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Exemplar-Based Image and Video Stylization Using
Fully Convolutional Semantic Features

Feida Zhu, Student Member, IEEE, Zhicheng Yan, Member, IEEE, Jiajun Bu, Member, IEEE,
and Yizhou Yu, Senior Member, IEEE

Abstract—Color and tone stylization in images and videos
strives to enhance unique themes with artistic color and tone ad-
justments. It has a broad range of applications from professional
image postprocessing to photo sharing over social networks.
Mainstream photo enhancement softwares, such as Adobe Light-
room and Instagram, provide users with predefined styles, which
are often hand-crafted through a trial-and-error process. Such
photo adjustment tools lack a semantic understanding of image
contents and the resulting global color transform limits the range
of artistic styles it can represent. On the other hand, stylistic
enhancement needs to apply distinct adjustments to various
semantic regions. Such an ability enables a broader range of
visual styles. In this paper, we first propose a novel deep learning
architecture for exemplar-based image stylization, which learns
local enhancement styles from image pairs. Our deep learning
architecture consists of fully convolutional networks (FCNs) for
automatic semantics-aware feature extraction and fully connected
neural layers for adjustment prediction. Image stylization can be
efficiently accomplished with a single forward pass through our
deep network. To extend our deep network from image stylization
to video stylization, we exploit temporal superpixels (TSPs) to
facilitate the transfer of artistic styles from image exemplars to
videos. Experiments on a number of datasets for image stylization
as well as a diverse set of video clips demonstrate the effectiveness
of our deep learning architecture.

Index Terms—Image Stylization, Fully Convolutional Net-
works, Color Transform

I. INTRODUCTION

Stylistic enhancement adjusts an image or video for en-
hancing artistic styles that convey unique themes. Unlike
conventional image enhancement focusing on fixing photo-
graphic artifacts (under/over exposure, insufficient contrast,
etc.), stylistic enhancement involves dramatic color and tone
adjustments to achieve distinctive visual effects. For exam-
ple, the X-PRO II filter from mobile photo App Instagram
expresses a wistful mood by simulating the cross processing
procedure of photographic films. Professional image editing
software (such as Adobe Lightroom) and social mobile Apps
(such as Instagram) provide users with predefined styles,
which are often hand-crafted through a trial-and-error process.

Conventional automatic photo adjustment has difficulty in
representing complex color transforms between images before
and after adjustment. Most of them merely model global
color transforms without considering local semantic contexts.
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Although more sophisticated adjustments introduce spatially
varying effects according to local image statistics, they still
lack a semantic understanding of image contents. On the
contrary, professional photographers often manually enhance
images in a semantics-aware manner. For instance, when
enhancing photos to create a nostalgic theme, photographers
might apply more exaggerated adjustments to a photo of
Broadway taken in year 1950 than a photo of Burj Khalifa,
which is the tallest skyscraper built in year 2010, as the former
is more fitting with the theme. At a local scale, they employ
selection tools to isolate semantic regions (faces, buildings,
etc.), which are enhanced with distinct sets of adjustments.
For instance, there may exist a demand to apply exaggerated
adjustments to foreground objects to help them stand out. The
ability of applying distinct adjustments to semantic regions
enables a broader range of visual styles.

As stylistic adjustments interact with image semantics and
contexts in a complicated manner, it is extremely challenging
to manually define the relationships between them. To auto-
matically learn stylistic enhancement from a small set of image
exemplars, in this paper, we propose a novel deep learning
architecture. Unlike existing work that integrates hand-crafted
features with a small-scale multilayer neural network [1],
our solution is a large-scale deep network. It consists of
fully convolutional networks (FCNs) for automatic feature
extraction and fully connected neural layers for adjustment
prediction. Recently, fully convolutional networks [2]–[4] have
proven to be efficient and powerful deep learning architec-
tures for image processing and visual understanding tasks,
such as semantic image segmentation, contour detection and
salient object detection, that need to generate high-resolution
outputs. In our deep network, feature maps with sufficiently
large receptive fields are computed to model contexts. We
further employ fully connected neural layers, which predict
color transforms according to contexts and pixel features. We
seamlessly integrate the FCNs with fully connected layers, and
an input image can be enhanced with a single forward pass in
our deep network.

Furthermore, our deep learning model trained on image ex-
emplars can be readily deployed to enhance videos with artistic
styles. Compared with image stylization, video stylization
faces extra challenges. Simply enhancing a video in a frame-
by-frame manner not only results in an inefficient solution, but
also cannot preserve the temporal coherence. Instead, we adopt
temporal superpixels (TSPs) [5], which are spatiotemporal
primitive regions consistently tracking image regions and
object parts across frames. In our video stylization pipeline,
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(a) Input image (b) Ground truth (c) Our result

Fig. 1. An example of learning semantics-aware photo adjustment styles. Left: Input image. Middle: Manually enhanced by photographer. Distinct adjustments
are applied to different semantic regions. Right: Automatically enhanced by our deep learning model trained from image exemplars

a color transform is predicted for each TSP and applied to
all pixels within the same TSP. To accelerate computation,
features are only extracted for a minimum number of video
frames intersecting all TSPs.

In summary, this paper has the following contributions.
• We propose a novel deep learning architecture for stylistic
image enhancement. It consists of fully convolutional networks
and fully connected neural layers. Our deep network is capable
of learning distinct enhancement styles from a small set of
training exemplars. Enhancing a novel image only requires a
single forward pass through our network.
• Fully convolutional networks in our architecture extracts
global features and contextual features. Our novel contextual
features have two parts. The first part is a semantics-aware
feature extracted from deep layers of a fully convolutional
network; the second part consists of a set of color histograms
over a small spatial grid.
• We demonstrate that deep neural networks trained with
image exemplars can be used to enhance videos as well. We
segment a video into temporal superpixels, and apply both
temporally coherent and spatially smooth adjustments to them.
A greedy frame selection algorithm is developed to reduce the
computational cost of feature extraction.

II. RELATED WORK

Image Enhancement. On the basis of whether example data is
used, image enhancement approaches can be broadly classified
into two categories, hand-crafted approaches and data-driven
approaches. Hand-crafted filters for image enhancement are
commonly seen in image processing softwares and photo man-
agement Apps, such as Adobe Lightroom, Google Photos and
Instagram. They support a range of adjustments, from exposure
correction, contrast enhancement to artistic retouching. Mean-
while, researchers have made an enormous amount of effort
to develop fully automatic methods for tone adjustment [6],
[7], color management [8], [9], detail manipulation [10]–[12]
and image smoothing [13]–[15]. On the other hand, interactive
enhancement techniques allow users to perform adjustments
at sparse locations, and propagate them to the full image
domain [16], [17] while preserving image structures.

In contrast to hand-crafted approaches, which merely
achieve a predefined set of effects, data-driven approaches are
capable of learning new effects from examples, and thus offer a

more flexible set of adjustments. They replace time-consuming
manual design with automatic model learning [18]–[20]. By-
chkovsky et al. [21] predict global tonal adjustments using a
Gaussian process regression model built from a large dataset
of images. Their regression model only extracts image global
features and does not accommodate semantics-aware local
adjustments. Kang et al. [22] introduce user preference in
image global enhancement, and retouch a novel image by
finding most similar examples in a database and transferring
their tone and color adjustments. Joshi et al. [23] retouch
imperfect personal photos by leveraging existing high-quality
photos of the same person. Lee et al. [24] develop an unsu-
pervised technique for learning content-specific style rankings
and transfers highly ranked styles from exemplars to an input
photo. However, their styles are still limited to global color
and tone transforms. Wang et al. [25] approximate complex
spatially varying tone and color adjustments with piecewise
polynomial functions, which rely on low-level image statistics
only and are not aware of image semantics. In contrast, our
model applies adjustments to local semantic regions using
features extracted with a deep convolutional neural network
pretrained on thousands of semantic categories. Shih et al. [26]
synthesize images associated with different times of day by
learning locally affine models after locating a matching video
within a time-lapse video database. Gatys et al. [27] perform
image style transfer using convolutional neural networks. A
new image is synthesized by matching the coarse structures
of a content image and the texture features of a style image.

The work closely related to ours is presented in [1], where
local tone and color adjustments are predicted using a combi-
nation of image global statistics, contextual semantic features
and pixelwise color and spatial features. They rely on exist-
ing computationally expensive scene parsing [28] and object
detection [29] tools to explicitly generate a semantic label
map, from which contextual features are formed by multiscale
spatial pooling. These scene parsing and object detection tools
have limited accuracy and robustness. Our method in this paper
does not rely on explicit scene labeling, instead, perform scene
understanding implicitly by extracting contextual semantic
features using a fully convolutional network, which offers
higher accuracy and improved robustness, and also runs faster
than traditional scene understanding tools.
Video Enhancement. Traditional professional video editing
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Fig. 2. The architecture of our deep neural network for stylistic image enhancement.

softwares (Adobe After Effects, Nuke, etc.) offer a suite of
predefined operations with tunable parameters that apply com-
mon global adjustments (exposure/color correction, white bal-
ancing, sharpening, denoising, etc). Local adjustments within
specific spatiotemporal regions are usually accomplished with
masking layers created with intensive user interaction. Both
parameter tuning and masking layer creation are labor inten-
sive processes.

Example-based approaches have been proposed to automat-
ically transfer adjustments from exemplars to novel videos,
and alleviate the needs of user interaction. Bonneel et al. [30]
propose to transfer the color palette of an example video to a
novel input video to achieve color grading. However, they rely
on users to provide foreground-background segmentation for
estimating separate color transforms. In contrast, our approach
is fully automatic and implicitly distinguishes semantic regions
from each other by using deep features from convolutional
neural networks. Xue et al. [31] study the relationships
between film tags (director, emotion, etc.) and color styles
for movie color grading. Their method is solely dependent
on low-level image statistics (luminance, hue and saturation),
and is not able to support semantics-aware local adjustments.
Ruder et al. [32] extend [27] to video stylization by proposing
a temporal loss term between frames to maintain temporal
coherence.

III. OVERVIEW

Given a set of exemplar image pairs, each representing a
photo before and after pixel-level color and tone adjustments
following a particular style, we wish to learn a computational
model that can automatically adjust a novel input photo in

the same style. We still cast this learning task as a regression
problem as in [1]. For completeness, let us first review their
problem definition and then present our new deep learning
based architecture and solution.

We seek a color transformation function φ such that, for
every pixel pi in the exemplar images, the color trans-
form returned by φ is φ(θ, xi), which maps the pixel color
at pi before adjustment, ci = [Li ai bi]

T (CIELab color
space), to its corresponding pixel color yi after adjustment.
Here θ denotes the model parameters and xi the feature
vector at pixel pi. The quadratic color basis V (ci) =
[L2
i a

2
i b

2
i Liai Libi aibi Li ai bi 1]

T is used to absorb high-
frequency pixelwise color variations. The product of the color
transform φ(θ, xi) and the color basis is a prediction of the
enhanced color. Since our color space has 3 channels and the
quadratic color basis is a 10-dimensional vector, φ(θ, xi) is in
fact a 3x10 matrix. The model parameters of θ are learnt by
minimizing the following objective function, which measures
the squared differences between the predicted and groundtruth
enhanced colors.

argmin
θ

∑
i

||φ(θ, xi)V (ci)− yi||2 (1)

Since each color transform is a matrix with 30 elements,
solving a distinct color transform at every pixel is an under-
constrained problem. To sufficiently constrain every color
transform, we group pixels in an image into a predefined
number of superpixels, {sv}Nsv=1, and let all pixels within a
superpixel sv share a single color transform Fv = φ(θ, xv).
Thus, the above objective function is revised as follows.

argmin
θ

∑
v

∑
j∈sv

||φ(θ, xv)V (cj)− yj ||2. (2)
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Refer to [1] for more details.

A. Photo Stylization Using FCNs
In this paper, we model the entire process to produce an

enhanced image using deep neural networks. The complete
architecture of our deep network is shown in Figure 2. Our
deep network makes use of fully convolutional networks to
extract global and contextual semantic features for every su-
perpixel in the input image. The global feature of a superpixel
is the globally pooled deep CNN feature. And the pixel feature
is simply the pixel color at the centroid of the superpixel.
As shown in Figure 3, the contextual feature of a superpixel
consists of three components. The first two components are
deep CNN features extracted over two differently sized recep-
tive fields centered at the centroid of the superpixel. The third
component is a set of concatenated color histograms computed
over a 3x3 grid also centered at the centroid of the superpixel.
Let us now explain the architecture of our deep network and
how we compute these features in greater details.

An input image is fed into a fully convolutional network
(FCN). Deep features extracted using this FCN pass through
a global pooling layer and become a single global feature
vector xg . We replicate xg at the centroids of all superpixels
in a replication layer to obtain per-superpixel global features
{xgv}v (Section IV-A). We also upsample the input image,
and feed the original and upsampled images into two FCNs
to extract two feature maps. The receptive fields of these
two feature maps respectively have the same size as the two
(blue) windows in Figure 3. These feature maps represent
semantic contexts at two different scales, and are sampled
at the centroids of superpixels in a sampling layer to obtain
contextual semantic features {xs1v }v and {xs2v }v (Section
IV-B). We compute contextual color histogram features {xhv}v
over two-scale pooling regions (red grid in Figure 3) in a color
histogram layer (Section IV-B). The global feature, contextual
semantic features, contextual color histogram feature as well
as the pixel feature for every superpixel are concatenated and
passed through two fully connected neural layers to produce
the set of per-superpixel color transforms {φ(θ, xv)}v . Each of
these color transforms is applied to the per-pixel color basis
vectors {V (ci)}i in the same superpixel in an enhancement
layer to produce the final enhanced image.
Global pooling layer. Given an incoming feature map {fx,y,c}
of size H ×W ×C, a global pooling layer performs average
pooling over the full spatial domain to compute a global
feature vector xg =

∑
x

∑
y fx,y,c

H×W .
Replication layer. This layer replicates the input feature vector
xg with C dimensions at the centroid of every superpixel and
produces a feature map {xgv} of size Ns × C.
Sampling layer. Given a feature map of size H ×W × C,
this layer samples a feature vector at the centroid of every
superpixel and assembles them into a feature map of size Ns×
C.
Color histogram layer. This layer computes a contextual color
histogram feature with D dimensions at the centroid of every
superpixel. These color histogram features are assembled into
a feature map of size Ns×D. The details of contextual color
histogram computation are elaborated in Section IV-B.

Fig. 3. Contextual feature descriptors. There are both semantic features
and color histogram features in our contextual feature description. Two-scale
contextual semantic features are extracted from the two large blue windows
using a fully convolution network while color histogram features are extracted
from 9+1=10 pooling regions over a 21× 21 window.

Enhancement layer. This layer predicts the enhanced colors
at all pixels within every superpixel sv . For each pixel pj in sv ,
if the original color at pj is cj , the enhanced color is computed
as the product of the predicted color transform φ(θ, xv) and
the quadratic color basis vector V (cj).
Discussion. Inspired by the design of feature descriptors in
[1], we use the combination of the global feature, contextual
features and the pixel feature to predict the color transform.
However, there exist significant differences between our fea-
tures and those in [1]. While various types of low-level
image statistics (e.g. intensity distritbuion, scene brightness,
equalization curves) are used as image global features in
[1], our global feature is computed with a global pooling
layer which spatially averages deep features from the last
convolutional layer of a fully convolutional network. The
resulting global feature is shown to be discriminative with
respect to the semantics of image contents (e.g. an indoor
portrait vs. an outdoor landscape) [33]. We use t-SNE [34]
to compute a two-dimensional embedding of global features.
This embedding arranges images with similar global features
close to each other in a plane. A visualization of the resulting
spatial layout is shown in Figure 4. To form a contextual
feature descriptor for representing the local surrounding of a
superpixel, Yan et al. [1] rely on a traditional scene parser [28]
to label background image regions, and a set of cascaded
object detectors [29] to detect and classify foreground objects
into a small set of predefined categories. By merging scene
parsing results and object detections into a semantic label
map, they compute label histograms using a multiscale spatial
pooling scheme. However, both the scene parser and the object
detectors they use have been substantially outperformed by
recent deep CNN models [2], [3], [35], [36]. Furthermore,
in contrast to the continuous deep CNN features used in our
contextual features, their category-oriented discrete label map
is more prone to quantization errors, which can lead to severe
artifacts in the final results.

Moreover, compared to our fully convolutional network
with an efficient GPU implementation, the scene parser and
object detectors they use are at least one order of magnitude
slower, and cannot be seamlessly integrated with their multi-
layer Perceptron network. In contrast, our entire deep network
performs photo stylization in an end-to-end manner without
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Fig. 4. Visualization of global feature where images are displayed exactly
at their embedded location.

any external dependency.

B. Video Stylization

To make our deep network trained on image exemplars
perform video stylization, we choose to represent the video
with temporal superpixels (TSPs) [5] (Section VI-A). TSPs
pay particular attention to the temporal dimension, and explic-
itly model the motion flow between frames in a probabilistic
generative framework. As a result, they can track image
regions and object parts over a period of time.

To exploit the tracking ability of TSPs in maintaining
the temporal coherence in the enhanced video, we associate
each TSP with a single color transform (Section VI-B). To
reuse our trained deep network for predicting per-TSP color
transforms, we can project a TSP onto video frames to obtain
a sequence of temporally adjacent superpixels. As described
in Section III-A, we could predict color transforms associated
with those superpixels and aggregate them to obtain the per-
TSP color transform. Since each TSP only needs one color
transform, it is not necessary to predict a color transform for
every projected superpixel. To minimize the number of frames
used for feature extraction, we propose a greedy algorithm to
choose a small set of representative frames. In Section VII, we
empirically demonstrate that this technique clearly reduces the
computational cost without compromising the visual quality.

IV. FEATURE DESCRIPTION

An image is decomposed into a set of superpixels with the
graph-based segmentation algorithm in [37], and we seek to
predict a single color transform φ(θ, xv) for every superpixel
sv using the feature vector xv described in this section. This
feature vector consists of three components, namely the global
feature, the contextual feature and the pixel feature.

A. Global Features

The overall image content affects how professional photog-
raphers adjust the image. We employ a fully convolutional

network to extract image global features. FCN is introduced
in [2] for semantic image segmentation. It can be set up
by transforming a convolutional neural network (CNN). The
CNN can be pretrained on a large-scale dataset for image
classification, such as ImageNet [38], to learn discriminative
feature representations, which are generically useful for a set
of related tasks [39]–[41]. We take the VGG-16 network [42]
pretrained on ImageNet images from 1000 object categories.
This network consists of 5 groups of convolutional layers
(conv1-conv5), 5 pooling layers (pool1-pool5) and 2 fully
connected layers (fc6 and fc7). We replace layers fc6 and fc7
with new convolutional layers conv6 and conv7 while kernel
parameters in conv6 and conv7 are copied from fc6 and fc7,
respectively. An input image of size H×W×3 is sent into this
FCN and a feature map of size Hg ×W g × 4096 is extracted
from the deepest layer conv7 which has a sufficiently large
receptive field of size 224 × 224. The spatial dimensions of
the feature map is reduced by a factor of 32 due to the 5
pooling layers. Thus Hg = H

32 , and W g = W
32 . We perform

global average pooling to obtain a 4096D global feature,
whose dimensionality is further reduced to 200 using PCA
to prevent overfitting during the network training stage. The
resulting 200D feature xgv is replicated at the centroids of all
superpixels.

B. Contextual Features

As photographers apply spatially varying adjustments to
various regions in a photo according to the local contents
and their appearances in these regions, we introduce semantic
features over two different scales and color histogram features
to differentiate among local contexts.
Semantic Features. Apart from the FCN taking the input
image in its original size to extract the global feature, two more
FCNs with identical weights are used to extract contextual
semantic features. On the basis of the FCN used for global
feature extraction, we make two crucial modifications to the
two FCNs used here. First, we reduce the stride of pooling
kernels in layers pool4 and pool5 from 2 to 1, and thus the
spatial resolution of feature maps is not reduced across these
layers. As a result, the overall spatial resolution is merely
reduced by a factor of 8. Feature maps with high spatial
resolutions have been shown to be vital in attaining superior
performance in image processing tasks [2], [43]. Changing
the kernel stride at a pooling layer alone makes the following
convolutional layer have a different receptive field and extract
meaningless features. We use dilated convolution [44] to
increase the input stride of feature maps for layers conv5 and
conv6 by factors of 2 and 4 respectively to compensate the
change of pooling kernels in pool4 and pool5 (Figure 5).
We further fine-tune this transformed VGG16 network on
the Places2 scene classification dataset [45], which makes
deep features produced by conv7 more discriminative across
different semantic regions.

Second, besides extracting semantic features at the original
image resolution, we also upsample the input image by a
factor of 2 and feed the upsampled image into one of the
aforementioned FCNs to extract features from the conv7 layer,
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3 x	3	conv,	
dilation	1,
stride	1,	
padding	1

2	x	2	max	pooling,	
stride	2

3 x	3	conv,	
dilation	2,
stride	1,	
padding	1

2	x	2	max	pooling,	
stride	1

Fig. 5. Dilated convolution. Top: The spatial resolution of feature maps
is reduced by half after a max-pooling operation with stride 2, and the
subsequent 3 × 3 convolution is not dilated (i.e. dilation = 1). Bottom: The
stride of max-pooling is reduced to 1. The spatial resolution is preserved and
the convolution is dilated to have input stride 2 (i.e. dilation = 2).

the size of whose receptive field is reduced from 224×224 to
112× 112. This two-scale scheme is better suited for context
modeling. To ensure meaningful features are extracted at
image boundaries, we apply 112-pixel wide reflection padding
to the upsampled images. Finally, if an input image of size
Hu×Wu×3 is sent into any of these modified FCNs, a feature
map of size Hu

8 ×
Wu

8 × 4096 is extracted from layer conv7.
To prevent overfitting, the 4096D feature at each pixel of this
feature map is reduced to a 800D feature using PCA. Thus,
at the centroid of every superpixel, there are two concatenated
contextual features, which are respectively sampled from the
nearest pixels in layer conv7 of these two FCNs. Thus, every
superpixel has a 1600D contextual semantic feature.
Color Histogram Features. To represent the appearances of
local contents, we also compute a color histogram feature by
performing two-scale spatial pooling over a grid of cells, as il-
lustrated in Figure 3. Inspired by spatial pyramid pooling [46],
we place a 3×3 grid of cells at the centroid of every superpixel.
For each channel in the CIELab color space, we compute a
histogram over each of the 9 cells, each of which has 7 × 7
pixels, as well as over their bounding box, which has 21× 21
pixels. Such spatial pooling makes our local color histograms
more robust to spatial deformations. We use 32 bins in each
histogram and concatenate all histograms into a 960D feature
vector.

Due to the relatively large spatial extent of the grid used for
histogram computation, color histograms for a superpixel near
an object or region boundary may be heavily influenced by
pixels on the other side of the boundary. Such color histograms
can mislead our deep network to apply incorrect adjustments
to the superpixel and further give rise to halo artifacts, espe-
cially when pixel colors on both sides of the boundary have
significant differences. We mitigate this problem by altering
pixel weights during histogram binning. Specifically, before
computing color histograms at the centroid of a superpixel, the
weight associated with a pixel in the aforementioned grid is set

to the following bilateral coefficient, wi = e
|ci−cv|

2

σc e
|pi−pv|

2

σp ,
where cv and pv respectively denote the color and location
of the centroid, ci and pi respectively denote the color and

location of the pixel, and σc and σp represent the estimated
standard deviations of colors and distances respectively. We
further normalize all pixel weights and use such weights
during histogram binning afterwards.

C. Pixel Features

Pixel colors represent high-resolution spatial variations. We
represent pixel colors in the CIELab color space. The pixel
feature of a superpixel is simply the 3D pixel color at the
centroid of the superpixel.

V. EXPERIMENTAL RESULTS ON IMAGE STYLIZATION

A. Experimental Setup

As shown in Figure 2, we employ FCNs to extract image
global features and contextual semantic features. All the
features of a superpixel are concatenated and fed into a deep
neural network with one input layer, two fully connected
hidden layers, and one output layer. The number of neurons in
the hidden layers are set empirically to 256, and the number
of neurons in the output layer are set equal to the number
of coefficients in the predicted color transform. Since we use
quadratic color transforms, there are 30 neurons in the output
layer, 10 for each of the three color channels.

At the training stage, only the weights associated with the
fully connected layers are updated with the classic error back-
propagation algorithm. In practice, each image is segmented
into around 7000 superpixels, from each of which 10 pixels
are sampled. Therefore, even if we only have 50 example
image pairs for learning one specific style, the total number of
training samples is still as large as 3.5 million. Such a size of
the training set can largely eliminate the risk of overfitting. It
typically takes a few hours to finish training the deep neural
network on a training dataset with hundreds of image pairs.
At the testing stage, we still segment each image into around
7000 superpixels and the features extracted for each superpixel
at its centroid are shared among all pixels within the same
superpixel. The enhanced result of a novel testing image can be
computed in just one forward pass through our deep network.
It takes around 25 seconds to enhance an image 512-pixel
wide.

B. Results on the Uniform Dataset

Here we report image stylization results from our deep
network on the Uniform dataset introduced in [1]. This dataset
includes 115 images and three local enhancement styles. In the
following, we briefly review these three styles.

The first style, “Foreground Pop-out”, increases the con-
trast and color saturation of foreground objects while decreas-
ing the color saturation of background. In general, this style
makes the foreground objects more salient and colorful while
deemphasizing the background. The second style, “Local
Xpro”, is more complex compared to the previous effect. It
generalizes the popular “cross processing” effect in a local
manner. When creating this style, a photographer first defined
multiple profiles in Photoshop, each of which is specifically
tailored for a subset of semantic categories. All the profiles
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Foreground Pop-out

Local Xpro

Watercolor

Fig. 6. Examples of local photo adjustment styles. First column: Input image. Second column: Ground truth. Third column: Our result.
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TABLE I
MEAN PER-PIXEL L2 DISTANCES BETWEEN INPUT IMAGES AND

GROUNDTRUTH ADJUSTED IMAGES AND MEAN PER-PIXEL L2 TESTING
ERRORS BETWEEN AUTOMATICALLY ADJUSTED RESULTS AND

GROUNDTRUTH RESULTS.

Style
Groundtruth

L2 distance

Global

Transform
Yan et al. [1] Our Method

Foreground Pop-out 13.86 6.60 7.08 6.39

Local Xpro 19.71 6.31 7.43 5.55

Watercolor 15.30 7.23 7.20 6.44

share a common series of operations, such as hue/saturation
adjustment and brightness/contrast manipulation. Nonetheless,
each profile defines a distinct set of adjustment parameters tai-
lored for its corresponding semantic categories. Although the
profiles roughly follow the “cross processing” style, the choice
of local profiles and additional minor image editing operations
were heavily influenced by the photographer’s personal taste
which can be naturally learned through exemplars. The third
style, “Watercolor”, gives viewers artistic impressions. It
creates “brush” effects over the input image. All pixels inside
the region covered by a single brush stroke share the same
color. This mimics the “watercolor” painting style. This style
also gives rise to complex spatially varying color adjustments.

We have trained our deep network to learn all three styles
from this dataset. As in [1], for each style, 70 images are
used for training and the remaining 45 images are used
for testing. Fig 6 shows some testing results in these three
styles. We have calculated the mean per-pixel L2 distance in
the CIELab color space between our enhanced images and
the groundtruth results as well as between the input images
and the groundtruth results. They are shown in Table I. We
also add a baseline which is the L2 distance between the
ground truth and the result obtained with per-image best global
quadratic color transform. It provides the theoretical lower
error bound for image adjustment using a global quadratic
color transform. Our method can achieve even lower numerical
errors, which indicates the importance of spatially-varying
local color transforms.

Input image Ground truth Our result

Scene labels from [1] Result from [1]

Fig. 7. Comparison with the method in [1] on an example from the
Foreground Popout style. Their method mislabels ‘sea’ as ‘mountain’ and the
saturation of this mislabeled region is incorrectly increased. In contrast, our
method produces much more robust visual results by using deep contextual
and global features extracted using fully convolutional networks.

Input image Ground truth Our result

Scene labels from [1] Result from [1]

Fig. 8. Comparison with the method in [1] on another example from the
Foreground Popout style. Although their method labels the ‘building’ region
correctly, it still adjusts its color incorrectly, which reveals the limitation of
their feature description. In contrast, our features give rise to an enhanced
image closer to the ground truth.

In this paper, we primarily compare our method against the
one proposed by Yan et al. [1] under the same experimental
setting. This is because the method in [1] is the most recent
work capable of performing local semantics-aware color and
tone stylization. It has been demonstrated in [1] that their
method outperforms all other earlier relevant techniques. Com-
parison of numerical errors on testing images are shown in the
fourth and fifth columns of Table I. Our method achieves lower
numerical errors on all the three local enhancement styles.

In addition to lower numerical errors, our method achieves
clearly higher visual quality for the following reasons. First,
their contextual feature is based on a label map generated
from a scene parser [28] and object detectors [29], which
tend to make unreliable discrete labeling decisions while our
method avoids such discrete decisions by using continuous
deep features. Therefore, their enhanced results are more
likely to have artifacts due to incorrect labeling. One such
example from the Foreground Popout style is shown in Fig 7
, where ‘sea’ is mislabeled as ‘mountain’ with their method
and the saturation of this mislabeled region is incorrectly
increased. Second, their method requires the definition of a set
of semantic categories. When this set is limited (20 categories
used in [1]), their contextual feature would not work well
on testing images containing object categories beyond this
predefined set. In addition, the limited number of categories
also limits the effectiveness of their feature. Another example
from the Foreground Popout style is shown in Fig 8, where
the saturation of ‘building’ is not increased with their method
even though it is labeled correctly. In contrast, our FCN
based architecture extracts contextual features without using
a category set and is more robust. The color of the ‘building’
region is correctly adjusted with our method.

Another comparison has been conducted against the method
proposed by Wang et al. [25], which tries to approximate
complex spatially varying tone and color adjustments with
piecewise polynomial functions based on low-level image
statistics. Our method relies on more powerful features, which
not only include low-level image statistics such as color his-
tograms but also high-level contextual semantic information.
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Input image Result from [25]

Our result Ground truth

Fig. 9. Comparison with the method in [25] on an example in the Local
Xpro style. Our enhanced result is visually closer to the manually enhanced
ground truth.

An example is shown in Fig 9, where we can see that our
enhanced result is much closer to the ground truth.

C. Effectiveness of Semantic and Color Histogram Features

Our contextual feature consists of two parts: semantic
feature and color histogram feature. In this subsection, we
demonstrate the importance of these individual features as well
as their integration in our method.

We conduct experiments using four different contextual fea-
ture combinations, including concatenated semantic and color
histogram features, semantic feature alone, color histogram
feature alone and no contextual feature at all. The mean
per-pixel L2 testing errors in the CIELab color space are
summarized in Table II. Without using any contextual features,
the testing errors are 10.10, 9.76 and 8.45 on the Foreground
Pop-out, Local Xpro and Watercolor styles respectively. These
errors drop to 8.75, 8.45 and 7.72 respectively after adding
semantic features and drop to 8.68, 8.60 and 7.66 respectively
after adding color histogram features. These results numer-
ically indicates the importance of these individual features.
Moreover, the testing errors can be further reduced to 7.14,
7.19 and 6.78 after integrating these two features together,
which indicates the necessity of using both features in our
method.

We also provide an example of visual comparison in Fig-
ure 10. This example is from the Foreground Popout style. In

TABLE II
COMPARISON OF MEAN PER-PIXEL L2 TESTING ERRORS ACHIEVED WITH

DIFFERENT COMBINATIONS OF CONTEXTUAL SEMANTIC AND COLOR
HISTOGRAM FEATURES.

Style Both features
Semantic features

only

Color features

only

Without context

features

Foreground Pop-out 6.39 8.75 8.68 10.10

Local Xpro 5.55 8.45 8.60 9.76

Watercolor 6.44 7.72 7.66 8.45

Input image Ground truth

Without context Color histogram Semantic feature With both features

Fig. 10. Comparison of visual results produced with different combinations
of contextual semantic and color histogram features.

this example, ‘person’ is classified as foreground and ‘sky’ and
‘sea’ are classified as background. We can see that the result
obtained using both semantic and color histogram features is
visually closer to the groundtruth result than those obtained
using one type of contextual features only.

(a) Histogram w/o bilateral weights (b) Histogram with bilateral weights

Fig. 11. Histograms of channel ‘a’ in the CIELab color space at three pixels
(‘blue’, ‘green’ and ‘red’) in the top image are shown in the bottom with
corresponding colors. Note that the histogram at pixel ‘green’ looks more
similar to that of pixel ‘blue’ after bilateral weights have been incorporated.

Bilateral Weights in Color Histogram Features
Here we verify the effectiveness of bilateral weights in

color histogram features. A comparison of enhanced results
with and without using bilateral weights are shown in Fig 11.
We can see that there are obvious halo artifacts around heads
and shoulders when bilateral weights are not used, and such
artifacts are suppressed when bilateral weights are used.

Let us take a closer look at the color histograms at three
sample points, pb (blue), pg (green) and pr (red), in the
top images of Fig 11. When bilateral weights are not used
(Fig 11(a)), the color histogram at pg can be seen as a blended
version of color histograms at pb and pr since pg is close to
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a region boundary. However, pg actually belongs to the ‘sky’
region, and adjustments applied to pg should be similar to
those applied to pb. After using bilateral weights, we can see
that the color histogram at pg looks more similar to the color
histogram at pb, and it is likely that similar adjustments will
be applied to both of them.

D. Number of Training Images

In the previous section, we use a fixed number of training
and testing images as in [1] for fair comparison. To further
verify the learning ability of our deep network, here we
compare the performance of models obtained with different
numbers of training images. The Uniform dataset has 115
images, from which 25 images are randomly selected as testing
images. Then, we conduct a series of experiments which
randomly choose an increasing number (50, 60, 70, 80 and 90)
of images from the remaining images as the training set. We
repeat each experiment in this series three times each using a
different subset of randomly chosen images for training. The
average testing error of the three trials with respect to the
number of training images is shown in Fig. 12, where we can
see that our network can achieve better performance with more
training images. This is reasonable since larger training sets
exhibit more content diversity and give rise to more accurate
predictions of color transforms.

Fig. 12. Average testing error with respect to the number of training images.

E. Global Styles

Our deep network can readily learn global image adjustment
styles as well. We asked a photographer to create additional
stylistic effects which are saved as “action” files in Photoshop,
each of which contains a series of operations such as saturation
adjustment, tone adjustment, and curve tuning. An “action”
is globally applied to the original images in the Uniform
dataset [1] to form a set of image exemplars for a global
enhancement style. It is also convenient for us to obtain from
the Internet various stylistic “action” files shared by photo
retouching enthusiasts. Here we demonstrate model training
and testing for two global effects as examples.

The first global effect (called “Spring”) gives viewers the
feeling of vitality, and the second global effect (called “Cold”)

Input image Spring effect Our result

Input image Cold effect Our result

Fig. 13. Examples of global ‘Spring’ and ‘Cold’ styles. Left: Input image.
Middle: Ground truth. Right: Our result.

tends to make a photo look vintage. Fig 13 shows enhancement
examples in these two styles. The mean per-pixel L2 distance
between the original images and their groundtruth enhanced
images reaches 16.95 and 18.56 for the “Cold” and “Spring”
styles, respectively. This indicates that these two effects make
significant color changes to the original images. The testing
errors of our trained models for these two styles are 1.88 and
4.13 respectively, which numerically demonstrates the strength
of our method in learning such global effects. Comparing the
middle column and the right column in Fig 13, we can see
that the enhanced results from our model look nearly the same
as the ground truth.

VI. VIDEO STYLIZATION

Our deep network trained on image exemplars can be ex-
tended to enhance artistic styles in videos as well. Naive video
stylization in a frame-by-frame manner ignores the temporal
coherence between adjacent frames, and is also inefficient.
Therefore, we seek a more compact video representation to
facilitate video stylization.

A. Temporal Superpixels

To generalize 2D superpixels used in image stylization
for the purpose of video stylization, it is tempting to adopt
the graph-based segmentation algorithm for decomposing a
video into 3D supervoxels [47]. However, without explicitly
modeling motions in a video, supervoxels cannot track image
regions and object parts, and temporal coherence is hardly
guaranteed. To overcome this difficulty, we represent a video
as a set of temporal superpixels (TSPs), which are inferred
from a probabilistic generative model explicitly considering
motion flows between frames [5]. Moreover, TSPs are more
uniform than supervoxels, which make them better suited for
tracking image regions in a temporally coherent manner.

B. Frame Selection

A TSP can be projected onto video frames as a sequence of
temporally adjacent 2D superpixels. As in image stylization, a
single color transform is predicted for every TSP, and applied
to all pixels within the TSP during video stylization. As a
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result, we only need to choose one 2D superpixel from the
aforementioned sequence of projected superpixels. Our FCN
can extract features at the centroid of this chosen superpixel
and predict its color transform by processing the video frame
containing this superpixel. The predicted color transform can
then be used for enhancing all the pixels within the TSP.

On the basis of the above analysis, to reduce the computa-
tional cost, we seek to minimize the total number of video
frames processed by the FCN while ensuring at least one
of every TSP’s projected 2D superpixels is included in the
processed frames. We develop an iterative frame selection
algorithm to solve the above problem in a greedy manner. At
the beginning of our algorithm, all TSPs are unlabeled. During
each iteration, we first choose the video frame intersecting
the largest number of unlabeled TSPs, and then label these
intersected TSPs. This process is repeated until all TSPs have
been labeled. The resulting list of chosen frames will be
processed by our FCN. In Section VII, we will demonstrate
the advantage of our frame selection algorithm in the context
of video stylization.

C. Guided Spatial Smoothing

Within each TSP, we only extract features and predict a
color transform for one of the projected 2D superpixels, and
the resulting color transform is used for enhancing all pixels
in the TSP. This strategy works well in terms of maintaining
temporal coherence. Nonetheless, for two spatially adjacent
TSPs, if their chosen 2D superpixels for feature extraction do
not lie on the same video frame, the extracted features as well
as the predicted color transforms of these superpixels may not
have spatial coherence and blocky artifacts may appear in the
enhanced video.

Fig. 15. Neighboring superpixels of a superpixel (labeled as ‘1’) in a video
frame. These neighboring superpixels are used in guided bilateral filtering of
color transform coefficients within a single video frame.

To address this problem, we apply guided bilateral filter-
ing [13] to predicted color transform coefficients. To obtain
smoothed color transform coefficients for a superpixel p1 in
a video frame f , we first identify its immediately neighbor-
ing superpixels in the frame. The smoothed color transform
coefficients φf1 for superpixel p1 in frame f are computed
with the following equation, φf1 =

∑
i w1iφi, where φi

denotes the predicted color transform coefficients at the i-th

neighboring TSP, w1i = exp |ci−c1|
2

σc
exp |pi−p1|

2

σp
represents

the bilateral weight computed using the original input image
as the guidance, and ci, pi are the color and position at the
centroid of the i-th neighboring superpixel.

VII. EXPERIMENTAL RESULTS ON VIDEO STYLIZATION

A. Datasets and Statistics

For testing our video stylization algorithm, we train image
enhancement models for five styles using our proposed deep
network. These five styles include three local styles (Local
Xpro, Foreground Pop-out, and a new local style called
“Golden”) and two global styles (Cold and Spring). The
local style Golden is created by applying distinct stylistic
adjustments to three types of semantic regions, namely natural
objects, man-made objects, and sky regions. Natural objects
include trees, land, mountains, people, etc. while man-made
objects include buildings, cars, etc. Unlike the Local Xpro
effect, where different adjustment profiles share a common
series of operations and only differ in adjustment parameters,
the Golden effect has distinct adjustment operations for each
type of semantic regions. For example, the operations for
natural objects include channel mixer and color curve tuning
while the operations for man-made objects include gradient
mapping and brightness/contrast manipulation.

We apply each of five enhancement styles to a set of five
testing videos named ”Fly”, ”Mountain”, ”City”, ”Railway”
and ”Motor”. Each groundtruth stylized video is produced by
manually applying local profiles to individual video frames
independently. The mean per-pixel L2 distance in the CIELab
color space between original frames and groundtruth enhanced
frames over all videos for each style is 8.25, 4.74, 6.05,
6.33 and 6.87, respectively, as shown in Table III. Once our
trained models have been applied to the videos, the mean
per-pixel L2 distance between automatically enhanced frames
and groundtruth enhanced frames drops to 3.19, 2.68, 1.60,
0.60 and 1.51, respectively. This numerically confirms the
effectiveness of our overall video stylization approach based
on models trained from images.

TABLE III
COMPARISON OF MEAN PER-PIXEL L2 TESTING ERRORS OF OUR METHOD

AND THE FRAME-BASED METHOD.

Effect
Groundtruth

L2 distance
Our Method Frame-based Method

Local Xpro 8.25 3.19 3.23

Foreground Pop-out 4.74 2.68 2.67

Golden 6.05 1.60 1.61

Cold 6.33 0.60 0.56

Spring 6.87 1.51 1.35

Fig 14 shows an example frame chosen from ”City”. We
can see that our enhanced frames in the aforementioned five
styles are visually similar to the groundtruth enhanced frames.
A real challenge in video stylization is maintaining temporal
coherence, which is one of the strengths of our proposed video
stylization algorithm. Complete enhanced videos in these five
styles can be found in the supplemental materials.



12

One frame of input video

Local Xpro groundtruth Pop-out groundtruth Golden groundtruth Cold groundtruth Spring groundtruth

Local Xpro enhanced Pop-out enhanced Golden enhanced Cold enhanced Spring enhanced

Fig. 14. Enhanced Local Xpro, Foreground Pop-out, Golden, Cold and Spring styles at a single frame from the ”City” video. Middle row: Ground truth.
Bottom row: enhanced result from our video stylization algorithm.

B. Effectiveness of TSP-Based Video Stylization

The most straightforward way to enhance a video using
our learned model simply considers the video frames as
independent images and enhance these frames individually.
This implies that superpixels within each frame are also
generated independently. In this paper, this approach is called
the frame-based method. To demonstrate the effectiveness of
our proposed video stylization algorithm, we compare our
method against the frame-based method in terms of both
numerical accuracy and visual quality. For numerical accuracy,
we compute the mean per-pixel L2 testing error between
enhanced results and the ground truth for the five styles.
As shown in the third and fourth columns of Table III, the
numerical accuracy of our method only differs slightly from
that of the frame-based method. However, as expected, the
frame-based method cannot preserve temporal coherence, and
the enhanced videos from our method have significantly higher
visual quality. A visual comparison between enhanced videos
from our method and those from the frame-based method can
be found in the supplemental materials.

We also compare the computational cost between our
method and the frame-based method. Taking the video ”Fly”
as an example which has 129 frames, the frame-based method
would need 3225 seconds since each frame takes 25 seconds.
The processing time of our video stylization algorithm is sig-
nificantly shorter because we do not have to extract features at
all superpixels in all frames. The feature of a TSP is extracted
only once in one of the selected frames and the computed
quadratic color transform is shared among all pixels within the
same TSP. In addition, we do not need to compute semantic
feature maps for those unselected frames. The running times
for video stylization are shown in Table IV.

The TSP algorithm [5] has parameters to control the ap-
proximate number of superpixels in each frame. To verify the
effectiveness and flexibility of our frame selection scheme,

TABLE IV
COMPARISON OF THE NUMBER AND PERCENTAGE (IN PARENTHESES) OF
CHOSEN FRAMES AT TWO LEVELS OF TSP GRANULARITY. RUNTIME IS

SHOWN IN THE LAST TWO COLUMNS.

Video #frames 1k TSPs 3k TSPs
Runtime

1k TSPs

Runtime

3k TSPs

Fly 129 53(41%) 123(95%) 910s 1200s

City 155 58(37%) 114(74%) 1050s 1350s

Railway 120 82(68%) 98(82%) 990s 1110s

Motor 156 111(71%) 144(92%) 1340s 1500s

Mountain 202 112(55%) 180(89%) 1580s 1920s

we produce TSPs at two scales, Seg 1000 and Seg 3000,
which indicates there are around 1000 and 3000 superpixels
in each frame. Table IV lists the number and percentage of
frames chosen by our frame selection algorithm when a video
is segmented at each of these two scales as well as the total
number of frames in each video. The computational cost of
our method decreases when the granularity of superpixels
increases since there are less TSPs needed to extract features
and less mapped frames needed to compute semantic feature
map.

We also compare the mean per-pixel L2 testing error
between enhanced videos and the ground truth at these two
scales. At 3000 superpixels per frame, the mean per-pixel
L2 error is 3.19, 2.68, 1.60, 0.60 and 1.51 for the Local
Xpro, Foreground Popout, Golden, Cold and Spring styles,
respectively. The mean per-pixel L2 error only rises slightly to
3.27, 2.77, 1.65, 0.67 and 1.70 respectively at 1000 superpixels
per frame. This comparison indicates that the numerical error
will not increase significantly when we increase the granularity
of superpixels within a certain range to reduce computational
cost.
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VIII. CONCLUSIONS AND DISCUSSION

In this paper, we have presented a novel deep learning
architecture for exemplar-based image and video stylization,
which learns local enhancement styles from image pairs.
Our deep learning architecture consists of fully convolutional
networks for automatic semantics-aware feature extraction
and fully connected neural layers for adjustment prediction.
Image stylization can be efficiently accomplished with a single
forward pass through our deep network. To extend our deep
network from image stylization to videos, we exploit temporal
superpixels to facilitate the transfer of artistic styles from
image exemplars to videos. Experiments on a number of
datasets for image stylization as well as a diverse set of video
clips demonstrate the effectiveness of our deep model.

Input image Local Laplacian [7] Our result

Input image Pop-out Our result

Fig. 16. Two failure cases. Top row: Local Laplacian filter [7] is used to
increase image details exaggeratedly. Our result produces insufficient detail
increasement. Bottom row: One test result of Foreground Pop-out effect,
which has color artifacts marked in the red box.

Limitations Our method has limitations. Detail manipulation
is considered one type of image stylization. We use the local
Laplacian filter [7] to exaggerate image details in the Uniform
dataset. Such exaggerated results are used as training data for
our method. The top row of Fig. 16 shows our trained model
can only enhance details slightly but cannot achieve results
similar to the ground truth. The reason is that our method only
applies color transforms to individual pixels independently
while detail manipulation needs to adjust local contrast among
nearby pixels. The bottom row of Fig. 16 shows that if the
predicted color transform at a certain superpixel (highlighted
area) is incorrect, all the pixels within the same superpixel
will be adjusted incorrectly, which is another limitation of our
superpixel-based method.
Future Work An interesting direction to extend this work
of image and video stylization is to solve this problem using
an end-to-end trainable network. That is we do not perform
spatial subsampling using superpixels on the semantic feature
maps produced by the fully convolutional networks. The fully
connected layers used for predicting color transforms can be
replaced with convolutional layers with 1× 1 kernels. Such a
network will be able to make pixel-level predictions. However,
since it has a large number of parameters, overfitting can easily
occur with insufficient training data.
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