The HKU Scholars Hub The University of Hong Kong 香港大學學術庫

Title	Bipolar Gold(III) Complexes for Solution-Processable Organic Light-Emitting Devices with a Small Efficiency Roll-Off
Author(s)	Tang, MC; Tsang, DPK; Wong, YC; Chan, MY; Yam, VWW
Citation	42nd International Conference on Coordination Chemistry (ICCC-42), Brest, France, 3-8 July 2016. In Poster Presentations Abstract Book, p. 551
Issued Date	2016
URL	http://hdl.handle.net/10722/243908
Rights	This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License.

Bipolar Gold(III) Complexes for Solution-Processable Organic Light-Emitting Devices with a Small Efficiency Roll-Off

Man-Chung Tang, Mei-Yee Chan,* Vivian Wing-Wah Yam* Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong kobetang@hku.hk

A new class of bipolar alkynylgold(III) complexes containing triphenylamine and benzimidazole moieties has been synthesized, characterized, and applied as phosphorescent dopants in the fabrication of solution-processable organic light-emitting devices (OLEDs). The incorporation of methyl groups in the central phenyl unit has been found to rigidify the molecule to reduce nonradiative decay, yielding a high photoluminescence quantum yield of up to 75% in spin-coated thin films. In addition, the realization of highly efficient solution-processable OLEDs with an extremely small external quantum efficiency (EQE) roll-off has been demonstrated. At practical brightness level of 1000 cd m⁻², the optimized devices exhibited a high EQE of up to 10.0% and an extremely small roll-off of less than 1%.¹

1. M.-C. Tang, D. P.-K. Tsang, Y.-C. Wong, M.-Y. Chan, V. W.-W. Yam, J. Am. Chem. Soc., **2014**, *136*, 17868.