SAC search. In
addition, we also have run experiments on a dynamic spatial graph,
where users’ locations change frequently, and the results show that
SAC search can well adapt to location changes.

We further evaluate the efficiency of SAC search, and the results
show that the developed algorithms are more efficient than the
baseline algorithms. From extensive experiments, we conclude
that, for moderate-size graphs, Exact+ is the best choice, as it
achieves the highest quality with reasonable efficiency, while for
large graphs with millions of vertices, AppFast and AppAcc are
better choices as they are much faster than Exact+.

Organization. We review the related work in Section 2. We
formally define the problem studied in this paper in Section 3.
Section 4 presents the proposed query algorithms. We report the
experimental results in Section 5. Section 6 concludes this work.

2. RELATED WORK
Community detection (CD). Discovering communities from a

network is a fundamental problem in network science, and it has
been widely studied in the past decades. Classical solutions [25,
14] employ link-based analysis to obtain these communities.
However, they do not consider the location information. Some
recent works [15, 16, 10, 4] focus on identifying communities
from spatially constrained graphs, whose vertices are associated
with spatial coordinates [2]. For example, a geo-community [15] is
like a community which is a graph of intensely connected vertices
being loosely connected with others, but it is more compact in
space. Guo et al. [16] proposed the average linkage (ALK) measure
for clustering objects in spatially constrained graphs. In [10],
Expert et al. uncovered communities from spatial graphs based on
modularity maximization. In [4], Chen et al. proposed an algorithm
based on fast modularity maximization for detecting communities
from spatially constrained networks. We will compare it with
our methods in experiments. The differences of CD algorithms
and our SAC search are three-fold. First, CD algorithms are
generally costly and time-consuming, as they often detect all the
communities from an entire network. Second, it is not clear how
they can be adapted for online community retrieval. Third, as
pointed out by [20], the modularity based methods [10, 4] often
fail to resolve small-size communities, even when they are well
defined. In this paper, we propose online algorithms for finding
SACs from large spatial graphs.

Community search (CS). In recent years, there is another
related but different problem of community detection,
called community search. The goal of community search is
to obtain communities in an “online” manner, based on a query
request. For example, given a vertex q, several existing works [29,
7, 6, 21, 19] have proposed effective algorithms to obtain the
most likely community that contains q. The minimum degree
metric is often used to measure the structure cohesiveness of
a community [29, 7]. In [29], Sozio et al. proposed the first
algorithm Global to find the k-ĉore containing q. In [7], Cui

Table 2: Notations and meanings.
Notation Meaning
G(V,E) a graph with vertex set V and edge set E
n, m the sizes of vertex and edge sets V and E resp.
G[S] a subgraph of G induced by vertex set S
nb(v) the neighbor set of vertex v in G
degG(v) the degree of vertex v in G
G′ ⊆ G G′ is a subgraph of G
O(o, r) a circle with center o and radius r
|u, v| the Euclidean distance from vertices u to v

Ψ Results of Exact and Exact+
Φ,Λ,Γ Results of AppInc, AppFast, AppAcc resp.

et al. proposed a more efficient algorithm Local, which uses
local expansion techniques to boost the query performance. We
will compare these two solutions in our experiments. In addition,
some recent works [21, 11] also use the minimum degree metric
to search communities from attributed graphs. Other well known
structure cohesiveness metrics, including k-clique [6], k-truss [19]
and connectivity [18], have also been considered for online
community search. But these works assume non-spatial graphs,
and overlook the locations of vertices. Thus, it is desirable to
design algorithms for searching communities from spatial graphs.

3. PROBLEM DEFINITION
Data Model. We consider a geo-social network graph G(V,E),

which is an undirected graph with vertex set V and edge set
E, where vertices represent entities and edges denote their
relationships. For each vertex v ∈ V , it has a location position
(v.x, v.y), where v.x and v.y denote its positions along x- and
y-axis in a two-dimensional space. Note that our methods can be
easily applied to multi-dimensional space. Let n and m be the
corresponding sizes of V andE. We illustrate the data model using
Example 1. Table 2 shows the notations used in this paper.

EXAMPLE 1. Figure 3(a) depicts a geo-social network
containing 10 vertices {Q,A,B, · · · , I}. The solid lines linking
the vertices are the edges, denoting their social relationships.

42 60 8

2

4

6

Q

A

B

D

C

0
x

y

E

F
G

H

I

Q

A

B

D

C E

F
G

H

I

3

2

1

42 60 8

2

4

6

Q

A

B

D

C

0
x

y

F
G

H

I

42 60 8

2

4

6

Q

A

B

D

C

0
x

y

E

F
G

H

I

Q

A

B

D

C E

F
G

H

I

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

3

2

1

2-approximation 4-approximation
Lemma 1: 0.5d0 ≤ ropt ≤ r0

Corollary 1: d0 ≥ r0

Lemma 2: 0.5r0 ≤ ropt ≤ r0, the incremental solution is 2-approximated.

Lemma 3: the optimal solution is in O(Q, 2r0).

Corollary 2: any solution in O(Q, 2r0) is a 4-approximated.

Lemma 4: in the optimal solution, at least one fixed vertex having

distance to q is in range [d0, 2r0].

Lemma 5: in the optimal solution, at least one fixed vertex having

distance to q is in range [0, d0]

(a) spatial graph (b) k-core decomposition

Figure 3: An example of geo-social network.

Spatial-aware community (SAC). Conceptually, an SAC is a
subgraph, G′, of the graph G satisfying: (1) Connectivity: G′ is
connected; (2) Structure cohesiveness: all the vertices in G′ are
linked intensively; and (3) Spatial cohesiveness: all the vertices in
G′ are spatially close to each other.

Structure cohesiveness. A well-accepted notion of structure
cohesiveness is the minimum degree of all the vertices that appear
in the community is at least k [29, 28, 3, 7, 21]. This is used in
k-core and our SAC search. Let us discuss the k-core first.

711

DEFINITION 1 (k-CORE [28, 3]). Given an integer k (k ≥
0), the k-core of G, denoted by Hk, is the largest subgraph of G,
such that ∀v ∈ Hk, degHk (v) ≥ k.

We say that Hk has an order of k. The core number of a vertex
v ∈ V is then defined as the highest order of the k-core that
contains v. A k-core has some important properties [3]: (1) Hk
contains at least k + 1 vertices; (2) Hk may not be a connected
graph; (3) k-cores are nested, i.e.,Hk+1 ⊆ Hk; and (4) Computing
the core numbers of all the vertices in a graph, also known as k-core
decomposition, can be completed using a linear algorithm [3].

As a k-core may not be a connected subgraph, we denote
its connected components by k-ĉores, which are usually the
“communities” returned by k-ĉore search algorithms [29, 7]. In
Example 1, each k-core is covered by an ellipse as shown in
Figure 3(b). Note that 2-core has two 2-ĉores with vertex sets
{Q,A,B,C,D,E} and {F,G,H} respectively.

Remarks. Although we use the minimum degree as the structure
cohesiveness metric, our solutions can be easily adapted to other
structure cohesiveness criteria like k-truss [19] and k-clique [6].

Spatial cohesiveness. In this paper, to ensure high spatial
cohesiveness, we require all the vertices of an SAC in a minimum
covering circle (MCC) with the smallest radius. In the literature [8,
9, 24, 17], the notion of MCC has been widely adopted to achieve
high spatial compactness for a set of spatial objects. The MCC and
SAC search are defined as follows.

DEFINITION 2 (MCC). Given a set of vertices S, the MCC
of S is the spatial circle, which contains all the vertices in S with
the smallest radius.

PROBLEM 1 (SAC SEARCH). Given a graph G, a positive
integer k and a vertex q ∈ V , return a subgraph Gq ⊆ G, and
the following properties hold:

1. Connectivity. Gq is connected and contains q;
2. Structure cohesiveness. ∀v ∈ Gq , degGq (v) ≥ k;
3. Spatial cohesiveness. The MCC of vertices in Gq satisfying

Properties 1 and 2 has the minimum radius.

We call a subgraph satisfying properties 1 and 2 a feasible
solution, and the subgraph satisfying all the three properties the
optimal solution (denoted by Ψ). We denote the radius of the MCC
containing Ψ by ropt. Essentially, SAC search finds the SAC in
an MCC with the smallest radius among all the feasible solutions.
In Example 1, let C1={Q,C,D} and C2={Q,A,B}. The two
circles in Figure 3(a) denote the MCCs of C1 and C2 respectively.
Let q=Q and k=2. The optimal solution of this query isG[C1], and
ropt=1.5. Note that G[C2] and G[C1 ∪ C2] are feasible solutions.

We also consider the θ-SAC search, which returns a community
satisfying: properties 1 and 2 of SAC search, and all the vertices
are in a spatial circle O(q, θ), where θ is an input parameter.
This θ-SAC search is essentially a variant of Global [29] by
introducing a parameter θ. Consider the graph in Example 1 with
q=Q, k=2 and θ=3.1. θ-SAC search will return G[C1 ∪ C2] as the
community, as all of its vertices are in O(Q, 3.1).

The θ-SAC query can be used when a user has some background
knowledge (e.g., size of the region containing the SAC, and
density of users in the region concerned). However, it can be
difficult for a user of an application, such as Meetup, to specify an
appropriate value of θ. As will be discussed in our experiments,
the effectiveness of θ-SAC search is sensitive to θ. If θ is too
small, no community can be found; if θ is too large, then the
community is not spatially compact. A casual application user may
then have to repeat the query with different θ values, before getting

a satisfactory result. For the SAC search, the user does not need to
specify θ; instead, SAC search automatically suggests a community
with tight structural and spatial cohesiveness. Thus, SAC search
is more convenient to use than θ-SAC. In the above example, if
θ<2.2, no community is found; if θ>5.1, G[C3] will be returned,
where C3={Q,A,B,C,D,E}. In fact, there are more spatially
compact SACs (e.g., G[C1], G[C2] and G[C1∪C2]), among which
the most compact one (G[C1]) is returned by the SAC search. We
next focus on SAC search.

4. SAC SEARCH ALGORITHMS
We now present fast SAC search algorithms. Most of our

solutions follow the two-step framework: (1) find a community
S of vertices, based on some CS algorithm e.g., Global [29],
and (2) find a subset of S that satisfies both structure and spatial
cohesiveness. Step (2) is computationally challenging; a simple
way is to enumerate all the possible subsets of S, and then choose
the one that satisfies the two criteria of SAC. In Example 1, when
q=Q and k=2, S={Q,A,B,C,D,E}; an SAC is then chosen from
the 26–1=63 subsets of S. This requires the examination of an
exponential number of possible subsets of S in Step (2). In our
experiments, the typical size of S ranges from 1K to 100K. As
a result, the performance of SAC search can be seriously affected.
Hence, we study polynomial-time SAC search algorithms for Step
(2). Later we will also present the AppInc solution, which does
not use Step (1).

Table 3: Overview of algorithms for SAC search.
Algo. Approx. ratio Time complexity
Exact 1 O(m× n3)

AppInc 2 O(mn)

AppFast 2+εF (εF≥0)
If εF>0, O(m ·min{n, log 1

εF
})

If εF =0, O(mn)

AppAcc 1+εA (0<εA<1) O(m
ε2
A

×min{n, log 1
εA
})

Exact+ 1 O(m
ε2
A

·min{n, log 1
εA
}+m|F1|3)

We first present a basic exact algorithm Exact, which takes
O(m× n3) to answer a single query. This is very time-consuming
for large graphs. So we turn to design more efficient approximation
algorithms. Here, the approximation ratio is defined as the ratio
of the radius of MCC returned over that of the optimal solution.
Inspired by the approximation algorithms, we also design an
advanced exact algorithm Exact+, which is at least four orders
of magnitude faster than Exact as shown by our experiments.
Their approximation ratios and time complexities are summarized
in Table 3, where εF and εA are parameters specified by the query
user. The value |F1| is the number of “fixed vertices”, which will
be defined in Section 4.1; |F1| is often much smaller than n. We
will explain this parameter in more detail. Note that the space cost
of each algorithm is linear with the size of graph G.
AppInc is a 2-approximation algorithm, and it is much

faster than Exact. Inspired by AppInc, we design another
(2+εF)-approximation algorithm AppFast, where εF≥0, which
is faster than AppInc. The limitation of AppInc and AppFast
is that their theoretical approximation ratios are at least 2. To
achieve even lower approximation ratio, we further design another
algorithm AppAcc, whose approximation ratio is (1+εA), where
0<εA<1 is a value specified by the query user. It is slightly slower
than AppFast, as it spends more effort on finding more accurate
solutions. Overall, these approximation algorithms guarantee that

712

the radius of the MCC of the community has an arbitrary expected
approximation ratio.

All algorithms except AppInc follow the two-step framework.
Note that Step (1) of the two-step framework is not necessary for
AppInc, since it works in an incremental manner. In addition,
we can observe that, there is a trade-off between the quality of
results and efficiency, i.e., algorithms with lower approximation
ratios tend to have higher complexities. Our later experiments
show that, for moderate-size graphs, Exact+ achieves not only
the highest quality results, but also reasonable efficiency. While
for large graphs with millions of vertices, AppFast and AppAcc
should be better choices as they are much faster than Exact+.

4.1 The Basic Exact Algorithm
As mentioned before, a k-core contains at least k + 1 vertices.

When the input k=1, we can simply return the subgraph, induced
by q and its nearest neighbor, as the result. So in the rest of this
paper, we mainly focus on the case k ≥ 2.

We now describe a useful lemma about MCC, described in [9],
which inspires the design of our algorithms.

LEMMA 1. [9] Given a set S (|S| ≥ 2) of vertices, its MCC
can be determined by at most three vertices in S which lie on the
boundary of the circle. If it is determined by only two vertices, then
the line segment connecting those two vertices must be a diameter
of the circle. If it is determined by three vertices, then the triangle
consisting of those three vertices is not obtuse.

By Lemma 1, there are at least two or three vertices lying on
the boundary of the MCC of the target SAC. We call vertices lying
on the boundary of an MCC fixed vertices. So a straightforward
method of SAC search can follow the two-step framework directly.
It first finds the k-ĉore containing q, which is the same as Global
does, and then returns the subgraph achieving both the structure
and spatial cohesiveness by enumerating all the combinations of
three vertices in the k-ĉore. We denote this method by Exact.
Algorithm 1 shows Exact. It first finds a list X of vertices of
the k-ĉore, and sorts them according to their distances from q in
ascending order (lines 2-3). Note Xi denotes i-th vertex. For each
three vertex combination, it verifies whether there is a k-ĉore in the
MCC fixed by it, and finally returns Ψ (lines 4-14).

Algorithm 1 Query algorithm: Exact
1: function EXACT(G, q, k)
2: find the vertex list X of the k-ĉore containing q;
3: sort vertices of X;
4: initialize r ← +∞, Ψ← ∅;
5: for i← 3 to |X| do
6: for j ← 1 to i–2 do
7: for h← j + 1 to i–1 do
8: compute the MCC mcc of {Xi, Xj , Xh};
9: if mcc.radius < r then

10: R← a set of vertices in mcc;
11: if exist a k-ĉore with q in G[R] then
12: r ← mcc.radius, Ψ← this k-ĉore;
13: if |q,Xi| > 2r then break;
14: return Ψ;

In addition, we present another useful lemma, which is about the
maximum pair-wise distance for vertices in Ψ.

LEMMA 2. [17] The maximum distance between any pair of
vertices, u and v in Ψ, is in the range [

√
3ropt, 2ropt].

Complexity. The time complexity of Exact is O(m × n3),
since there are three nested for-loops and finding a k-ĉore takes
linear time cost O(m) (we assume m ≥ n) [3].

4.2 A 2-Approximation Algorithm
The major limitation of Exact is its high computational cost,

which makes it impractical for large spatial graphs with millions
of vertices. To alleviate this issue, we now develop more efficient
approximation algorithms. We first present AppInc, which has
an approximation ratio of 2. Our key observation is that, the
optimal solution Ψ is usually very close to q. So we consider
the smallest circle, denoted by O(q, δ), which is centered at q and
contains a feasible solution, denoted by Φ. Let the radius of the
MCC covering Φ be γ (γ ≤ δ). Note that, γ can be obtained by
computing the MCC containing Φ by a linear algorithm [24]. Then,
we have the following two interesting lemmas:

LEMMA 3. 1
2
δ ≤ ropt ≤ γ.

PROOF. We have ropt ≤ γ obviously, as Ψ is the optimal. We
prove 1

2
δ ≤ ropt by contradiction. Suppose ropt < 1

2
δ. Since the

MCC of Ψ contains q, for any v ∈ Ψ, we have |v, q| ≤ 2 × ropt.
As ropt < 1

2
δ, we have |v, q| ≤ 2× ropt < δ. This implies that Ψ

must be in a circle, whose center is q and radius is smaller than δ.
This contradicts the fact that, O(q, δ) is the minimum circle with
center q containing a feasible solution. Hence, Lemma 3 holds.

LEMMA 4. The radius of the MCC covering the feasible
solution Φ has an approximation ratio of 2.

PROOF. Let S be the set of vertices in O(q, δ). Since the vertex
set of Φ is a subset of S, the MCC of Φ has a radius no larger than
that of S, i.e., γ ≤ δ. By Lemma 3, we have 1

2
γ ≤ 1

2
δ ≤ ropt.

This implies that γ
ropt
≤ 2.0. Hence, Lemma 4 holds.

AppInc finds Φ in an incremental manner. Specifically, it
considers vertices close to q one by one incrementally, and checks
whether there exists a feasible solution when a new vertex is
considered. It stops once a feasible solution has been found.

Algorithm 2 Query algorithm: AppInc
1: function APPINC(G, q, k)
2: initialize Queue, S ← ∅, T ← ∅, Φ← ∅;
3: Queue.add(q);
4: while |Queue| > 0 do
5: p← Queue.poll();
6: S.add(p);
7: for v ∈ nb(p) do
8: if degG(v) ≥ k then
9: if |v, q| ≤ |p, q| then

10: S.add(v);
11: else if v /∈ T then
12: Queue.add(v); T .add(v);
13: if |S ∩ nb(q)| ≥ k ∧ |S ∩ nb(p)| ≥ k then
14: if exist a k-ĉore containing q in G[S] then
15: Φ← this k-ĉore; break; //stop
16: return Φ;

Algorithm 2 presents AppInc. First, it initializes four variables
Queue, S, T and Φ: Queue is a priority queue of vertices,
in which vertices are sorted in an ascending order according to
their distances to q; S is the set maintaining vertices close to q
incrementally; T is a set for recording vertices added to Queue;
and Φ is the approximated SAC. Then, it adds q to Queue in the
beginning (line 3). In the while loop (lines 4-15), it first gets the
nearest vertex, p, from Queue, and adds it to S (lines 5-6). Next,
it considers q’s neighbors (lines 7-12). For each neighbor v ∈ X ,
if it is in O(q, |p, q|), we add it to S directly; otherwise, we put it
intoQueue as it is already inO(q, |p, q|). Note that in any feasible
solution, each vertex has at least k neighbors. So if both p and q

713

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

r1

r2

u

l

r

δ

≤α

Q

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

γ

δ

l

u

q
r

δ
l

u

q
r

δ

42 60 8

2

4

6

q

0
x

y

γ

β

rmin

ropt

o

β

c

β

o

c

r+

r-

f

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

r1

r2

r3

Figure 4: Illustrating AppInc.

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

r1

r2

u

l

r

δ

≤α

Q

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

γ

δ

2γ

l

u

q
r

δ
l

u

q
r

δ

42 60 8

2

4

6

q

0
x

y

γ

β

rmin

ropt

o

β

c

β

o

c

r+

r-

f

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

r1

r2

r3

Figure 5: Illustrating AppFast.

have at least k neighbors in S, it checks whether there exists an
SAC in G[S]. If it exists, then AppInc returns it (lines 13-16).

We illustrate AppInc using Example 2.

EXAMPLE 2. In Example 1, let q=Q and k=2. AppInc first
adds A to S and no SAC can be found. Then, it adds B to S, finds
Φ with members set {Q,A,B}. So γ=1.803 and δ=|Q,B|=2.24.
The actual approximation ratio is 1.803/1.5=1.202.

COROLLARY 1. If q is the center of the MCC covering Ψ,
AppInc finds the optimal solution, i.e., Φ equals to Ψ.

PROOF. This can be proved directly by contradiction.

COROLLARY 2. The optimal solution Ψ is in O(q, 2γ).

PROOF. By Lemma 3, we have ropt ≤ γ. This implies that, for
any v ∈ Ψ, we have |q, v| ≤ 2× γ. Thus, all the vertices of Ψ are
in O(q, 2γ), and Corollary 2 holds.

Complexity. In AppInc, the while loop is executed at most n
times, and each takesO(m), as computing k-ĉore takesO(m). So
the total time cost of AppInc is O(mn).

4.3 A (2+εF)-Approximation Algorithm
Although AppInc is much faster than Exact, it is still

inefficient for large graphs, since its time complexity is quadratic.
In this section, we propose another fast approximation algorithm,
called AppFast, which has a more flexible approximation ratio,
i.e., 2 + εF , where εF is an arbitrary non-negative value.

Instead of finding the circle O(q, δ) in an incremental manner,
AppFast approximates the radius δ by performing binary search.
This is based on the observation that, the lower and upper bounds
of δ, denoted by l and u, are stated by Eq (1):

l = max
v∈KNN(q)

|q, v|, u = max
v∈X
|q, v|, (1)

where X is the list of vertices of the k-ĉore containing q, and
KNN(q) contains the k nearest vertices inX∩nb(q) to q. Hence,
we can approximate the radius of the circle O(q, δ) by performing
binary search within [l, u].

Algorithm 3 presents AppFast. We denote the SAC returned
by AppFast by Λ. εF is an input parameter. By following the
two-step framework, it first computes the k-ĉore (line 2), and then
finds Λ from the k-ĉore (lines 3-14). Some variables such as Λ,
l and u are initialized (line 3). In while loop (lines 4-14), it first
finds an SAC Λ′ from O(q, r) using breadth first search (BFS). If
Λ′ does exist, it first updates Λ, since this solution has a smaller
radius. It then checks whether the gap, i.e., r − l, is smaller than α
(we will discuss how to set this gap later). If it is not larger than α,
then it returns Λ; otherwise, it updates u as the maximum distance
from q to vertices in Λ, which ensures that the feasible solution
found later has at least one less vertex than Λ. If Λ′ does not exist,

Algorithm 3 Query algorithm: AppFast
1: function APPFAST(G, q, k, εF)
2: find the vertex list X of the k-ĉore, Λ, containing q;
3: initialize l, u using Eq (1);
4: while u > l do
5: r ← l+u

2
;

6: S ← vertices in O(q, r);
7: Λ′ ← the k-ĉore containing q in G[S];
8: if Λ′ 6= ∅ then
9: Λ← Λ′;

10: if r − l ≤ α then return Λ;
11: u← max

v∈Λ
|q, v|;

12: else
13: if u− r ≤ α then return Λ;
14: l← min

v∈Λ∧v/∈S
|q, v|;

it returns Λ if the gap, i.e., u − r, is small enough; otherwise, it
updates l as the minimum distance from q to vertices in Λ, but not
in S, which ensures that the set S in the next iteration has at least
one more vertex than current S.

We illustrate AppFast using Example 3.

EXAMPLE 3. In Figure 5 (q=Q, k=2, εF=0.1), AppFast first
initializes l=2.24, u=5.10, and tries to find a feasible solution from
O(Q, r1) andO(Q, r2), where r1=3.67 and r2=2.24. It stops after
searching O(Q, r2), as r2 − l=0. Λ is the same with Φ.

LEMMA 5. In AppFast, the radius of the MCC covering Λ
has an approximation ratio of (2 + εF), if α is set as r×εF

2+εF
.

PROOF. Consider the last loop in Algorithm 3 when returning
Λ. Let the gap between the radii, which result in a feasible solution
and no solution, be α.

If Λ′ does exist (lines 8-10), the returned Λ is contained in
O(q, r). We have l ≤ δ ≤ r ≤ u and r − l ≤ α (see Figure 6(a)).
So we have r ≤ δ + α.

If Λ′ does not exist (lines 12-13), the returned Λ is contained in
O(q, u). We have l ≤ r ≤ δ ≤ u and u− r ≤ α (see Figure 6(b)).
So we have r ≤ δ + α.

Therefore, we always have r ≤ δ + α. We denote the radius of
the MCC covering Λ by rΛ. Considering Lemma 3, we have

rΛ ≤ r ≤ 2ropt + α. (2)

Eq (2) also implies that, ropt ≥ 1
2
(r − α). Then,

rΛ
ropt
≤ 2ropt+α

ropt
= 2 + α

ropt
≤ 2 + 2α

r−α . (3)

Let 2α
r−α ≤ εF , then we have rΛ

ropt
≤ 2+ εF , if α is set as r×εF

2+εF
.

Hence, Lemma 5 holds.

42 60 8

2

4

6

Q

A

D
C

B

0
x

y

Lemma 1: 0.5d0 ≤ ropt ≤ r0

Corollary 1: d0 ≥ r0

Lemma 2: 0.5r0 ≤ ropt ≤ r0, the incremental solution is 2-approximated.

Lemma 3: the optimal solution is in O(Q, 2r0).

Corollary 2: any solution in O(Q, 2r0) is a 4-approximated.

Lemma 4: in the optimal solution, at least one fixed vertex having

distance to q is in range [d0, 2r0].

Lemma 5: in the optimal solution, at least one fixed vertex having

distance to q is in range [0, d0]

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

r1

r3

r2

u

l

r

δ

≤α

Q

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

γ

δ

2γ

42 60 8

2

4

6

Q

0
x

y

γ
β

rmin

ropt

oβ

c

l

u

q
r

δ
l

u

q
r

δ

42 60 8

2

4

6

Q

A

D
C

B

0
x

y

Lemma 1: 0.5d0 ≤ ropt ≤ r0

Corollary 1: d0 ≥ r0

Lemma 2: 0.5r0 ≤ ropt ≤ r0, the incremental solution is 2-approximated.

Lemma 3: the optimal solution is in O(Q, 2r0).

Corollary 2: any solution in O(Q, 2r0) is a 4-approximated.

Lemma 4: in the optimal solution, at least one fixed vertex having

distance to q is in range [d0, 2r0].

Lemma 5: in the optimal solution, at least one fixed vertex having

distance to q is in range [0, d0]

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

r1

r3

r2

u

l

r

δ

≤α

Q

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

γ

δ

2γ

42 60 8

2

4

6

Q

0
x

y

γ
β

rmin

ropt

oβ

c

l

u

q
r

δ
l

u

q
r

δ

(a) Λ is in O(q, r) (b) Λ is in O(q, u)

Figure 6: Illustrating the proof of Lemma 5.

Remark: If εF=0, the returned community Λ is the same as Φ.

COROLLARY 3. The optimal solution Ψ is inO(q, 2rΛ), where
rΛ is the radius of the MCC containing Λ in AppFast.

714

PROOF. Since we have ropt ≤ rΛ, for any v ∈ Ψ, we have
|q, v| ≤ 2 × rΛ. Thus, all the vertices of Ψ are in O(q, 2rΛ), and
the corollary holds.

Complexity. In AppFast, the while loop needs to be executed
O(min{n, log 1

εF
}) times, since the number of vertices to be

processed in each loop is different with that of its previous loop.
Also, each loop takesO(m). Thus, the total time cost of AppFast
is O(min{mn,m log 1

εF
}) if εF>0, or O(mn) if εF=0.

4.4 A (1+εA)-Approximation Algorithm
AppInc and AppFast guarantee that, the radius of the MCC

of the returned SAC has an approximation ratio of 2 or more,
but cannot achieve even better accuracy. To tackle this issue,
we propose another algorithm, called AppAcc, which has an
approximation ratio of (1+εA), where 0<εA<1. The main idea is
based on a key observation from Lemma 3, stated by Corollary 4:

COROLLARY 4. The center point, o, of the MCC O(o, ropt)
covering Ψ is in the circle O(q, γ).

PROOF. This can be proved directly by contradiction.

Although point o is in O(q, γ), it is still not easy to locate it
exactly, since the number of its possible positions to be explored
can be infinite. Instead of locating it exactly, we try to find an
approximated “center”, which is very close to o. In specific, we
split the square containing the circle O(q, γ) into equal-sized cells,
and the size of each cell is β × β (we will explain how to set
a proper value of β later). We call the center point of each cell
an anchor point. By Corollary 4, we can conclude that o must be
in one specific cell. Then we can approximate o using the anchor
point of this cell, denoted by c, which is also its nearest anchor
point, since their distance |o, c| is at most

√
2

2
β.

EXAMPLE 4. In Figure 7(a), each small circle point in O(q, γ)
represents an anchor point. In Figure 7(b), c is the nearest anchor
point of o. It is easy to observe that |o, c| ≤

√
2

2
β.

We consider the circle O(c, rmin), where rmin is the minimum
radius such that it contains a feasible solution, which is denoted by
Γ. The value of rmin is bounded by the following lemma.

LEMMA 6. rmin ≤ ropt +
√

2
2
β.

PROOF. We prove by contradiction. Suppose that rmin > ropt

+
√

2
2
β. As mentioned before, we have |o, c| ≤

√
2

2
β. For any point

c′ in O(o, ropt), we have |o, c′| ≤ ropt. By triangle inequality,
we conclude that |c, c′| ≤ |c, o| + |o, c′| ≤ ropt+

√
2

2
β. This

contradicts that rmin is the minimum radius such that O(c, rmin)
contains a feasible solution. Hence, Lemma 6 holds.

By Lemma 6, we have rmin
ropt

≤ 1 +
√

2β
2ropt

≤ 1 +
√

2β
δ

. Thus, we
can approximate Ψ using Γ, and the approximation ratio is (1+εA),
if we let

√
2β
δ
≤ εA (0 < εA < 1).

To find O(c, rmin), the basic method is that, for each anchor
point p, we use AppFast to find the circle, which is centered at
p and contains a feasible solution, and then return the minimum

circle. However, the number of anchor points is
(

2γ
β

)2

, and each

takes O(mn) to find a feasible solution in the worst case. So this
is very time-consuming, if β (εA) is very small. To further improve
the efficiency, we develop some optimization techniques.

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

r1

r2

u

l

r

δ

≤α

Q

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

γ

δ

l

u

q
r

δ
l

u

q
r

δ

42 60 8

2

4

6

q

0
x

y

γ

β

rmin

ropt

o
β

c

β

o

c

r+

r-

f

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

r1

r2

r3

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

r1

r2

u

l

r

δ

≤α

Q

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

γ

δ

l

u

q
r

δ
l

u

q
r

δ

42 60 8

2

4

6

q

0
x

y

γ

β

rmin

ropt

o

β

c

β

o

c

r+

r-

f

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

r1

r2

r3

(a) Splitting O(q, γ) (b) rmin

Figure 7: Illustrating AppAcc.

Specifically, we assume that all the anchor points are organized
into a region quadtree [13], where the root node4 is a square,
centered at q with width 2γ. By decomposing this square into four
equal-sized quadrants, we obtain its four child nodes. The child
nodes of them are built in the same manner recursively, until the
width of the leaf node is in (β/2, β]. Note that the center of each
leaf node corresponds to an anchor point.

To find O(c, rmin), we traverse the quadtree level by level in
a top-down manner. Let rcur , initialized as γ, record the smallest
radius of an MCC containing a feasible solution. For each node, we
first obtain the center p of its square, and then use the binary search
technique introduced in AppFast to approximate the smallest
radius rp, such that O(p, rp) contains a feasible solution. During
the traversal, for each node, to check whether it can be pruned, we
propose two effective pruning criteria:
• Pruning1: Consider a node (with center p), which intersects at

the boundary of O(q, rcur). Then we have |p, q| ≤ rcur +
√

2
2
β.

Thus, if the distance from the center of this node to q is larger than
rcur +

√
2

2
β, its sub-trees can be pruned.

• Pruning2: If O(p, r) does not contain a feasible solution and
r > rcur +

√
2

2
β, then its sub-trees can be pruned.

Based on above analysis, we design AppAcc (see Algorithm 4).
εA is an input parameter. It first runs AppFast (εF=0), and
obtains the k-ĉore in O(q, 2γ) (lines 2-3), which contains Ψ by
Corollary 2. Then it initializes four variables: Γ is the target SAC,
β equals to γ, rcur is the radius of the smallest MCC covering a
feasible solution, and achList contains the center points of four
child nodes of the root node (line 4). In the while loop (lines
5-27), we consider nodes in the region quadtree level by level in
a top-down manner. Specifically, for each point p ∈ achList, we
first check whether it can be pruned using Pruning1 (line 8), and
then use binary search introduced in AppFast to find a feasible
solution (lines 12-22), and finally update rcur and Γ, if the radius of
the MCC covering the feasible solution is smaller than rcur . After
considering nodes in this level, we use Pruning2 to prune some
nodes (line 25). Note that map keeps <key, value> pairs, where
key is a center point and value denotes the radius that results in no
feasible solution. Next, we update β and collect all the child nodes
needed to be considered in the next level (lines 26-27). The loop
is executed until β is smaller than the threshold δεA√

2(2+εA)
(we will

discuss this threshold later). Finally, Γ is returned (line 28).

LEMMA 7. In AppAcc, if we set α′ ≤ 1
4
δeA and

β= δεA√
2(2+εA)

, where 0 < εA < 1, the radius of the MCC covering
Γ has an approximation ratio of (1+εA).

PROOF. Consider the binary search of an anchor point p. Let
rp be the smallest radius such that O(p, rp) contains a feasible

4To avoid ambiguity, we use word “node” for tree nodes.

715

Algorithm 4 Query algorithm: AppAcc
1: function APPACC(G, q, k, εA)
2: obtain Φ, δ and γ using AppFast;
3: S ← vertices of the k-ĉore, containing q, in O(q, 2γ);
4: Γ← Φ, β ← γ, rcur ← γ, achList← center points;
5: while β ≥ δεA√

2(2+εA)
do

6: map← ∅;
7: for each point p ∈ achList do
8: if |p, q| ≤ rcur +

√
2

2
β then //Pruning1

9: Γp ← find an SAC in O(p, rcur +
√

2
2
β);

10: if Γp 6= ∅ then
11: u← rcur +

√
2

2
β, l← δ

2
, map.put(p, l);

12: while u ≥ l do
13: r ← l+u

2
;

14: Γ′p ← find an SAC in O(p, r);
15: if Γ′p 6= ∅ then
16: Γp ← Γ′p;
17: if r − l ≤ α′ then break;
18: u← max

v∈Γq
|q, v|;

19: else
20: map.put(p, l);
21: if u− r ≤ α′ then break;
22: l← min

v∈S∧v/∈O(p,r)
|q, v|;

23: r ← radius of the MCC covering Γp;
24: if r < rcur then rcur ← r; Γ← Γp;
25: prune anchor points in map using Pruning2;
26: β ← β/2;
27: update anchor point list achList using map;
28: return Γ;

solution. From the proof of Lemma 5, we can conclude that,
r ≤ rp + α′ when the binary search stops. Then, we have

r

rp
≤ 1 +

α′

rp
≤ 1 +

α′

ropt
≤ 1 +

2α′

δ
. (4)

Let α′= 1
4
δεA. Then we have 2α′

δ
= εA

2
, and r ≤

(
1 + εA

2

)
rp.

Consider the updated rcur after the binary search for all the
anchor points. Then we have rcur ≤

(
1 + εA

2

)
rmin. Let rΓ be

the radius of the MCC covering Γ. By Lemmas 3 and 6, we have

rΓ

ropt
≤ rcur
ropt

≤ 1 +
εA
2

+
(2 + εA)

√
2β

2δ
. (5)

Let (2+εA)
√

2β
2δ

= εA
2

. Then we have rΓ
ropt

≤ 1 + εA,

if β= δεA√
2(2+εA)

. Hence, the approximation ratio of AppAcc is

(1+εA), if we set the parameters α′= 1
4
δεA and β= δεA√

2(2+εA)
.

Complexity. There are O((2γ
β

)2)=O((1
εA

)2) anchor points.
Similar as that in AppFast, the binary search for each anchor
point needs to be executed O(min{n, log 1

εA
}) times. So the total

cost of AppAcc is O(m(1
εA

)2 ×min{n, log 1
εA
}).

4.5 The Advanced Exact Algorithm
The design of previous algorithms provide us many useful

insights for developing more advanced exact algorithms. For
example, Corollary 2 states that, the optimal solution Ψ is in
O(q, 2γ). This implies that, we can first run AppInc, then only
enumerate the vertex triples for vertices in O(q, 2γ), which is a
subset of V . Similarly, we can find Ψ by Corollary 3 based on

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

r1

r2

u

l

r

δ

≤α

Q

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

γ

δ

l

u

q
r

δ
l

u

q
r

δ

42 60 8

2

4

6

q

0
x

y

γ

β

rmin

ropt

o

β

c

β

o

c

r+

r-

f

42 60 8

2

4

6

Q

A

B C

D

0
x

y

E

F
G

H

I

r1

r2

r3

Figure 8: Illustrating the annular region in Exact+.

AppFast. Although these methods could be faster than Exact,
they are still far from perfect, because the number of potential
fixed vertices in O(q, 2γ) may still be very large. In this section,
we propose a very efficient exact algorithm based on AppAcc,
called Exact+, which largely reduces the number of potential
fixed vertices, and thus improves the efficiency significantly.

Recall that, AppAcc approximates the center, o, of the MCC
covering Ψ by its nearest anchor point c, and |o, c| ≤

√
2

2
β. Also,

ropt is well approximated, i.e., rΓ
ropt
≤1 + εA, which implies that,

rΓ

1 + εA
≤ ropt ≤ rΓ, (6)

where 0 < εA < 1. So the value of ropt is in a small interval,
especially if εA is small.

Besides, for any fixed vertex, f , of the MCC of Ψ, its distance to
o (i.e., |f, o|) is exactly ropt. By triangle inequality, we have

|f, c| ≤ |f, o|+ |o, c| ≤ rΓ +

√
2

2
β, (7)

|f, c| ≥ |f, o| − |o, c| ≥ rΓ

1 + εA
−
√

2

2
β. (8)

Let us denote the rightmost items of above two inequations by r+

and r respectively. Then, we conclude that, for any fixed vertex f ,
its distance to c is in the range [r , r+]. If εA is very small, the gap
between r+ and r , i.e., r+−r =rΓ(1− 1

1+εA
)+
√

2β, is also very
small, which implies that the locations of the fixed vertices are in a
very narrow annular region. Hence, a large number of vertices out
of this annular region, which are not fixed vertices, can be pruned
safely. We illustrate this in Figure 8, in which the annular region is
the area in O(c, r+), but not in O(c, r).

Based on above analysis, we design Exact+ (Algorithm 5). It
first runs AppAcc with a small value of εA (line 2). Note that
Ψ is initialized as Γ, and S and rcur are updated by AppAcc.
Then, it collects a set, T , of anchor points that are not pruned in
the last while loop of AppAcc (line 3). Finally, an empty set F1

is initialized (line 4). For each anchor point p, it finds the potential
fixed vertices by Eqs (7) and (8), and adds them into F1 (line 5).

Next, it considers the three vertex combinations. It considers
each vertex v1 ∈ F1 as a fixed vertex of an MCC, and its farthest
fixed vertex v2 for this MCC. By Lemma 2, we have |v1, v2| ∈
[
√

3ropt, 2ropt]. So a set F2 of potential farthest fixed vertices is
collected (line 7). Next, it collects a set, F3, of the third fixed
vertices (line 9). Finally, it computes the MCC fixed by three
vertices from F1, F2 and F3 respectively, keeps the SAC with the
smallest MCC radius (lines 11-16) and returns it (line 17). Note
that r and r+ are also updated during the enumeration, .

Complexity. Exact+ consists of two phases: (1) pruning of
the fixed vertices (lines 2-5) and (2) enumeration of three vertex
combinations (lines 6-16). As discussed before, Phase (1) takes
O(m(1

εA
)2×min{n, log 1

εA
}), while Phase (2) needsO(m|F1|3).

716

Thus, the total cost of Exact+ isO(m(1
εA

)2×min{n, log 1
εA
}+

m|F1|3). We will address the effect of εA on |F1| and the
performance of Exact+ in the experiments.

Algorithm 5 Query algorithm: Exact+
1: function EXACT+(G, q, k, εA)
2: run APPACC(G, q, k, εA);
3: T ← anchor points in map of AppAcc;
4: initialize F1 ← ∅;
5: for p ∈ T do F1.add{v|r ≤ |p, v| ≤ r+ ∧ v ∈ S};
6: for v1 ∈ F1 do
7: F2 ← {v|

√
3r ≤ |v1, v| ≤ 2rcur ∧ v ∈ F1};

8: for v2 ∈ F2 do
9: F3 ← {v||v1, v| ≤ |v1, v2| ∧ v ∈ F1};

10: for v3 ∈ F3 do
11: compute the MCC mcc of {v1, v2, v3};
12: if mcc.radius < rcur then
13: R← a set of vertices in mcc;
14: if exist a k-ĉore in G[R] then
15: rcur ← mcc.radius;
16: Ψ← this k-ĉore;
17: return Ψ;

5. EXPERIMENTAL RESULTS
We describe the setup in Section 5.1. Sections 5.2 and 5.3 report

the effectiveness and efficiency results of SAC search.

5.1 Setup
Datasets. We consider four real datasets: Brightkite5, Gowalla5,

Flickr6 and Foursquare7. For all the datasets, each vertex represents
a user and each link represents the friendship between two users.
Both Brightkite dataset and Gowalla dataset contain a collection
of check-in data shared by users of Brightkite service and Gowalla
service. In particular, for Brightkite dataset, there are 4,491,143
checkins collected during the period of Apr. 2008 - Oct. 2010
on 772,783 distinct places. The Gowalla dataset contain 6,442,892
checkins collected on 1,280,969 places. In Flickr dataset, we mark
the user a location if she has taken a photo there. With respect
to Brightkite dataset, we consider the users’ locations can be both
static (Sections 5.2.1, 5.2.2 and 5.3) and dynamic (Section 5.2.3).
The static location associated with a user is the place she checks in
(or takes photos) most frequently. The Foursquare dataset [26] is
extracted from Foursqaure website, and the location of each user is
her hometown position. Users without locations are shipped.

We have also performed experiments on synthetic datasets.
We are not aware of any existing spatial graph data generators.
Therefore, we create synthetic data in the following way. First,
we use GTGraph8, a well-known graph generator, to generate a
(non-spatial) graph first. We adopt the default parameter values
of GTGraph. The degrees of the graph follow a power-law
distribution, which is often exhibited in social networks. To
generate the location of each graph vertex, we first randomly select
a vertex v and give it a random position in the [0, 1] × [0, 1]
space. Then we place v’s neighbors at random positions, whose
distances follows a normal distribution with mean µ and standard
deviation σ. We repeat this step for other vertices, starting from v’s
neighbors, until every vertex is associated with a location. We set
µ=0.09 and σ=0.16; these values are derived from the Brightkite
5http://snap.stanford.edu/data/index.html
6https://www.flickr.com/
7https://archive.org/details/201309 foursquare dataset umn
8http://www.cse.psu.edu/˜madduri/software/GTgraph/

Table 4: Datasets used in our experiments.
Type Name Vertices Edges d̂

Real

Brightkite 51,406 197,167 7.67
Gowalla 107,092 456,830 8.53
Flickr 214,698 2,096,306 19.5

Foursquare 2,127,093 8,640,352 8.12

Synthetic
Syn1 30,000 300,000 20
Syn2 400,000 4,000,000 20

Table 5: Parameter settings.
Parameter Range Default

εF (AppFast) 0.0, 0.5, 1.0, 1.5, 2.0 0.5
εA (AppAcc) 0.01, 0.05, 0.1, 0.5, 0.9 0.5

k 4, 7, 10, 13, 16 4
θ 10-6, 10-5, 10-4, 10-3, 10-2 10-4

n 20%, 40%, 60%, 80%, 100% 100%

dataset. Following these settings, we create two spatial graphs of
different sizes, namely Syn1 and Syn2.

The statistics of each dataset are summarized in Table 4, where
d̂ is the average degree. Without loss of generality, we normalize
all the locations of each dataset into the unit square [0, 1]2.

Parameters. We consider 5 parameters: εF (the parameter
of AppFast), εA (the parameter of AppAcc), k (denoting the
minimum degree), θ (the parameter of θ-SAC search), and the
percentage of vertices n. The ranges of the parameters and their
default values are shown in Table 5. The default values of εF
and εA are set as 0.5, since these values practically result in good
approximation ratios with reasonable efficiency. Note that when
varying n for scalability testing, we randomly extract subgraphs of
20%, 40%, 60%, 80% and 100% vertices of the original graph with
a default value of 100%. When varying a certain parameter, the
values for all the other parameters are set to their default values.

Queries. For each dataset, we randomly select 200 query
vertices with core numbers of 4 or more. Such a core number
constraint ensures a meaningful community (at least 4-ĉore)
containing the query vertex. In the results reported in the following,
each data point is the average result for these 200 queries. We use
the term “AppFast(ε)” (“AppAcc(ε)”) to denote the algorithm
AppFast (AppAcc) with the parameter εF=ε (εA=ε). We
implement all the algorithms in Java, and run experiments on a
machine having a quad-core Intel i7-3770 3.40GHz processor and
32GB of memory, with Ubuntu installed.

5.2 Effectiveness Evaluation
In this section, we first study the approximation ratios of

approximation algorithms, then compare SAC search with the
state-of-art methods, and finally show results on dynamic graphs.

5.2.1 Approximation Ratio
In Figure 9, we report the theoretical and actual approximation

ratios of AppFast and AppAcc on Brightkite and Gowalla
datasets. Note that if we set εF=0.0, the results of AppFast
are the same with those of AppInc, so we do not report
results of AppInc. We can see that, the actual approximation
ratios of AppFast and AppAcc are much smaller than the
theoretical approximation ratios. For example, when εF=2, the
theoretical approximation ratio of AppFast is 4.0, but its actual
approximation ratios are around 2.0 on these two datasets. Similar
results can be observed from AppAcc in Figure 9(b).

717

~

2 2.5 3 3.5 4
1

1.5

2

2.5

Theoretical approx. ratio

A
ct

ua
l a

pp
ro

x.
 r

at
io

Brightkite
Gowalla

1.01 1.05 1.1 1.5 1.9
1

1.02

1.04

1.06

1.08

1.1

Theoretical approx. ratio

A
ct

ua
l a

pp
ro

x.
 r

at
io

Brightkite
Gowalla

(a) AppFast (b) AppAcc

Figure 9: Approximation ratio.

5.2.2 Comparison with the State-of-the-Arts
In this subsection, we show that SAC search returns communities

with higher spatial cohesiveness compared with the state-of-the-art
community retrieval methods: Global [29], Local [7] and
GeoModu [4]. The first two methods are CS methods designed
for non-spatial graphs, while GeoModu is a CD method for spatial
graphs. We also compare it with θ-SAC search. We briefly
introduce these algorithms as follows (Let q be a query vertex):
• Global: it finds the k-ĉore containing q.
• Local: it expands and explores from q, until it forms a

subgraph whose minimum vertex degree is at least k.
• GeoModu: it first redefines the weight of each edge of graphG

as ei,j = 1
di,jµ

, where di,j=|vi, vj | and µ (1 or 2) is a decay factor,
and then detects the communities using modularity maximization.
Given a query vertex, we return the community which contains it.
• θ-SAC search: it first performs BFS search onG starting at

q to find a set S of vertices, which are connected with q and in the
circle O(q, θ), and then returns the k-ĉore containing q in G[S].

Both Global and Local use the minimum degree metric
for structure cohesiveness. GeoModu has two variants, i.e.,
GeoModu(1) and GeoModu(2), as the typical values of µ are
1 and 2. To measure the spatial cohesiveness of a community Gq
with MCC O(c, r), we introduce two metrics as follows:
• radius: the value of radius r.
• distPr: average pairwise distance of vertices of Gq .
Intuitively, lower values of these metrics for a community imply

that it achieves higher spatial cohesiveness. To compare these
methods, we consider both exact and approximation algorithms.
We search communities using these algorithms and compute the
average values of above metrics for these communities. We report
the results on Brightkite and Gowalla datasets in Figure 10.

(a) radius (b) distPr

Figure 10: Comparison with existing CD and CS methods.

1. CS comparison. We see that Local performs better
than Global, as it finds communities through local expansion.
The vertices of communities returned by Global and Local
spread in larger areas than those of SAC search methods. For
example, the average radii of the MCCs covering the communities
of Global and Local are respectively 50 and 20 times larger

10−6 10−5 10−4 10−3 10−2
0

20

40

60

80

100

θ

pe
rc

en
ta

ge

Brightkite
Gowalla
Flickr
Foursquare

(a) Percentage (b) Radius

Figure 11: Results of θ-SAC search.

than that of our approach. The main reason is that they overlook
the spatial locations. Note that although Gq is in the smallest
MCC, Gq may not be the subgraph with the minimum number of
vertices satisfying the minimum degree metric. In other words, a
proper subset of vertices in Gq may form a qualified community,
which has the same MCC as that of SAC search. Among the
SAC search methods, the exact algorithm Exact+ achieves better
spatial cohesiveness than approximation algorithms consistently.

2. CD comparison. Since GeoModu considers both links
and locations, the returned communities achieve better spatial
cohesiveness than Global and Local. While the average
radius and distPr values of GeoModu are larger than those
of SAC search, a non-trivial number of queries in GeoModu
return communities whose MCCs are smaller than those of SAC
(e.g., 19% and 18% of queries whose communities returned
by GeoModu(1) are in MCCs with smaller radii than those
of Exact+, in Brightkite and Gowalla datasets respectively).
However, the structure cohesiveness of communities detected by
GeoModu is weaker. For example, the corresponding average
degrees of vertices in communities returned by GeoModu(1)
and GeoModu(2) on Brightkite dataset are 2.2 and 1.1. This is
because GeoModu partitions the graph into clusters using a global
criterion, i.e., Geo-Modularity [4], which has no reference to the
query vertices. Thus, SAC search achieves higher structure and
spatial cohesiveness than GeoModu.

3. Comparison with θ-SAC search. We vary the value of θ
in θ-SAC search, and compute the percentage of queries returning
non-empty subgraphs. Figure 11(a) reports the results. Notice
that the percentage is low when θ is small. This is because many
users’ SACs are spread in large areas. Also, the percentage varies
greatly for different datasets. Thus, setting a proper value of θ is
not easy. In contrast, SAC search does require the specification
of θ, and it always returns an SAC, if there is any. For queries
returning non-empty SACs, we compute the average radius of
MCCs covering these SACs. We also compute the average radius
for MCCs of SACs found by Exact+. Figure 11(b) compares their
results. We observe that the average radius of MCCs covering
SACs found by θ-SAC search is 5 to10 times larger than that
of Exact+. This means that SAC search achieves better spatial
cohesiveness than this variant. Hence, SAC search is easier to be
used, and also achieves higher spatial cohesiveness than θ-SAC.

In addition, we have tried another approach by simply extracting
vertices within O(q, θ) as a community, in which there is no
structure cohesiveness requirement. We vary the value of θ and
compute the average degree of vertices in the communities. The
results show that, the average degree is very low. For example,
the average values on Brightkite dataset are 0.36 and 0.39, when
θ is 10-6 and 10-5 respectively. This implies that the community
may not be a connected subgraph. Thus, only using locations is
insufficient for identifying communities. In contrast, SAC search
always guarantees that each vertex in an SAC has a minimum
degree of k or more.

718

4 7 10 13 16

10−1

100

101

102

k

tim
e

(s
)

AppInc
AppFast(0.0)
AppFast(0.5)
AppAcc(0.5)

4 7 10 13 16

100

102

k

tim
e

(s
)

AppInc
AppFast(0.0)
AppFast(0.5)
AppAcc(0.5)

4 7 10 13 16
100

101

102

103

k

tim
e

(s
)

AppInc
AppFast(0.0)
AppFast(0.5)
AppAcc(0.5)

4 7 10 13 16

101

102

103

k

tim
e

(s
)

AppInc
AppFast(0.0)
AppFast(0.5)
AppAcc(0.5)

4 7 10 13 16

101

102

103

k

tim
e

(s
)

AppInc
AppFast(0.0)
AppFast(0.5)
AppAcc(0.5)

(a) Brightkite (approx.) (b) Syn1 (approx.) (c) Flickr (approx.) (d) Foursquare (approx.) (e) Syn2 (approx.)

4 7 10 13 16

101

102

103

104

105

k

tim
e

(s
)

Exact
Exact+

4 7 10 13 16

101

102

103

104

105

k

tim
e

(s
)

Exact
Exact+

4 7 10 13 16

102

103

104

105

k

tim
e

(s
)

Exact
Exact+

4 7 10 13 16
101

102

103

104

105

k

tim
e

(s
)

Exact
Exact+

4 7 10 13 16
101

102

103

104

105

k

tim
e

(s
)

Exact
Exact+

(f) Brightkite (exact) (g) Syn1 (exact) (h) Flickr (exact) (i) Foursquare (exact) (j) Syn2 (exact)

20% 40% 60% 80% 100%

10−2

10−1

100

percentage

tim
e

(s
)

AppInc
AppFast(0.0)
AppFast(0.5)
AppAcc(0.5)

20% 40% 60% 80% 100%

10−2

100

102

percentage

tim
e

(s
)

AppInc
AppFast(0.0)
AppFast(0.5)
AppAcc(0.5)

20% 40% 60% 80% 100%

100

102

percentage

tim
e

(s
)

AppInc
AppFast(0.0)
AppFast(0.5)
AppAcc(0.5)

20% 40% 60% 80% 100%

100

101

102

103

percentage

tim
e

(s
)

AppInc
AppFast(0.0)

AppFast(0.5)
AppAcc(0.5)

20% 40% 60% 80% 100%
10−2

100

102

percentage

tim
e

(s
)

AppInc
AppFast(0.0)

AppFast(0.5)
AppAcc(0.5)

(k) Brightkite (scalability) (l) Syn1 (scalability) (m) Flickr (scalability) (n) Foursquare (scalability) (o) Syn2 (scalability)

Figure 12: Efficiency evaluation.

5.2.3 Adaptability to Location Changes
We now study the adaptability of location changes of SAC

search. We focus on “dynamic” spatial graphs, where vertices’
locations change frequently. We consider Brightkite dataset, and
assume the link relationships do not change. We first sort all the
checkin records in chronological order. Then, we divide them into
two groupsR1 andR2, whereR1 contains records collected before
2010 and R2 contains the remaining records. Finally, we compute
the total travel distance of each user, by adding up the distances
between each consecutive pair of checkins, and select a set Q of
100 query users, who travel the longest and have at least 20 friends.

To evaluate the adaptability of location changes for SAC search,
we first go through checkin records in R1 and update users’
locations according to their latest checkin timestamps. Then, for
each user q ∈ Q, we do the same operation for records inR2, and if
the record was generated by q, we search her SAC using Exact+.
Finally, we obtain a list of SACs, Lq={C1, C2, · · · , Cl}, where
Ci(1≤i≤l) is an SAC found at the timestamp of the i-th checkin
record, and l is the total number of q’s check-in records.

To measure the overlap of member sets and spatial areas between
two communities Ci and Cj , we define two metrics: community
jaccard similarity (CJS) and community area overlapping (CAO),
based on the classical Jaccard similarity.

CJS(Ci, Cj) =
V (Ci) ∩ V (Cj)

V (Ci) ∪ V (Cj)
, (9)

CAO(Ci, Cj) =
A(Ci) ∩A(Cj)

A(Ci) ∪A(Cj)
, (10)

where V (Ci) is the member set of Ci and A(Ci) is the area of the
MCC covering Ci. Notice that CJS(Ci, Cj) and CAO(Ci, Cj)
range from 0 to 1. A smaller value of CJS (CAO) implies lower
overlapping of community member sets (spatial areas).

0.25 0.5 1 3 5 7 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1

η (day)

A
ve

ra
ge

 C
JS

0.25 0.5 1 3 5 7 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1

η (day)

A
ve

ra
ge

 C
A

O
(a) CJS (b) CAO

Figure 13: Effectiveness on dynamic spatial graph.

To show how the values of CJS and CAO vary with time, we
select communities from Lq , where the time gap between each
pair of communities is at least η, and compute their CJS and CAO
values. We report their average results in Figure 13, where η varies
from 0.25 day to 15 days. From Figure 13(a), we can observe that,
the CJS decreases as the time threshold increases. For example,
after 6 hours, the CJS decreases to 75%. In Figure 13(b), similar
results can be observed for CAO. In addition, we plot the SACs of
two users in Figure 2. Thus, these results well confirm that, SAC
search has high adaptability to location changes.

5.3 Efficiency Evaluation
1. Effect of k for approximation algorithms. Figures 12(a)-(e)

report the results. We skip the results on Gowalla, due to the
space limitation. We can see that AppFast runs consistently faster
than AppInc and AppAcc. For example, for the largest dataset
Foursquare, AppFast(0.0) is at least two orders of magnitude
faster than AppInc, although they return the same SACs.
AppFast(0.0) is 2 to 5 times faster than AppAcc(0.5). This
is because AppFast has a lower time complexity. In addition, the
running time of AppFast decreases as the value of k increases.
This is because O(q, δ) becomes larger as k increases, and finding
a larger O(q, δ) tends to need less binary search.

719

The running time of AppInc increases clearly as the value of k
grows. The reason is that, for a larger value of k, the corresponding
O(q, δ) is also larger. As it finds O(q, δ) starting from the query
vertex q incrementally, a larger value of k results in a higher cost.
AppAcc(0.5) is slower than AppFast. This is because its

first step is to run AppFast and it needs extra effort to find smaller
MCCs. Also, its time cost tends to be stable. As discussed before,
the number of anchor points is mainly affected by εA. Since εA
is always 0.5 for different k, the numbers of anchor points are the
same, and thus the running time remains stable.

2. Effect of k for exact algorithms. Figure 14(a) shows that the
efficiency of Exact+ is not very sensitive to εA on all real datasets
except Foursquare. Figure 14(b) shows |F1| increases with εA; that
is, fewer vertices are pruned as εA grows. Recall in Sec. 4.5 that
Exact+ is composed of two phases. When εA is small, the cost
of Phase (1) dominates the overall cost; as εA increases, the cost of
Phase (2) grows. Thus, there is a local minimum in Figure 14(a).
In practice, a sensitivity test can be done to choose εA.

10
−6

10
−5

10
−4

10
−3

0

1000

2000

3000

4000

tim
e(

s)

ε
A

Brightkite
Gowalla
Flickr
Foursquare

10
−6

10
−5

10
−4

10
−3

0

10

20

30

40

50

th
e

si
ze

 o
f s

et
 F

1

ε
A

Brightkite
Gowalla
Flickr
Foursquare

(a) Effect of εA on efficiency (b) Effect of εA on |F1|
Figure 14: Effect of εA on the efficiency of Exact+.

Figures 12(f)-(j) show the results of exact algorithms (εA=10-4).
We skip the results of Exact, if a single query takes more than 10
hours. We can see that, Exact performs extremely slow, even on
the smallest dataset. This because it adopts an exhaustive search to
find Ψ, which enumerates all the three vertex combinations. Hence,
it is really worth the effort to study more efficient algorithms.
Exact+ is at least four orders of magnitude faster than Exact.

This is because, it uses AppAcc to find narrow annular regions,
in which fixed vertices are supposed to be contained, and thus
the number of fixed vertices needed to be enumerated is reduced
significantly. The performance of Exact+ either slightly increases
or decreases as the value of k increases. This is because, after
pruning with the annular regions, the numbers of fixed vertices
left may be different, but in general larger datasets have more
fixed vertices, and thus more time cost is needed. In addition,
since Exact+ runs AppAcc in the first step, it is slower than the
approximation algorithms, but it takes reasonable time, i.e., few
seconds, on moderate-size graphs like Brightkite and Syn1.

3. Scalability. We vary the percentage of vertices in all
the datasets to study the scalability of approximation algorithms.
The results are reported in Figures 12(k)-(o). We can see that,
AppInc, AppFast and AppAcc generally scale well with n.
Their performance trends are similar with those discussed before.
In addition, AppFast(0.0)scales slightly better than AppInc.

6. CONCLUSIONS
In this paper, we study online SAC search algorithms. We

propose two exact algorithms, and three efficient approximation
algorithms. Our experiments show that SAC search achieves higher
effectiveness than the state-of-the-art CD and CS algorithms. In
the future, we will examine other spatial cohesiveness measures
(e.g., pair-wise vertex distances). We will study how to support
batch processing for SAC search. We will also develop a
system prototype and collect user statistics, to perform qualitative
comparison among communities generated by different solutions.

Acknowledgments
Reynold Cheng, Yixiang Fang, Xiaodong Li, Siqiang Luo, and Jiafeng
Hu were supported by the Research Grants Council of HK (Project HKU
17205115 and 17229116) and HKU (Projects 102009508 and 104004129).
We would like to thank Dr. Mauro Sozio for his insightful comments.

7. REFERENCES
[1] N. Armenatzoglou et al. A general framework for geo-social query

processing. In PVLDB, volume 6, pages 913–924, 2013.
[2] M. Barthélemy. Spatial networks. Physics Reports, 499(1):1–101,

2011.
[3] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores

decomposition of networks. arXiv, 2003.
[4] Y. Chen et al. Finding community structure in spatially constrained

complex networks. IJGIS, 29(6):889–911, 2015.
[5] Y. Chon, N. D. Lane, F. Li, H. Cha, and F. Zhao. Automatically

characterizing places with opportunistic crowdsensing using
smartphones. In UbiComp, pages 481–490, 2012.

[6] W. Cui et al. Online search of overlapping communities. In
SIGMOD, pages 277–288, 2013.

[7] W. Cui et al. Local search of communities in large graphs. In
SIGMOD, pages 991–1002, 2014.

[8] D. J. Elzinga and D. W. Hearn. The minimum covering sphere
problem. Management science, 19(1):96–104, 1972.

[9] J. Elzinga and D. W. Hearn. Geometrical solutions for some minimax
location problems. Transportation Science, 6(4):379–394, 1972.

[10] P. Expert et al. Uncovering space-independent communities in spatial
networks. PNAS, 108(19):7663–7668, 2011.

[11] Y. Fang et al. Effective community search for large attributed graphs.
In PVLDB, pages 1233–1244, 2016.

[12] Y. Fang et al. Scalable algorithms for nearest-neighbor joins on big
trajectory data. TKDE, 28(3):785–800, 2016.

[13] R. A. Finkel and J. L. Bentley. Quad trees: a data structure for
retrieval on composite keys. Acta informatica, 4(1):1–9, 1974.

[14] S. Fortunato. Community detection in graphs. Physics Reports,
486(3):75–174, 2010.

[15] M. Girvan et al. Community structure in social and biological
networks. PNAS, 99(12):7821–7826, 2002.

[16] D. Guo. Regionalization with dynamically constrained agglomerative
clustering and partitioning (redcap). IJGIS, 22(7):801–823, 2008.

[17] T. Guo et al. Efficient algorithms for answering the m-closest
keywords query. In SIGMOD, pages 405–418. ACM, 2015.

[18] J. Hu et al. Querying minimal steiner maximum-connected subgraphs
in large graphs. In CIKM, pages 1241–1250. ACM, 2016.

[19] X. Huang et al. Approximate closest community search in networks.
In PVLDB, pages 276–287, 2015.

[20] A. Lancichinetti et al. Limits of modularity maximization in
community detection. Phy. Rev. E, 84(6):066122, 2011.

[21] R.-H. Li et al. Influential community search in large networks. In
PVLDB, volume 8, pages 509–520, 2015.

[22] K. M. MacQueen et al. What is community? an evidence-based
definition for participatory public health. AJPH, 91(12):1929–1938,
2001.

[23] P. Manchanda et al. Social dollars: the economic impact of customer
participation in a firm-sponsored online customer community.
Marketing Science, 34(3):367–387, 2015.

[24] N. Megiddo. Linear-time algorithms for linear programming in r3
and related problems. In FOCS, pages 329–338, 1982.

[25] M. Newman et al. Finding and evaluating community structure in
networks. Physical review E, 69(2):026–113, 2004.

[26] M. Sarwat et al. Lars*: a scalable and efficient location-aware
recommender system. TKDE, 26(6):1384–1399, 2014.

[27] J. Scott. Social network analysis. Sage, 2012.
[28] S. B. Seidman. Network structure and minimum degree. Social

networks, 5(3):269–287, 1983.
[29] M. Sozio and A. Gionis. The community-search problem and how to

plan a successful cocktail party. In KDD, pages 939–948, 2010.
[30] W. Zhang, J. Wang, and W. Feng. Combining latent factor model

with location features for event-based group recommendation. In
KDD, pages 910–918, 2013.

720

	Introduction
	Related Work
	Problem Definition
	SAC Search Algorithms
	The Basic Exact Algorithm
	A 2-Approximation Algorithm
	A (2+F)-Approximation Algorithm
	A (1+A)-Approximation Algorithm
	The Advanced Exact Algorithm

	Experimental Results
	Setup
	Effectiveness Evaluation
	Approximation Ratio
	Comparison with the State-of-the-Arts
	Adaptability to Location Changes

	Efficiency Evaluation

	Conclusions
	References

