
Title ColorSketch: A Drawing Assistant for Generating Color
Sketches from Photos

Author(s) LI, G; Bi, S; Wang, J; Xu, Y; Yu, Y

Citation IEEE Computer Graphics and Applications, 2017, v. 37 n. 3, p.
70-81

Issued Date 2017

URL http://hdl.handle.net/10722/243515

Rights

IEEE Computer Graphics and Applications. Copyright © IEEE.;
©2017 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other
works.; This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International
License.

JOURNAL OF COMPUTER GRAPHICS AND APPLICATIONS 1

ColorSketch: A Drawing Assistant for Generating
Color Sketches from Photos

Guanbin Li, Sai Bi, Jue Wang, Yingqing Xu, Yizhou Yu

Abstract—A color sketch creates a vivid depiction of a scene
using sparse pencil strokes and casual colored brush strokes. In
this paper, we introduce an interactive drawing system, called
ColorSketch, for helping novice users generate color sketches
from photos. Our system is motivated by the fact that novice
users are often capable of tracing object boundaries using pencil
strokes, but have difficulties to choose proper colors and brush
over an image region in a visually pleasing way. To preserve
artistic freedom and expressiveness, our system lets users have
full control over pencil strokes for depicting object shapes and
geometric details at an appropriate level of abstraction, and
automatically augment pencil sketches using color brushes, such
as color mapping, brush stroke rendering as well as blank area
creation. Experimental and user study results demonstrate that
users, especially novice ones, can generate much better color
sketches more efficiently with our system than using traditional
manual tools.

Index Terms—Region Detection, Color Stylization, Brush Layout,
Blank Area Creation

I. INTRODUCTION

Color sketching is a widely adopted sketching style among
artists, which attempts to augment sparse pencil strokes with
casual colored brush strokes using gouache paints. For ex-
ample, Elisha Cooper, a well-known writer and children’s
book author, has published multiple sketchbooks recording
his visits to places such as California [1] and New York
City [2]. As shown in Fig. 2, the colored brush strokes in such
sketches provide rich visual information and create a vivid
impression of the objects and scenes they depict. Gouache
paints generate less visible brush marks than oil paintings, and
are also less fluid than watercolors. We call this sketching style
color sketching. Serving a similar purpose as pencil sketching,
color sketching typically abstracts away many details while
preserving the painter’s own style and artistic choices.

In this paper, we study the problem of generating a color
sketch by abstracting from a real photograph. Many systems
have been proposed to help users draw pencil sketch lines
using the under painting technique [3], [4]. However, even
with good sketch lines, novice users still face many issues
when creating a color sketch, such as which gouache paints
should be used for approximating the pixel colors in the photo,

Guanbin Li and Sai Bi are with the Department of Computer Science,
The University of Hong Kong. E-mail: gbli@cs.hku.hk, fsbi@cs.hku.hk. Jue
Wang is with Adobe Research. E-mail: juewang@adobe.com. Yingqing Xu is
with the Department of Information Art and Design, Tsinghua University. E-
mail: yqxu@tsinghua.edu.cn. Yizhou Yu is with Zhejiang University. E-mail:
yizhouy@acm.org.

and which sub-regions should be intentionally left blank while
the others are filled with colored brush strokes.

To help novice users overcome the above difficulties, we
present ColorSketch, a sketching interface that automatically
resolves stylization issues related to gouache painting colors,
brush layouts and region filling styles given user-provided
sparse pencil strokes. In a live sketch session, to preserve the
user’s artistic freedom and expressiveness, our system let the
user have complete control over pencil strokes, including their
location, shape, drawing order and the level of abstraction.
While the user is drawing, our system analyzes the existing
sketch layout and automatically generates color brushed re-
gions that are compatible with existing pencil sketches. In
this way, color sketches created through our interface is a
mix of both user-provided abstraction and computer-generated
stylization.

Given an input photo, producing a color sketch using our
system consists of two stages, an offline automatic pre-
processing stage, and an online drawing stage carried out
through the sketching interface. In the offline stage, a se-
ries of preprocessing steps are performed on the reference
photo, including hierarchical image segmentation, occlusion
contour detection and depth map generation. During the online
stage, the user draws pencil strokes wherever desirable, and
our system provides realtime “auto-completion” suggestions
displayed as shadow strokes that the user can easily accept.
It also analyzes pencil strokes in real time to infer image
regions the user implicitly defines through sketching, and
automatically add stylization effects to such regions. The
stylization effects include region boundary smoothing, pixel
to gouache color mapping, brush stroke rendering according
to an automatically computed layout, and blank area creation
according to automatic occlusion analysis results.

Our main contribution is an intelligent drawing interface
tailored for color sketches. It provides two types of user
assistance during a drawing session: (1) “auto-completion”
suggestions for drawing pencil strokes; and (2) automatic
color region stylization that is guided by the pencil strokes.
Technically, although portions of ColorSketch follow the basic
framework of a painting system, our approaches for computing
the center, orientation, color and order of brush strokes are
novel, allowing spatially coherent brush stroke placement and
rendering. The resulting brush marks are noticeable, but not
too obvious, mimicking the style of gouache paintings. In
addition, blank area is an important feature of color sketches.
Our blank area creation technique, based on the “membrane”

JOURNAL OF COMPUTER GRAPHICS AND APPLICATIONS 2

Fig. 1: Sample color sketches generated with our ColorSketch interface. The top row shows reference images. The first two
sketches in the bottom row were drawn by novice painters while the last two sketches were drawn by skilled painters.

equation, generates results resembling those drawn by artists.

We have tested our interface in a user study. Comparisons
between sketches produced with and without our system
indicate that users, especially novice ones, can generate much
better color sketches more efficiently with our system than
using traditional manual tools.

II. BACKGROUND AND RELATED WORK

A. Related Work

1) Automatic image stylization: Automatically converting an
image into a stylized rendering has been extensively studied
in Non-Photorealistic Rendering (NPR). Various systems have
been proposed which aim at different styles, such as pencil
and color pencil drawing [5], pen and ink illustration [6],
oil painting [7], and watercolor [8]. These approaches aim at
automatically generating high quality rendering results, with
little or no user interaction. In contrast, our system is designed
to be a drawing assistance tool that supports immense user
interaction.

2) Sketching interfaces: Various interactive systems have been
proposed to help users draw sketches or create digital art,
either for specific objects such as human faces [9] or 3D
models [10], or more general cases [11], [12]. Our work
was partially inspired by ShadowDraw [3], a system for
guiding freeform sketching. As the user draws, their system
dynamically updates a shadow image underlying the user’s
strokes as a guidance for drawing object contours. The shadow
image is generated by searching through a large image dataset.
Gingold et al. [13] and Limpaecher et al. [14] explored using
crowdsourcing for generating sketch guidance. In contrast,
our system employs a novel, auto-completion mechanism for
assisting sketching object contours, using a single reference
image.

Recently, Iarussi et al. [11] presented a drawing tool which
provided automated guidance over model photographs to help

people practice traditional drawing-by-observation techniques.
Su et al. [4] proposed EZ-Sketch, a system for helping users
draw accurate pencil sketches over an image. It employs a
multi-level optimization framework to adjust the positions
of user strokes for improved accuracy. Our system adopts
a different strategy for helping users draw more accurately
and efficiently, by providing online auto-completion guidance.
Furthermore, our system focuses mainly on a different problem
of generating stylized color regions given the sketch lines.

3) Region-based stylization: DeCarlo and Santella [15] intro-
duced a computational approach to stylizing and abstracting
photographs. Their system uses mean shift to segment the
image into coherent regions, and transforms them into a style
that features bold edges and constant-color regions. Wang et
al. [16] extended this approach to video, by treating a video as
a space-time volume, and segmenting it into contiguous blobs
using spatial-temporal mean shift segmentation. However, the
advocated style in these approaches is different from color
sketching. The constant color adopted for a region is simply
the average pixel color in that region, and there are no blank
areas within regions. In comparison, our system performs
color stylization which maps pixel colors to more meaningful
painting colors.

The style adopted by Wen et al. [17] is perhaps most similar
to the color sketching style proposed in this paper. Neverthe-
less, one obvious difference is that they do not paint brush
strokes within regions. We also introduce a more systematic
approach that creates blank areas near occlusion boundaries
and highlight regions. More importantly, their system produces
results in a semi-automatic way, while our system is a drawing
assistant that gives the user artistic freedom and control.

B. Background

We distilled a few principles from sketchbooks [1], [2] and
color sketches drawn by artists (Fig. 2). These principles are

JOURNAL OF COMPUTER GRAPHICS AND APPLICATIONS 3

Fig. 2: Examples of color sketches manually drawn by artists.

suited for adoption in our computer-assisted color sketching
system.

1) Pencil strokes delineate object contours as well as the
boundaries of salient regions. They are sparse, and are
approximately aligned with such contours or boundaries.
Artists usually draw contours of large regions first and
then gradually add smaller ones.

2) Regions are brushed with gouache paints instead of
being filled with solid colors. The size of brush strokes
varies with the size of the region. Smaller regions are
filled with smaller brush strokes. Gouache paints are
more opaque than watercolors, and they generate less
visible brush marks than those in oil paintings.

3) The color of gouache paints used for each region de-
viates significantly from the original pixel colors within
the same region. It is typically brighter and less saturated
than the original pixel colors, while its hue remains
approximately the same.

4) Many regions are not completely filled with brush
strokes. Instead, some of them have border areas in-
tentionally left blank. Blank areas increase spatial non-
uniformity and also give a pleasant look. They are
primarily used for indicating highlight areas, as well as
areas near occlusion boundaries on partially occluded
objects or regions.

III. SYSTEM OVERVIEW

Producing a color sketch from a reference photo using our
system consists of two stages, an offline preprocessing stage
and an online interactive drawing stage. In the preprocessing

stage, our system performs contour detection and hierarchical
image segmentation to extract “visual guides” that emphasize
the boundaries of different objects in the photo. It automat-
ically generates these guides in the form of thin strokes, as
discussed in the next section.

During the online stage, as shown in Fig. 3b, the user draws
sparse pencil strokes to delineate the shape of objects using the
under painting technique (i.e. drawing on a semi-transparent
canvas over the reference photo). This is the main user
input to our system. We give the user sufficient freedom
to choose appropriate levels of abstraction in different parts
of the image. To facilitate contour sketching, our interface
dynamically displays a stroke automatically extracted during
the preprocessing stage as a suggestion near the stroke being
drawn by the user (Fig. 3e). The user can choose to accept
the stroke, or ignore it and continue to draw.

Whenever the user finishes a new pencil stroke or revises
an existing stroke, the system automatically updates the final
sketching result by adjusting and rendering color regions.
Given that the casual user strokes may not form closed
regions, our system automatically infers closed regions given
the existing pencil strokes (Fig. 3c). It further computes the
color of the gouache paints that should be applied in each
region (Fig. 3d), the layout and the rendering order of the brush
strokes that will be used for filling it (Fig. 3g). Our system
also determines the areas that should be left blank according
to occlusion boundaries detected in the preprocessing stage
(Fig. 3f).

IV. PREPROCESSING

A. Region Extraction

Given an input image, our system first scales it to have length
of longer side equals to 400 pixels and automatically segments
it into coherent regions. The boundaries of these regions are
used to generate auto-completion suggestions in the online
drawing stage. The precomputed regions are obtained using
a hierarchical segmentation algorithm [18]. We chose this
algorithm because of its high accuracy on the Berkeley Seg-
mentation Benchmark [19] with respect to manually produced
ground-truth. In addition, this algorithm can generate region
boundaries hierarchically with different levels of details. In our
system we run the source code provided in [18] and extract
region boundaries at three levels according to three different
threshold (0.15, 0.30, 0.50 respectively) in the generated UCM
map, as shown in Fig. 4. The extracted boundaries are further
divided into segments at T-junctions and local maxima of
curvature [20].

B. Occlusion Boundary Detection

As mentioned in Section II-B, artists tend to leave blank
areas near boundaries of occluded areas. To enable the quick
handling of occlusion boundaries in an interactive drawing
session, we pre-compute them and a depth map from the

JOURNAL OF COMPUTER GRAPHICS AND APPLICATIONS 4

(a)

(b)

(g)(f)(e)

(d)(c)

Fig. 3: The work flow of our ColorSketch system

input image using a scene-based occlusion reasoning method
proposed in [21] with the source code and parameters setting
provided by the author. During an interactive session, when
the user adds a new pencil stroke, if it is part of a pre-
computed occlusion boundary or if there is a large difference in
depth values along the shared boundary between two adjacent
regions, our system automatically leaves a blank area in the
occluded region. This rule applies to all user-defined regions
except for the sky and the ground plane, both of which can
be detected using the model proposed in [21].

V. INTERACTIVE COLOR SKETCHING

A. User Interface

The user interface of our system consists of a tool bar and
two windows placed side-by-side. The left window is used
for drawing, it shows the reference photo overlaid with a
translucent canvas. The right window is the output window,
it displays the automatically completed color sketching result
and update it in realtime. The user can also fine-tune the result
directly in the output window.

To start drawing a color sketch, the user chooses the pencil
tool and draws line strokes on the canvas, with the guidance
of the underneath reference photo. When a stroke is being
drawn by the user, our system continuously analyzes it in the
background, searching through a set of automatically extracted
strokes during preprocessing for finding the best candidate
stroke that the user is most likely meant to draw. This
candidate stroke is then shown as a shadow on the canvas, and
can be directly accepted into the output window by a keyboard
event triggered by the user. Accepted shadow strokes usually
are more accurately positioned than the user’s unfinished
strokes. In this way, our system can greatly improve the user’s
drawing efficiency. In case there are multiple candidate strokes
near the unfinished stroke, one of them is chosen according to

the following rules: (1) the degree of consistency between the
tangential directions of the candidate stroke and the unfinished
stroke is less than or equal 0.5; (2) if more than one candidate
strokes exist under rule (1), the amount of pixels overlap
between the two strokes is considered. If all of the candidate
strokes in this stage have overlapping pixels less or equal 50,
choose the one with the largest overlap, otherwise choose the
one according to rule (3); (3) the total length of the candidate
stroke (longer strokes are preferred).

Once a new stroke is finished, our system checks whether
it can be joined together with the existing ones to illustrate
a closed region. Given that casual strokes may never form
a perfect close shape, we implicitly join nearby strokes by
connecting endpoints of strokes that are very close. Specifi-
cally, we run a nearest neighbor search on the two endpoints
of the new stroke. The new stroke is joined to an existing
stroke if the distance between their closest endpoints is below
a prescribed threshold (8 pixel in our system). If multiple
candidates satisfy this threshold, we simply calculate the mean
position of their related endpoints and deform all strokes so
that their endpoints can reach this mean position. At any time,
these joined strokes on the canvas divide the image space into
one or more regions. Every region is surrounded by a sequence
of joined strokes forming a closed loop. Once all regions have
been detected, our system completes the stylization of these
regions automatically in realtime by adding colored brush
strokes and blank areas, and updates the result in the output
window.

Our interface provides additional tools to help users fine-tune
the sketching results. These tools include a virtual pencil to
insert regions whose boundaries do not need to be emphasized
with visible pencil strokes, a highlighting tool that lets the user
manually add white highlight areas inside a region, and also
a brush tool useful for fine-tuning automatically placed brush
strokes and blank areas.

JOURNAL OF COMPUTER GRAPHICS AND APPLICATIONS 5

B. Region Boundary Smoothing

We have observed that pencil strokes drawn by artists are rel-
atively smooth, while strokes drawn by average users are full
of zigzags. To improve their quality, we propose a smoothing
scheme that processes the complete boundary of one region
at a time rather than smoothing individual strokes. Once all
regions have been detected, our system treats all the strokes
lying on region boundaries as a network of boundary curves.
These boundary curves seamlessly join together at T-junctions
surrounded by three or more regions. T-junctions divide the
boundary of every region into segments. Each boundary seg-
ment is smoothed with the Gaussian filter, which requires a
supporting neighborhood. The supporting neighborhood at the
endpoints of a boundary segment extends into its neighboring
segments. Note that a boundary segment is typically shared
by two adjacent regions, and its neighboring segments are
different along the boundary of these two regions. Therefore,
the smoothing result of a boundary segment is dependent on
its region membership. To fix this ambiguity, we assign the
boundary segment to the larger region of the two. At the
beginning of the region-based boundary smoothing step, all
the regions are sorted into a decreasing order of their area, and
smoothing is applied sequentially to these regions following
this order. When this process reaches one region, we only need
to smooth its remaining boundary segments that have not been
smoothed earlier. Note that all points on image borders are
fixed during smoothing. Fig. 5a demonstrates the result before
and after boundary smoothing.

C. Color Stylization

As discussed in Section II-B, the color of gouache paints
used for each region is decided by a base color as well
as brush effect rendering and deviates significantly from the
original pixel colors within the same region. To figure out the
correct base painting color for every region during interactive
sketching, we take a machine learning approach. For each
region, the average pixel color of pixels inside it and the
corresponding painting color determined by artists form a pair.

Reference Image

Level 1: UCM = 0.30Level 1: UCM = 0.15 Level 1: UCM = 0.50

Split Edges of Level 1 Split Edges of Level 2 Split Edges of Level 3

Fig. 4: An example of hierarchical image segmentation and
boundary segment (stroke) generation. Segmentations at three
different levels of details are extracted from the hierarchical
segmentation result, and region boundaries therein are further
divided into segments at T-junctions and local maxima of
curvature.

(a)

(b)

Fig. 5: Top: Sample pencil strokes with (right) and without
(left) smoothing. Bottom: Region color before (left) and after
(right) stylization.

Given a sufficient number of color pairs collected in this way,
we can learn a mapping function that converts the original
average pixel color to its corresponding painting color.

To learn this mapping function, we collected 35 images and
their corresponding color sketches drawn by a few artists. We
manually marked 500 pairs of regions in them. We calculated
an average color for each region in the HSV color space,
resulting in 500 pairs of average colors. By analyzing these
color pairs using linear regression, we find that a linear trans-
formation can describe the relationship between the original
color and the drawn color well. Following this discovery, we
fit a global affine transform connecting an original color R
and its corresponding painting color R′: R′ = MR, where
M is the transformation matrix. Noted that the hue channel is
periodic on a circle, to make the model more accurate, given
the hue value of a pair training sample, denoted as (ha, hb), if
|ha − hb| > 180, we modified one of the hue value to assure
that the absolute distance is less than 180 by applying the
equation as follows,{

ha = 360 + ha if ha ≤ hb
hb = 360 + hb if ha > hb

(1)

.

For our training dataset, the learned matrix is as follows:
H(R′)
S(R′)
V (R′)

1

 =

 0.96 −0.51 0.175 −4.11
−0.02 0.53 −0.11 19.09
−0.01 0.031 0.82 41.5

H(R)
S(R)
V (R)

1

When calculating the transformed color using the learned
matrix, if the result of hue value is out of range, it should be
moduloed by 360 since it is periodic. The example shown in
Fig. 5b demonstrates the effectiveness of our color stylization
method.

JOURNAL OF COMPUTER GRAPHICS AND APPLICATIONS 6

D. Brush Stroke Placement and Rendering

In a color sketch, every region needs to be completely or
partially filled with colored brush strokes. To carry out this
automatically, we have developed a method that consists of
two steps. In the first step, our system determines the center
and orientation of every brush stroke. It then determines the
actual color of every brush and renders these brushes in the
region.

In the first step, we compute a smooth orientation field inside
the region, and performs anisotropic vector quantization to
finalize the center and orientation of all brush strokes within
the region. Specifically, We calculate the unit tangent vector
at every pixel along the boundary of the region, and propa-
gate these tangent vectors towards the interior of the region
using a distance field of the boundary and the fast marching
method [22]. That is, each interior pixel receives a unit vector
from the nearest boundary pixel. Afterwards, we smooth the
propagated vector field with a large Gaussian kernel to make
the pixel-wise orientations spatially coherent. We noticed that
in some special cases, the direction field of some pixels may
become (0,0) after smoothing, in this cases, we simply set
them as an initial direction (i.e.(x = 0.57, y = 0.81)) as
suggested by some skilled painters.

Since every straight brush stroke can be approximated as a
thin ellipse, to obtain a brush stroke placement scheme within
the region, we perform anisotropic vector quantization on top
of the above orientation field to decompose the region into a
number of elongated cells. Our anisotropic vector quantization
is based on an anisotropic distance, which also tries to make
the pixel colors within each cell as uniform as possible. Given
the location (xc, yc), orientation (u, v), and color hc at a pixel
C, the anisotropic distance from another pixel P = (x, y) with
orientation (u′, v′) and color h is defined as follows.

da(P,C) = 0.5×
(√(

x′

a

)2

+

(
y′

b

)2

+

(
‖h− hc‖

w

)2

+√(
x′′

a

)2

+

(
y′′

b

)2

+

(
‖h− hc‖

w

)2)
,

(2)

where (x′, y′) are the coordinates of P in the local frame at
C and (x′′, y′′) are the coordinates of C in the local frame
at P . In these two local frames, the x-axis is aligned with
the direction of (u, v) and (u′, v′) respectively, a and b are
respectively the length of the major and minor axes of the
ellipse approximating the brush strokes, and w is a constant
balancing the relative importance between the location and
color differences between the two pixels. In our experiments,
w is always set to 10a. In practice, anisotropic vector quanti-
zation is implemented as an iterative process similar to K-
means clustering, except that the Euclidean distance in K-
means is replaced with the above anisotropic distance, and
the orientation at the center of a cell is taken from the
above orientation field. This iterative process gives rise to
nonoverlapping elongated cells in the end. The location and
orientation at the center of these elongated cells are taken as

(a)

(b)

Fig. 6: Top: Sample anisotropic clustering result in the sky re-
gion. The white circles are cluster centers, and the white lines
represent their orientations. Cluster centers and orientations
are directly taken as brush centers and orientations. Bottom:
Sample brush strokes in our brush database.

the center and orientation of the brush strokes, as shown in
Fig. 6a. Note that we have a database of 450 colored brush
strokes painted by artists, and the shape of brush strokes in
our system is taken from this database, not from the cells in
the anisotropic vector quantization.

We compare our brush placement strategy with one that is
commonly adopted in synthetically generated oil paintings,
where brush centers are sampled either randomly or over a
coarse grid, and orientations orthogonal to image gradients are
taken as brush orientations [7]. As shown in Fig. 7, our strategy
generates more spatially coherent results that are consistent
with gouache painting styles.

Our system further determines the actual painting color of
every brush according to the color mapping learned in the
previous subsection. To make the brush marks less visible,
as discussed in Section II-B, we need to control the amount
of permissible color variation within a region. Let ∆H , ∆S
and ∆V be respectively the maximum variation permitted for
the three channels of the HSV color space. We empirically
found ∆H = 8, ∆S = 20 and ∆V = 12 (out of the largest
possible range of 100) can give rise to realistic color variations
in colored sketches. Let (Have, Save, Vave) be the average of
the original pixel colors in the entire region, and (Hi, Si, Vi)
the average color of pixels covered by the i-th brush stroke.
If (Hi, Si, Vi) is outside the maximum permissible range, we
perform additional scaling to suppress the dynamic range of

JOURNAL OF COMPUTER GRAPHICS AND APPLICATIONS 7

(a) Brush placement with anisotropic clustering

(b) Brush placement using random locations and image gradients

Fig. 7: A comparison of brush placement strategies. Top:
Brush placement with our anisotropic clustering, Bottom:
Brush placement using random locations as brush centers and
directions orthogonal to image gradients as brush orientations.
Our brush placement strategy generates more spatially coher-
ent results.

brush colors as follows:

H∗i =

{
Have + Hi−Have

Have−Hmin
∆H, if Hi < Have;

Have + Hi−Have

Hmax−Have
∆H, if Hi > Have,

(3)

where Hmin = miniHi and Hmax = maxiHi. Same
operations are applied to the S and V channels. Noted that
the hue channel is periodic on a circle, the difference between
two hue value should be calculated in a recurring mode.
Specifically, if |Hi − Have| > 180, they should be updated
according to equation (1) before operating on equation (3)
and if H∗i is out of range, it should be moduloed by 360.
After such color adjustment, each new color is mapped to a
painting color using the mapping learned in Section V-C. We
then search our brush database for a brush stroke with the
most similar color (Fig. 6b).

Since gouache paints are mostly opaque, different rendering
orders of the same set of brush strokes could give rise to
very different sketching results. Thus the final rendering order

(a) Occlusion Boundary (b) Depth Map

(d) With Blank Areas(c) Without Blank Areas

Fig. 8: Flow chart for blank area creation. Blank areas are
created in partially occluded regions near depth discontinuities.

of previously computed brush strokes becomes important.
When artists draw a set of brush strokes to color a region,
instead of following a random order, they typically brush
one subregion first before moving to the next. Inspired by
this observation, we order the brush strokes as follows. We
first compute the average orientation of all computed brush
strokes within a region. Again, if in some extreme cases, the
average orientation becomes (0, 0), we simply set it as an
initial direction (i.e.(x = 0.57, y = 0.81)) as suggested by
some skilled painters. We then project the centers of all strokes
onto the line defined by the average orientation, and sort all
strokes according to the position of their projections on the
line. Finally, all computed brush strokes are rendered following
this order (from bottom left projections to top right ones), and
feathering is performed within a narrow band at the boundary
of every stroke to make the transition less noticeable. When
two strokes overlap each other, the later added stroke simply
covers the previous ones.

E. Blank Area Creation

As discussed in Section II-B, some regions in a color sketch
are not completely filled with colored brush strokes. Certain
areas in these regions are intentionally left blank for various
purposes, such as indicating occlusion or highlight. Blank
areas can either appear inside a region or next to a portion
of the region boundary. Our system can automatically detect
occlusion boundaries and create blank areas next to them. It
also provides an interactive tool to let users create a blank area
around a highlight in the reference photo. In both scenarios,
the actual shape of the blank areas is automatically determined
by the solution of a Poisson equation.

As we have discussed in Section IV-B, for two adjacent
regions, if one region is occluded by the other, artists tend to
leave a blank area near the boundary of the occluded region,
except for large background regions such as the sky and ocean.
To simultaneously create blank areas near occlusion bound-
aries as the user draws, we make use of the pre-calculated

JOURNAL OF COMPUTER GRAPHICS AND APPLICATIONS 8

depth map to determine occlusion relationships between adja-
cent regions. When a new pencil stroke is determined to be
part of a precomputed occlusion boundary or if there is a depth
discontinuity along the shared boundary between two adjacent
regions, our system automatically creates a blank area in the
partially occluded region near the occlusion boundary. Fig. 8
shows an example of this effect produced by our system.

Let S be a region inside the reference photo I . Suppose we
are to create a blank area next to a portion of the boundary
of S denoted as ∂S′. Our idea is to define a scalar function f
over S such that it takes large values along ∂S′, and supports
a smooth transition to smaller values along ∂S−∂S′. Given f
and a threshold τ , S can be easily divided into two subregions.
f is greater than τ in one of the subregions and smaller than τ
in the other. The former subregion should be left blank since it
is next to ∂S′. In practice, we obtain the function f by solving
the following “membrane” equation:

∆f = 0, (4)
s.t. f(p) = c, p ∈ ∂S′;

f(p) = I(p), p ∈ ∂S − ∂S′,

where pixels in ∂S′ are set to a large constant c , and pixels in
∂S−∂S′ are fixed to their intensity values from the reference
photo I . In our experiments, c is always set to 5 and the
threshold τ is typically set to 4 if pixel intensities ∈ [0, 1]. The
above equation is actually a special case of the more generic
Poisson equation [23]. It can be discretized into a sparse linear
system that can be solved very efficiently [24].

To create blank areas inside a region to indicate highlights,
the process is slightly different. The user can first draw line
segments at desired locations inside the region. Pixels on these
line segments are set to a large constant while all pixels on
the region boundary are fixed to their original intensity values.
Then an equation similar to (4) can be solved to obtain a scalar
function f defined over the region. Finally, all the pixels where
f is larger than a threshold τ are left blank, where τ is again
set to 4 in our experiment.

VI. EVALUATION

To evaluate the effectiveness and performance of our color
sketching system, we have conducted a two-stage user study.
In the first stage, subjects were required to produce two color
sketches of a given reference image using Photoshop and our
ColorSketch interface. In the second stage, a separate group
of subjects were invited to evaluate the drawings collected in
the first stage.

a) Drawing Stage: We invited 20 people to participate in
the first stage of the user study. 10 of them have previously
received formal training in drawing and painting, and the
remaining subjects are novice users that have little experience
in drawing. For each subject we selected a reference image,
and asked him/her to draw two color sketches, one with
Photoshop tools such as brushes, pencils, color pickers, lasso
tool, quick selection tool, etc., and the other one with our

ColorSketch interface. Considering that the order of the two
tools used may influence the user experience and results, we
let half of the participants used Photoshop first and the rest
of them began with ColorSketch. The users were encouraged
to do the best as they can without any restriction on choosing
the tools in both Photoshop and ColorSketch. We used 10
reference images, each of which was used by a skilled painter
and a painting layman. The content of the reference images
include human figures, buildings, and natural scenes.

Before the user study, we gave the subjects a tutorial on
the two systems, and allowed them to practice on a simple
image to get familiar with both systems. After training, each
participant was given 20 minutes to generate a color sketch
with Photoshop, and another 20 minutes to generate a second
sketch with our system. Sample color sketches drawn with
our sketching system can be found in Figs. 1 and 10. As a
comparison, sample color sketches drawn with Photoshop are
also shown in Fig. 10.

b) Evaluation Stage: The evaluation consists of two parts. In
the first part, we asked the participants who had participated
in the drawing stage to complete a short questionnaire that has
four questions:

1) Rate the usefulness of our system with numbers from 1
to 5, where 1 means useless and 5 means quite useful;

2) Rate whether our system is easy to use with numbers 1
to 5. 1 means very difficult to use, and 5 means very
easy to use;

3) Compare the sketch generated using our system with the
one generated in Photoshop, and rate it with numbers
from 1 to 5, 1 for much worse, 5 for much better;

4) Additional comments.

In general, through this survey, we would like to know whether
our system is easier to use and whether it can help users create
better color sketches compared with traditional fully-manual
tools.

In the second part, we invited 30 additional subjects to evaluate
the color sketches created in the drawing stage. There were
20 pairs of color sketches in total. For each pair we put
the two sketches side-by-side in random order, and asked the
participants to choose one that is visually more appealing. And
if the subject could not decide, he/she could choose a “Tie”
option. Every participant was asked to evaluate all 20 pairs of
sketches.

c) Results: We first present the survey results in the first part
of the evaluation. We have evaluated our system in term of
usefulness, usability, as well as its helpfulness. Regarding the
usefulness and usability of our system, the mean usability
rating given by novice users is 4.6/5.0 while the same rating
given by skilled painters is 4.2/5.0; and the mean usefulness
rating given by novice users is 4.1/5.0 while the same rating
given by skilled painters is 3.4/5.0. These ratings indicate all
users agree our system is useful in producing color sketches
and it is also easy to use. In particular, novice painters found
our system more useful than skilled painters.

JOURNAL OF COMPUTER GRAPHICS AND APPLICATIONS 9

Skilled Painter
Layman

N
um

be
r

of
 V

ot
es

0

1

2

3

4

5

User Rating
1 2 3 4 5

(a) Users’ self-rating on the helpfulness of ColorSketch

ColorSketch
Photoshop
Tie

N
um

be
r

of
 V

ot
es

0

50

100

150

200

250

Layman Skilled Painter

(b) #votes received by all sketches generated with ColorSketch and
Photoshop

Fig. 9: User study results. (a) Users’ self-rating of the sketches produced with our system in comparison with those produced
with Photoshop. (b) Total number of votes received by all sketches produced with ColorSketch and Photoshop, respectively.

Fig. 10: A visual comparison of color sketches generated with Photoshop and our sketching interface during the user study.
In each vertical pair, the upper one was created with Photoshop, and the bottom one was created with ColorSketch. From left
to right, the first two columns were drawn by skilled painters while the last two were drawn by novice users.

Fig. 9a presents the self ratings of the sketches produced
with our system in comparison with the sketches produced
with Photoshop. We can see that most people, regardless of
skilled painters or painting laymen, found our system helpful
in assisting them generating color sketches. In addition, 6 out
of 10 skilled painters found that they could produce much
better results with our system. This percentage is even higher
among painting laymen. That is, 90 percent of them claimed
that better results were achieved with our system.

Next we report the user study results in the second part of
the evaluation. In 7 out of 10 pairs of color sketches created
by skilled painters, the one generated with ColorSketch is
considered better than the one generated with Photoshop. The
percentage is even higher for sketches produced by painting
laymen, which shows that all users have generated better
results with our system. Fig. 9b shows the total number of

supporting votes received by our system. In the group of
skilled painters, sketches produced with our system received
65 percent of the votes, while 80 percent of the votes went to
our system in the group of painting laymen.

To make a fairer comparison, we also asked 8 of the partic-
ipants (including 4 laymen and 4 skilled painters) to draw a
color sketch with CoreDRAW (vector based tool). All painting
laymen did not think CoreDRAW easier to use than Photoshop
for color sketches drawing since Photoshop has some tools
like “Lasso Tool” and “Quick selection Tool” which can help
them to quickly select a region for editing (adding color and
brushes) and Photoshop also has a pen tool to help them
efficiently delineate the contour as CoreDRAW provides. Most
of the skilled painters thought both CoreDRAW and Photoshop
could be used to create color sketches very conveniently since
they were skilled in using the Wacom. Though CoreDRAW

JOURNAL OF COMPUTER GRAPHICS AND APPLICATIONS 10

can be used to create vectorized images, it is not necessary
here for comparison since our ColorSketch could only create
bitmap images.

Overall, ColorSketch is shown to be able to assist users to
obtain better color sketches, and it is considered to be more
helpful for novice users. During the user study, we found that
users had difficulty in selecting proper colors and brush sizes
in Photoshop, which resulted in poor sketches. This is espe-
cially true for reference images with rich colors or complex
structural details. Choosing the right colors and brush sizes
for such images requires much time and painting knowledge.
In contrast, with our system, the user only needs to focus on
placing pencil strokes along certain region boundaries, without
worrying about brush strokes and color stylization. Of course,
experienced painters can generate better results in Photoshop
if given more time. Nevertheless, all users can save time with
our system. According to our observation, it usually takes a
novice user about 6 minutes to generate a color sketch with
our system, however, it takes an experienced painter more than
15 minutes to draw a color sketch with a similar quality.

VII. CONCLUSION AND FUTURE WORK

We presented an intelligent interface that can help users draw
color sketches more efficiently. Our interface provides two
unique features: (1) a realtime auto-completion suggestion for
drawing pencil strokes along object boundaries; and (2) a data-
driven approach for rendering colored brush strokes inside
image regions, with proper color conversion and blank area
generation. User study results suggest that users, especially
novice ones, can generate much better color sketches more
efficiently with our system than using traditional manual tools.

Our system mainly focused on generating color sketches
imitating the style of gouache paints. Utilizing the data-
driven methods to generate other style paintings is also worth
exploring in the future. What’s more, generalizing this system
to give users more artistic freedom (i.e. more color selection
and brush style, drawing parts of the objects in an image or
synthesizing different parts from multiple images) is another
direction in our future research.

ACKNOWLEDGEMENTS

The first author was supported by Hong Kong Postgradu-
ate Fellowship. This work was partially supported by Hong
Kong Research Grants Council under General Research Funds
(HKU17209714). Ying-Qing Xu was supported in part by
the National Basic Research Program of China under Grant
2012CB725300 and in part by NSFC under Grant 61373072.

REFERENCES

[1] E. Cooper, California: A Sketchbook. Chronicle Books, 2000.

[2] E. Cooper, A Year in New York. City & Co, 1995.

[3] Y. Lee, C. Zitnick, and M. Cohen, “Shadowdraw: Real-time user guidance
for freehand drawing,” ACM Transactions on Graphics (TOG), vol. 30,
no. 4, p. 27, 2011.

[4] Q. Su, W. H. Li, J. Wang, and H. Fu, “Ez-sketching: Hierarchical opti-
mization for error-tolerant image tracing,” ACM Trans. Graph., vol. 21,
no. 3, 2014.

[5] J. J. Cewu Lu, Li Xu, “Combining sketch and tone for pencil drawing
production,” in International Symposium on Non-Photorealistic Anima-
tion and Rendering, 2012.

[6] M. P. Salisbury, M. T. Wong, J. F. Hughes, and D. H. Salesin, “Orientable
textures for image-based pen-and-ink illustration,” in Proc. SIGGRAPH,
1997, pp. 401–406.

[7] K. Zeng, M. Zhao, C. Xiong, and S.-C. Zhu, “From
image parsing to painterly rendering,” ACM Trans. Graph.,
vol. 29, no. 1, pp. 2:1–2:11, Dec. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1640443.1640445

[8] A. Bousseau, M. Kaplan, J. Thollot, and F. X. Sillion, “Interactive
watercolor rendering with temporal coherence and abstraction,” in Proc.
NPAR, 2006, pp. 141–149.

[9] D. Dixon, M. Prasad, and T. Hammond, “icandraw: Using sketch recog-
nition and corrective feedback to assist a user in drawing human faces,”
in Proce. SIGCHI, 2010, pp. 897–906.

[10] S. Grabli, E. Turquin, F. Durand, and F. X. Sillion, “Programmable
rendering of line drawing from 3d scenes,” ACM Trans. Graph., vol. 29,
no. 2, 2010.

[11] E. Iarussi, A. Bousseau, and T. Tsandilas, “The drawing assistant:
Automated drawing guidance and feedback from photographs,” in ACM
Symposium on User Interface Software and Technology (UIST). ACM,
2013.

[12] L. Benedetti, H. Winnemöller, M. Corsini, and R. Scopigno, “Painting
with bob: assisted creativity for novices,” in Proceedings of the 27th
annual ACM symposium on User interface software and technology.
ACM, 2014, pp. 419–428.

[13] Y. Gingold, E. Vouga, E. Grinspun, and H. Hirsh, “Diamonds from the
rough: Improving drawing, painting, and singing via crowdsourcing,” in
Proceedings of the AAAI Workshop on Human Computation (HCOMP),
2012.

[14] A. Limpaecher, N. Feltman, A. Treuille, and M. Cohen, “Real-
time drawing assistance through crowdsourcing,” ACM Trans.
Graph., vol. 32, no. 4, pp. 54:1–54:8, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2461912.2462016

[15] D. DeCarlo and A. Santella, “Stylization and abstraction of pho-
tographs,” ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp.
769–776, 2002.

[16] J. Wang, Y.-Q. Xu, H.-Y. Shum, and M. Cohen, “Video tooning,” ACM
Transactions on Graphics (TOG), vol. 23, no. 3, pp. 574–583, 2004.

[17] F. Wen, Q. Luan, L. Liang, Y.-Q. Xu, and H.-Y. Shum, “Color sketch
generation,” in The 4th international symposium on Non-photorealistic
animation and rendering, 2006, pp. 47–54.

[18] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 5, pp. 898–916, 2011.

[19] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. ICCV, 2001, pp.
416–423.

[20] D. G. Lowe, “Organization of smooth image curves at multiple scales,”
International Journal of Computer Vision, vol. 3, no. 2, pp. 119–130,
1989.

[21] D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert, “Recovering occlu-
sion boundaries from a single image,” in 11th International Conference
on Computer Vision, ser. ICCV, 2007, pp. 1–8.

[22] J. Sethian, Level Set Methods and Fast Marching Methods. Cambridge
University Press, 1999.

JOURNAL OF COMPUTER GRAPHICS AND APPLICATIONS 11

[23] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM
Transactions on Graphics (TOG), vol. 22, pp. 313–318, 2003.

[24] S. Toledo, V. Rotkin, and D. Chen, “Taucs:a library of sparse linear
solvers. version 2.2,” Tel-Aviv University, Tech. Rep., 2003.

