
Title GPUNFV: a GPU-Accelerated NFV System

Author(s) Yi, X; Duan, J; Wu, C

Citation The 1st Asia-Pacific Workshop on Networking (APNet’17), Hong
Kong, 3-4 August 2017

Issued Date 2017

URL http://hdl.handle.net/10722/243236

Rights

Proceedings of APNet’17. Copyright © Association for
Computing Machinery.; ©ACM, YYYY. This is the author's
version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version
was published in PUBLICATION, {VOL#, ISS#, (DATE)}
http://doi.acm.org/10.1145/nnnnnn.nnnnnn; This work is licensed
under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/95558703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

GPUNFV: a GPU-Accelerated NFV System

Xiaodong Yi
The University of Hong Kong

xdyi@cs.hku.hk

Jingpu Duan
The University of Hong Kong

jpduan@cs.hku.hk

Chuan Wu
The University of Hong Kong

cwu@cs.hku.hk

ABSTRACT

This paper presents GPUNFV, a high-performance NFV sys-
tem providing �ow-level micro services for stateful service
chains with Graphics Processing Unit (GPU) acceleration.
GPUNFV exploits the massively-parallel processing power
of GPU tomaximize the throughput of theNFV system. Com-
bined with the customized �ow handler, GPUNFV achieves
a much better throughput than the existing NFV systems.
With a carefully designed GPU-based virtualized network
function framework, GPUNFV is able to e�ciently support
both stateful and stateless network functions. We have im-
plemented a number of GPU-based network functions and a
preliminary GPUNFV system to demonstrate the �exibility
and potential of our design.

CCS CONCEPTS

• Networks → Network design principles; Layering;

KEYWORDS

Service chain; NFV; Micro service; GPU

ACM Reference format:

Xiaodong Yi, Jingpu Duan, and ChuanWu. 2017. GPUNFV: a GPU-

Accelerated NFV System. In Proceedings of APNet’17, Hong Kong,

China, August 03-04, 2017, 7 pages.

https://doi.org/10.1145/3106989.3106990

1 INTRODUCTION

The recent trend of Network Function Virtualization (NFV)
has been a driving force for network operators to discard
customized hardware middleboxes and run various network
functions (NFs) as software instances on virtualized environ-
ments in commodity servers. NFV signi�cantly reduces the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for pro�t or commercial advantage and that copies

bear this notice and the full citation on the �rst page. Copyrights for compo-

nents of this work owned by others than ACM must be honored. Abstract-

ing with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior speci�c permission and/or

a fee. Request permissions from permissions@acm.org.

APNet’17, August 03-04, 2017, Hong Kong, China

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5244-4/17/08. . . $15.00

https://doi.org/10.1145/3106989.3106990

cost to deploy network services and enables high �exibility
when processing �uctuating network tra�c.

In the existing NFV systems [6, 7, 15, 20], virtualized net-
work functions (VNFs) are mostly running on traditional
CPU cores. Performance of VNFs when running on CPU
cores may not be ideal: for NFs that perform intensive com-
putation on the received packets, the average packet pro-
cessing time achieved using a single CPU core may be sev-
eral microseconds, limiting the maximum throughput to a
few million packets per second. To achieve line-rate packet
processing (e.g., 10Gbps), the existing VNFs distribute the
input tra�c �ows to multiple CPU cores, to exploit paral-
lelism. However, with the recent deployment of 40Gbps net-
work interface cards (NICs) in datacenters, the total number
of CPU cores that are available on a commodity server may
not provide a high enough parallelism level to support the
40Gbps packet processing rate.

GPU based packet processing acceleration has been stud-
ied in the literature [9, 13, 14, 21, 22], for building software
routers or implementing NFs such as stateless intrusion de-
tection systems (IDSs). A single GPU chip consists of thou-
sands of cores, providing massive parallelism. By delegat-
ing packet processing to GPU parallel processing, a 40Gbps
throughput can be achieved [9]. Unlike a CPU, a GPU has
thousands of uniform execution units called GPU threads.
All the GPU threads can execute the same piece of program
simultaneously, but over di�erent input data. The typical de-
sign of using GPU to accelerate packet processing is to let
the CPU prepare a batch of packets and submit these pack-
ets, together with the NF program, to the GPU. The GPU
runs the NF program on each GPU thread, processing one
of the packets contained in the packet batch. Stateless NF
processing can be well handled in this way since the order
in which packets are processed does not matter.
On the other hand, a stateful NFmaintains a �ow state for

each �ow and the packets belonging to the same �ow must
be processed according to the order that they are received.
If the packet batch submitted to the GPU contains several
�ow packets belonging to the same �ow, without a good
design, consistency of the �ow state may be compromised
due to concurrent processing of those packets by potentially
several GPU threads.
We argue that the absence of good design for stateful NF

service chain processing on GPUs is due to the lack of an ap-
propriate software abstraction to support �ow-level packet

https://doi.org/10.1145/3106989.3106990
https://doi.org/10.1145/3106989.3106990

APNet’17, August 03-04, 2017, Hong Kong, China Xiaodong Yi et al.

processing. Instead of processing one NF in one GPU and
then chaining GPUs up to ful�ll service chain processing,
we advocate deploying the entire service chain in one GPU.
This can potentially reduce the number of GPUs we need,
decrease the times for data preparing and transferring be-
tween a CPU and a GPU, and facilitate state maintenance
for individual �ows. To enable correct processing of �ows
through the entire service chain on a GPU, packets of the
same �ow should be processed through the chain of stateful
NF programs on the same GPU thread. We refer to the per
�ow service chain processing as a �ow-level micro service
chain service, which involves initiation, storage of per-�ow
NF states and bu�ering of �ow packets to construct a �ow-
level packet stream. With the �ow-level micro services en-
abled, each GPU thread can easily access packets belonging
to the same �ow for processing, and update the correspond-
ing �ow states, ensuring consistency of the �ow states at all
times.
Based on this design philosophy,we propose a novel frame-

work, GPUNFV, that e�ciently supports stateful NF service
chain processing on GPUs. GPUNFV provides micro service
chain services to individual �ows using the actor model [1].
For each �ow that needs to traverse a service chain, an actor
is constructed to process the packets in the �ow. The actor
bu�ers �ow packets to construct an in-order packet stream
for the �ow, and stores �ow states associated with NFs in
the service chain. The packet processing of each �ow actor
is then delegated to a GPU thread. Multiple service chains
are supported by using one GPU to run each service chain.
We further address the following design challenges inGPUNFV.

First, to port network functions to GPU, because of themany
limitations on programs running in GPUs, the existing NF
softwaremostly needs to be completely rewritten.We create
aGPU-basedVNF framework to facilitate this time-consuming
task. Second, with stateful NFs, we must guarantee that ev-
ery GPU thread processes packets of the same �ow in order
when the respective GPU kernel is executed. To this end, we
use a carefully designed batcher to prepare the packet batch
and the �ow state batch, implemented with page-lock mem-
ory allocated when the system is initialized. The positions
of packets in a packet batch are well organized to ensure
that each GPU thread processes the same �ow when the
GPU kernel is launched every time. Third, CPU processing
and GPU processing need to be e�ciently synchronized, as
otherwise, the CPU may always be waiting for completion
of GPU processing, leading to serious performance degra-
dation. Especially, given the extra work of preparing data
that GPU needs, the performance may be even worse than
processing using the CPU alone. We design a strategy for
dynamic sizing of a packet batch, for best synchronization
between CPU and GPU processing.

Our preliminary implementation and evaluation of GPUNFV
show that comparedwith CPU only packet processing, GPUNFV
can achieve a throughput more than 2 times higher. In addi-
tion, with our dynamic sizing of the packet batch, the wait-
ing time of CPU can be reduced to nearly 0, and the optimal
size of packet batch can be achieved in seconds.

2 BACKGROUND AND RELATED WORK

Network Function Virtualization. Much work on NFV
have been focusing on performance improvement of VNFs
to match that of the dedicated hardware network functions,
e.g., ClickOS [16] and NetVM [11]. Others design NFV man-
agement systems to boost scalability of NFV service chains,
e.g., Stratos [6], E2 [20]. All these work use CPUs for packet
processing and the maximum throughput achieved by CPU
based packet processing may not be up to the line speed of
40Gbps, due to the maximum number of CPU cores that are
available on a commodity server.
GPU and GPU based Packet Processing. A GPU [3]

typically has several graphics processing clusterswhich con-
sist of multiple streaming multiprocessors (SMs). Each SM
consists of several stream processors (SPs). All threads run-
ning on all SPs share the same program named “kernel”.
An SM works as an independent SIMT (Single Instruction
Multiple Threads) processor. The basic execution unit of an
SM is a warp, a group of threads, which share the same in-
struction pointer. One SM consists of multiple warps. All
threads running the same kernel in a warp should follow
the same code path. The threads always fetch data at some
speci�c positions in the device global memory. Those posi-
tions are always relevant to their thread identity numbers.
For a NVIDIA Titan X Pascal GPU that we use in our evalu-
ation, it has 6 graphics processing clusters and 30 SMs, each
of which consists of 128 SPs, resulting in 3584 SPs in total.
There have been a few studies exploiting GPUs to acceler-

ate packet processing. PacketShader [9] is a high-performance
software router running on GPUs, powered by a new packet
I/O engine. Snap [21] is another GPU based software router
framework, integrated with the Click modular router [15].
Kargus [12] is a high-performance IDS and employs GPUs
for pattern matching. These designs can be easily extended
to enable GPU-accelerated stateless NFs, but do not support
stateful NFs.
TheActor ProgrammingModel [1, 2, 4] has beenwidely

used to construct reliable distributed systems [17, 18]. It em-
ploys a basic execution unit, called actor, for message han-
dling and passing. Each actor is con�guredwith several mes-
sage handlers and a mailbox. To communicate with another
actor, the actor sends a message to the mailbox of the other
actor. The received messages are processed with the respec-
tive message handlers. A scheduler is used to schedule dif-
ferent actors in an operating system, so that each actor runs

GPUNFV: a GPU-Accelerated NFV System APNet’17, August 03-04, 2017, Hong Kong, China

Figure 1: Architecture of GPUNFV

as if it ran in its own thread. We have identi�ed that the ac-
tor programming model is naturally suitable to enable �ow-
level micro service chain service, and hence design our sys-
tem on the actor model.

3 THE GPUNFV FRAMEWORK

The GPUNFV system consists of two threads: (i) the CPU
management thread and (ii) the GPU computation thread.
The two threads collaborate to accomplish packet process-
ing jobs, which are periodically submitted by the CPU man-
agement thread to the GPU computation thread and exe-
cuted by the GPU computation thread. On a modern GPU
server, a GPU usually functions as an asynchronous device
that communicates with CPU through the PCIe bus. Once a
processing job is submitted to the GPU, the CPU needs to
wait for a completion signal from the GPU before submit-
ting the next job. Therefore, we need a CPU management
thread for receiving/sending packets and submitting packet
processing job to the GPU, and a GPU computation thread
that handles the actual packet processing job. Fig. 1 illus-
trates the architecture of GPUNFV.
In the CPU management thread, data packets are actively

polled from the input port using DPDK [5]. The received
data packets are immediately classi�ed into di�erent �ows
according to the traditional �ow 5-tuples (source/destination
IP addresses, source/destination ports, application layer pro-
tocol type) using a �ow classi�er. Each �ow is then delegated
to a unique �ow actor (to be discussed in Sec. 3.1), which is
responsible for storing the �ow states of NFs and temporar-
ily bu�ering the packets for GPU processing of the �ow.
Later, the �ow actors forward bu�ered packets and the cur-
rent �ow states to the batcher, which encapsulates them in
a packet processing job and further submits the job to the
GPU through theGPU proxy. The data is exchanged through
a page-lock memory (Sec. 3.2).
The GPU computation thread carries out stateful NF ser-

vice chain processing for each �ow of the submitted job on
a dedicated GPU thread. When the packet processing job

is �nished, a completion noti�cation of GPU is delivered
to the GPU proxy, together with updated �ow states. The
GPU proxy then passes the updated �ow states to respec-
tive �ow actors and replaces the out-dated �ow states in
the �ow packet batch with the corresponding updated �ow
states (see Sec. 3.3). All the processed packets are sent out
by the packet forwarder upon each completion noti�cation.

3.1 Flow Actor

Based on the actor model, we create one unique actor for
each �ow, i.e., the �ow actor. A �ow actor is created upon
the arrival of the �rst packet of a �ow and destroyed when
the �ow �nishes. Upon creation, a �ow actor initiates �ow
states associated with each NF on the service chain that the
�ow is to traverse, and stores the �ow states. The �ow ac-
tor does not process the �ow packets, but only bu�ers them
and submits them to the GPU through the batcher. Espe-
cially, when a �ow actor receives a packet, it enqueues the
packet in a queue. After the CPU management thread has
polled the input port for several times (the current batch size
of the batcher divided by the maximum number of packets
that are polled from the input port), the batcher will retrieve
enqueued packets from the �ow actors, together with the
�ow states, to construct the next packet processing job. The
�ow actor communicates with the batcher and GPU proxy
through customized message handlers.
In our prototype implementation of GPUNFV, we create

a tailored actor library to implement �ow actors, which pro-
vides basic message passing functionalities for �ow actors
to communicate with other modules in GPUNFV. We do not
use the existing actor frameworks (e.g., [2, 4]) since they are
not optimized for NFV systems. In addition, we aggressively
remove the mailbox of each actor and implement message
passing as direct function calls. This is possible because the
CPU management thread does not share data with other
threads and is contention-free.This optimization decreases
overhead associatedwithmessage passing and greatly speeds
up packet handling in GPUNFV.

3.2 Page-lock Memory

Since a GPU has its own memory and programs running
on GPUs can not directly access the CPU memory, an e�-
cient strategy for transferring data between the CPU mem-
ory and the GPU memory is important for correct data pro-
cessing with GPUs. GPUNFV utilizes the zero-copy strategy
provided by CUDA [19], which eliminates the need to copy
data between theGPUmemory and the CPUmemory before
launching the GPU kernel code.
Upon initialization, GPUNFVuses the cudaHostAlloc func-

tion [19] to allocate two sets of page-lockCPUmemory pages

APNet’17, August 03-04, 2017, Hong Kong, China Xiaodong Yi et al.

(a special kind of CPU memory pages that prevent them-
selves from being swapped to the disk) for each GPU man-
aged by GPUNFV, to store packet batches and �ow states,
respectively. A special �ag is set in the cudaHostAlloc func-
tion to map the allocated page-lock memory pages directly
into a GPU device so that the GPU can directly access the
mapped page-lock CPU memory pages as if they were GPU
memory pages. The page-lock memory pages are used for
data transfer between the batcher and the GPU proxy.

3.3 Batcher

In a GPU, one thread always fetches the data in the speci�c
position of the device memory (mapped page-lock memory
in our design), which is related to the thread’s identity num-
ber [19]. To make full use of the parallel processing capabili-
ties of a GPU and ensure that each GPU thread processes
packets of the same �ow in order, we carefully design a
packet batching strategy. The batcher traverses the list of all
�ow actorswhose queues have unprocessed packets, fetches
the packets from the queues until a batch size is reached or a
queue is empty, and places those packets into one batch. The
positions of packets from the same �ow in the batch follow
a rule: if the position of the �rst packet from �owA is a, then
the position of the second packet from the �ow is a+m, the
third packet is a + 2 ∗m, and so on. Herem is the number of
�ows whose packets appear in the batch. When the rates of
�ows are di�erent, the batcher leaves some positions empty
without a packet.

When the batch reaches a speci�c size (we design a dy-
namic sizing strategy in Sec. 3.5), the batcher copies the re-
trieved batch of packets and �ow states of each �ow to the
page-lock CPU memory pages for �ow packet batch and for
�ow states, respectively, which can then be directly accessed
by the GPU. Since the positions of consecutive packets from
the same �ow are always apart by a constantm in the packet
batch, a GPU thread can easily fetch the packets from the
same �ow easily, i.e., at a constant step of m. In this way,
GPUNFV ensures that one GPU thread only processes one
speci�c �ow in each processing job.

3.4 GPU Proxy

When the batcher has �nished �lling the �ow packet batch
and �ow states in the page-lock memory, the GPU proxy
takes control. The GPU proxy checks whether the GPU has
completed the previous processing job. If not, theGPU thread
blocks until the GPU processing job is �nished.When aGPU
processing job is done, the GPU proxy sends the processed
packets to the packet forwarder for output. If the states of
a �ow have been updated in the job, the GPU proxy checks
whether there are already �ow states of the �ow in the page-
lockmemory pages which are out-dated. If so, it replaces the
old �ow states in the memory by the updated ones. Then it

pushes all the updated �ow states back to the corresponding
�ow actor. The GPU proxy then noti�es the GPU about the
positions of the page-lock memory pages storing the �ow
packet batch and �ow states (this is a compulsory step in
CUDA [19]), before launching the GPU kernel code to start
the next GPU processing job. The GPU kernel code contains
core processing logic of VNFs on the service chain (Sec. 3.6).

3.5 Dynamic Sizing of Packet Batch

After the CPU management thread has prepared the next
�ow packet batch for processing in the page-lock memory,
the GPU processing thread may block if the previous GPU
processing job is not done yet. If the GPU thread blocking
lasts for long, incoming �ow packets to the input port may
be dropped, compromising system throughput. We design a
dynamic batch sizing strategy to address this problem: we
dynamically adjust the size of the packet batch prepared by
the batcher in each round, such that the time the CPU man-
agement thread takes for preparing the batch, to be pro-
cessed by the next GPU processing job, is slightly longer
than the GPU processing time of the current job. In this
way, the GPU thread will not block, but will fetch the batch
for the next job immediately when the batch is ready in the
page-lock memory.
To identify such an optimal batch size, we initialize the

size of the packet batch to a small value (320 is used in our
implementation). Each timewhen the GPU thread takes con-
trol and blocks, the blocking time is recorded. If the blocking
time is larger than a threshold (0.1ms is used in our imple-
mentation), the size of the packet batch is increased by a
small value (320 in our implementation).

3.6 GPUNFV API

Since we use the actor model to provide per-�ow micro ser-
vice chain services and process packets on GPUs, the NFs
running in GPUNFV must be programmed according to the
per-�ow abstraction and the runtime environment of GPU.
To facilitate programmers with this task, we provide a num-
ber of new APIs in GPUNFV, to easy developer’s task in
extracting and storing �ow states in each �ow actor, and
for constructing the GPU kernel code. Especially, the core
NF logic can be implemented in the function __device__
nf.process_pkt(input_pkt, fs), which takes as input a packet
and the current �ow state, and processes the input packet us-
ing the current �ow state. This is a CUDA function, invoked
inside a GPU.
The GPU kernel code runs uniformly on each GPU thread.

It uses the identi�er of the GPU thread to retrieve �ow pack-
ets and �ow states of a �ow from the batches in the page-
lock memory, and then sequentially calls __device__ nf. pro-
cess_pkt(input_pkt, fs) for each NF along the service chain,
for stateful NF service chain processing of the packets. Those

GPUNFV: a GPU-Accelerated NFV System APNet’17, August 03-04, 2017, Hong Kong, China

Figure 2: Throughput: GPUNFV vs. CPU-only process-

ing

threads are automatically allocated to SPs belonging to dif-
ferent SMs by CUDA [19].

4 EXPERIMENTS

We implement GPUNFV in a runtimewhich is a high-performance
user-space program enabled to use both DPDK and NVIDIA
GPU.We have implemented a number of NFs, including �re-
wall (410 LOC), load balancer (63 LOC), and �ow monitor
(159 LOC). The �rewall maintains a large number of rules
such as blocking a certain source IP address, and checks
each received packet against the rules: if the packet violates
any of the rules, a tag in the �ow state is �ipped and later
packets are automatically dropped. The �rewall also records
the TCP connection status of the �ow in the �ow state. The
�ow monitor updates an internal counter whenever it re-
ceives a packet. The load balancer allocates the �ows to dif-
ferent destinations and stores those destinations as �ow states.
Our following experiments are carried out in aMac Pro server
equipped with two 2.4GHz 6-Core Intel Xeon E5645 proces-
sors and one NVIDIA Titan X Pascal GPU.

4.1 Packet Processing Throughput

In this set of experiments, we use the �ow generator mod-
ule in BESS [8] to generate 50000 �ows at the rate about
3Mpps(packets per second). We deploy one service chain
“�owmonitor(FB)->�rewall(FW)->load balancer(LB)” to pro-
cess these �ows. The size of the packet batch is �xed to dif-
ferent values, i.e., without dynamic sizing.
In Fig. 2, we compare GPUNFV with CPU-only process-

ing, i.e., �ows processed by the service chain implemented
in each �ow actor, instead of being sent to the GPU for pro-
cessing. We vary the �xed batch size (‘kpkts’ in Fig. 2 stands
for ‘103 packets’), and observe that when the size of packet

Figure 3: Throughput of GPUNFV with multiple �ow

rates

batch is small, GPUNFV does not perform as well as CPU-
only processing, but picks up quickly when the batch size in-
creases. This is because when the batch is very small, GPU’s
powerful parallel processing capabilities are poorly utilized,
as the CPU thread always needs to wait for GPU processing
to complete. We also vary the number of rules enabled in
the �rewall, to change processing complexity of the service
chain. Fig. 2 shows that when the processing logic is more
complicated, the advantage of GPUNFV becomesmore obvi-
ous. The curves of CPU-only processing are �at, since there
is no packet batching nor copying to page-lock memory in
such scenarios.
We further compare the throughputwhen the packet rates

of �ows are all around 3Mpps and when they di�er within
the range of 20-100 pps. Fig. 3 shows that the performance
in these two cases is nearly the same, where the batch size
is �xed to 40k packets.

4.2 Processing Time

We next evaluate the time taken by the GPU thread, by the
CPU thread for packet handling and by the CPU thread due
to waiting for GPU processing completion, recorded during
a 20-second run of the system (roughly 1000-2000 process-
ing jobs are completed), and averaged over multiple runs.
We deploy the service chain “FM->FW(180rules)->LB” in this
set of experiments.
Fig. 4 shows that when the batch size is small, the CPU

processing time is relatively small; even though the GPU
thread is working all the time, a large amount of CPU time
is wasted by waiting for the GPU thread. With the increase
of batch size, the waiting time of the CPU thread drops and
CPU processing time increases.

APNet’17, August 03-04, 2017, Hong Kong, China Xiaodong Yi et al.

Figure 4: Time used by CPU and GPU threads

Figure 5: Batch sizes with dynamic batch sizing

4.3 Dynamic sizing of packet batch

We next evaluate the e�ectiveness of our dynamic batch
sizing strategy in Sec. 3.5. We deploy service chains “FM-
>FW(60rules)->LB” on one runtime and service chain “FM-
>FW(180rules)->LB” on another and generate 50000 �ows at
the total rate of 400Mpps. The initial size of the packet batch
is 320 packets. Fig. 5 shows that the batch size increases lin-
early at �rst and then becomes stable. The size is relevant to
the service chain: it takes longer to stabilize and the optimal
size is larger if the service chain is more complicated. This
is because the GPU processing time increases when the ser-
vice chain ismore complicated and a larger batch size is used
for minimizing the wasted CPU waiting time. In Fig. 6, the
throughput becomes relatively stable when the batch size
becomes optimal.

Figure 6: Throughput with dynamic batch sizing

5 CONCLUDING DISCUSSIONS

GPUNFV is a GPU-based NFV system which provides �ow-
level micro service for stateful service chain processingwith
GPU acceleration. It achieves high packet processing through-
put by maximally exploiting parallel processing capabilities
of GPUs.With the one-�owone-actor one-GPU thread based
design, GPUNFV is able to easily maintain �ow states for ev-
ery single �ow and enable stateful network functions to run
on a GPU in parallel. We design strategies such as dynamic
sizing of the packet batch and page-lock memory manage-
ment, to achieve higher performance of the whole system.
Our current GPU-based NFV framework works best for

stateful computation-intensive NFs with few branches in
the processing logic. If there are many branches, the GPU
parallel processing capabilitieswill be signi�cantly degraded.
In the future work, we plan to build a new framework which
can convert NFs with many branches into ones with little
branches while ensuring the correct logic [10] to improve
generality of GPUNFV.
When evaluating our prototype system implementation,

we notice that longer delay may be incurred by GPU based
packet processing, as compared to CPU-only processing, when
the tra�c rate is low, since the batcher and the GPU proxy
in the framework introduce additional delays. We plan to
address the issue by using CPU-only processing for low la-
tency under low tra�c rates and exploiting GPU accelera-
tion for high throughput under high tra�c rates.
Because of the hardware limitation, we carry out evalua-

tion using one server with one GPU. Our system can actu-
ally be readily running on a multi-server multi-GPU envi-
ronment. We will carry out more extensive evaluation in a
cluster of GPU servers in the near future.

GPUNFV: a GPU-Accelerated NFV System APNet’17, August 03-04, 2017, Hong Kong, China

6 ACKNOWLEDGEMENT

This work was supported in part by grants from Hong Kong
RGC under the contracts HKU 17204715, 17225516, C7036-
15G (CRF), a grant NSFC 61628209 and the HKU matching
fund. The Titan X Pascal used for this research was donated
by the NVIDIA Corporation.

REFERENCES
[1] 2010. Actor Modle. https://en.wikipedia.org/wiki/Actor_model.

(2010).

[2] 2010. Erlang. https://www.erlang.org/. (2010).

[3] 2010. GEFORCE GTX 1080. https://www.nvidia.com/. (2010).

[4] 2010. Scala Akka. akka.io/. (2010).

[5] 2015. Intel Data Plane Development Kit. http://dpdk.org/. (2015).

[6] AaronGember, Robert Grandl, AshokAnand, Theophilus Benson, and

Aditya Akella. 2012. Stratos: Virtual middleboxes as �rst-class entities.

UW-Madison TR1771 (2012), 12.

[7] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash,

Robert Grandl, Junaid Khalid, Sourav Das, and Aditya Akella. 2015.

OpenNF: Enabling innovation in network function control. ACM SIG-

COMM Computer Communication Review 44, 4 (2015), 163–174.

[8] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han,

and Sylvia Ratnasamy. 2015. SoftNIC: A software NIC to augment

hardware. Dept. EECS, Univ. California, Berkeley, Berkeley, CA, USA,

Tech. Rep. UCB/EECS-2015-155 (2015).

[9] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010. Pack-

etShader: a GPU-accelerated software router. InACMSIGCOMMCom-

puter Communication Review, Vol. 40. ACM, 195–206.

[10] Tianyi David Han and Tarek S Abdelrahman. 2011. Reducing branch

divergence in GPU programs. In Proceedings of the Fourth Workshop

on General Purpose Processing on Graphics Processing Units. ACM, 3.

[11] Jinho Hwang, KK Ramakrishnan, and Timothy Wood. 2015. NetVM:

high performance and �exible networking using virtualization on

commodity platforms. IEEE Transactions on Network and Service Man-

agement 12, 1 (2015), 34–47.

[12] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun,

Deokjin Kim, Sungryoul Lee, Yung Yi, and KyoungSoo Park. 2012. Kar-

gus: a highly-scalable software-based intrusion detection system. In

Proceedings of the 2012 ACM conference on Computer and communica-

tions security. ACM, 317–328.

[13] Anuj Kalia, Dong Zhou, Michael Kaminsky, and David G Andersen.

2015. Raising the Bar for Using GPUs in Software Packet Processing..

In NSDI. 409–423.

[14] Kang Kang and Yangdong Steve Deng. 2011. Scalable packet classi-

�cation via GPU metaprogramming. In Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2011. IEEE, 1–4.

[15] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans

Kaashoek. 2000. The Click modular router. ACM Transactions on

Computer Systems (TOCS) 18, 3 (2000), 263–297.

[16] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Mi-

chio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and

the art of network function virtualization. In Proceedings of the 11th

USENIX Conference on Networked Systems Design and Implementation.

USENIX Association, 459–473.

[17] Sanjeev Mohindra, Daniel Hook, Andrew Prout, Ai-Hoa Sanh, An

Tran, and Charles Yee. 2013. Big Data Analysis using Distributed Ac-

tors Framework. In Proc. of the 2013 IEEE High Performance Extreme

Computing Conference (HPEC).

[18] Andrew Newell, Gabriel Kliot, Ishai Menache, Aditya Gopalan, So-

ramichi Akiyama, and Mark Silberstein. 2016. Optimizing Dis-

tributed Actor Systems for Dynamic Interactive Services. In Proc. of

the Eleventh European Conference on Computer Systems (EuroSys’16).

[19] CUDA Nvidia. 2011. C programming guide version 4.0. Nvidia Corpo-

ration (2011).

[20] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda,

Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. E2: a frame-

work for NFV applications. In Proceedings of the 25th Symposium on

Operating Systems Principles. ACM, 121–136.

[21] Weibin Sun and Robert Ricci. 2013. Fast and �exible: Parallel packet

processingwith GPUs and Click. In Proceedings of the ninth ACM/IEEE

symposium on Architectures for networking and communications sys-

tems. IEEE Press, 25–36.

[22] Janet Tseng, Ren Wang, James Tsai, Saikrishna Edupuganti, Alexan-

der W Min, Shinae Woo, Stephen Junkins, and Tsung-Yuan Charlie

Tai. 2016. Exploiting integrated GPUs for network packet processing

workloads. In NetSoft Conference and Workshops (NetSoft), 2016 IEEE.

IEEE, 161–165.

https://en.wikipedia.org/wiki/Actor_model
https://www.erlang.org/
https://www.nvidia.com/
akka.io/
http://dpdk.org/

	Abstract
	1 Introduction
	2 Background and Related Work
	3 The GPUNFV Framework
	3.1 Flow Actor
	3.2 Page-lock Memory
	3.3 Batcher
	3.4 GPU Proxy
	3.5 Dynamic Sizing of Packet Batch
	3.6 GPUNFV API

	4 Experiments
	4.1 Packet Processing Throughput
	4.2 Processing Time
	4.3 Dynamic sizing of packet batch

	5 Concluding Discussions
	6 ACKNOWLEDGEMENT
	References

