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Abstract

This paper studies estimation in threshold regression with endogeneity. Three key results di¤er from

those in regular models. First, both the threshold point and the threshold e¤ect parameters are shown

to be identi�ed without the need for instrumentation. Second, in partially linear threshold models,

both parametric and nonparametric components rely on the same data, which prima facie suggests

identi�cation failure. But, as shown here, the discontinuity structure of the threshold itself supplies

identifying information for the parametric coe¢ cients without the need for extra randomness in the

regressors. Third, instrumentation plays di¤erent roles in the estimation of the system parameters,

delivering identi�cation for the structural coe¢ cients in the usual way, but raising convergence rates

for the threshold e¤ect parameters and improving e¢ ciency for the threshold point. Simulation studies

corroborate the theory and the asymptotics. An empirical application is conducted to explore the e¤ects

of 401(k) retirement programs on savings, illustrating the relevance of threshold models in treatment

e¤ects evaluation in the presence of endogeneity.
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1 Introduction

In recognition of potential shifts in economic relationships, threshold models have become increasingly pop-

ular in econometric practice both in time series and cross section applications. A typical use of thresholds in

time series modeling is to capture asymmetric e¤ects of shocks over the business cycle (e.g., Potter, 1995).

Other time series applications involving threshold autoregressive modeling of interest arbitrage, purchasing

power parity, exchange rates, stock returns, and transaction cost e¤ects are discussed in a recent overview

by Hansen (2011). Threshold models are particularly common in cross sectional applications. For example,

following a seminal contribution by Durlauf and Johnson (1995) on cross country growth behavior, Hansen

(2000) showed how growth patterns of rich and poor countries can be distinguished by thresholding in

terms of initial conditions relating to per capita output and adult literacy. Much of the relevance of thresh-

old modeling in empirical work is explained by the preference policy makers and administrators have for

threshold-related policies. For example, tax rates and welfare programs are commonly designed to depend

on threshold income levels, merit-based university scholarships often depend on threshold GPA levels, and

need-based aid programs generally depend on threshold levels of family income.

The usual threshold regression model splits the sample according to the realized value of some observed

threshold variable q: The dependent variable y is determined by covariates x =(1; x0; q) 2 Rd+1 in the
split-sample regression

y = x0�11 (q � 
) + x0�21 (q > 
) + ";

where d is the dimension of the nonconstant covariates (x; q), the indicators 1 (q � 
) and 1 (q > 
) de�ne
two regimes in terms of the value of q relative to a threshold point given by the parameter 
; the coe¢ cients

�1 and �2 are the respective threshold parameters, and " is a random disturbance. The model is therefore

a simple nonlinear variant of linear regression and can conveniently be rewritten as

y = x0� + x0�1 (q � 
) + "; (1)

with regression coe¢ cient � = �2 and discrepancy coe¢ cient � = �1��2. The central parameters of interest
are � �

�
�0; �0; 


�0
.

An asymptotic theory of estimation and inference is now fairly well developed for linear threshold models

such as (1) with exogenous regressors � see Chan (1993), Hansen (2000), Yu (2012) and the references

therein. In this framework, x is typically taken as exogenous in the sense that the orthogonality condition

E["jx; q] = 0 holds, thereby enabling least squares estimation which can be used to consistently estimate �
and facilitate inference. While the assumption is convenient, exogeneity is often restrictive in practical work

and limits the range of suitable empirical applications of modeling with threshold e¤ects. For instance, the

empirical growth models used in Papageorgiou (2002) and Tan (2010) both su¤er from endogenous regressor

problems, as argued in Frankel and Romer (1999) and Acemoglu et al. (2001). Endogenous regressor issues

also arise in treatment e¤ect models where there are often important policy implications, as evidenced in

the empirical application to tax-deferred savings programs considered later in the paper. In fact, whenever

endogeneity in the regressors is relevant in a linear regression framework, it will inevitably be present in the

corresponding threshold model under the null of zero discrepancy.

Endogeneity is considered in some existing work on this topic. For instance, Caner and Hansen (2004)

use the asymptotic framework of Hansen (2000), where � shrinks to zero, to explore the case where q is

exogenous but x may be endogenous. In the same framework, except that q may also be endogenous,

Kourtellos et al. (2009) consider a structural model with parametric assumptions on the data distribution

and apply a sample selection technique (Heckman, 1979) to estimate 
. Kapetanios (2010) tests exogeneity
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of the instruments used in threshold regression by bootstrapping a Hausman-type test statistic within the

Hansen (2000) framework. The common solution to the endogeneity problem in all this work is to employ

instruments and to apply two-stage-least squares (2SLS) estimation, just as in linear regression (For related

work on 2SLS estimation of structural change regression without thresholding, see Boldea et al. (2012),

Hall et al. (2012) and Perron and Yamamoto (2012a)). However, Yu (2013a) shows that three typical

2SLS estimators of 
 are generally inconsistent. This �nding motivates us to search for general consistent

estimators of 
. One of the main contributions of the present paper is to show that when only 
 and �

are of interest, as in the typical case,1 these parameters are both identi�ed even without instruments. This

result has meaningful signi�cance to practitioners since good instruments are often hard to �nd and justify

in practical work. A second contribution of the paper is to show how the parameters may be consistently

estimated and inference conducted, thereby opening up many potential empirical applications.

Throughout the paper we assume that � is �xed as in Chan (1993) and the data are i.i.d. sampled. If

E["jx; q] 6= 0, we can write model (1) in the form

y = m(x; q) + e = g(x; q) + x0�1 (q � 
) + e; (2)

where m(x; q) = g(x; q) +x0�1 (q � 
), g(x; q) = x0� +E["jx; q] is any smooth function, and e = "�E["jx; q]
satis�es E [ejx; q] = 0. This formulation falls within the framework of the general nonparametric threshold
model

y = g(x; q) + �(x; q)1 (q � 
) + e; (3)

where g(�) and �(�) are smooth functions. The special feature of (2) is that the jump size function �(�) at
the threshold point has the linear parametric form x0�.

Estimation of the threshold parameter 
 in nonparametric regression is presently an unresolved problem

in the literature. Our approach introduces a new estimator called the integrated di¤erence kernel estimator

(IDKE) that can be used to produce a consistent estimator of 
 irrespective of whether q is endogenous.

Moreover, the construction of this estimator does not depend on the linearity feature that �(x; q) = x0� in

(2) so that the method can be applied in the general nonparametric threshold regression model (3). More

strikingly, we show that this estimator is n-consistent and has a limiting distribution similar to the least

squares estimator (LSE) when the exogeneity condition E["jx; q] = 0 holds. The approach makes use of

the jump information in the vicinity of the threshold point to identify 
, so that only the local information

around 
 is used for identi�cation. Jumps such as those in (2) and (3) produce a form of nonstationarity in

the process which can be used to aid identi�cation and estimation. In this sense, the feasibility of consistent

estimation without explicit instrumentation relates to recent �ndings by Wang and Phillips (2009, 2015)

and Phillips and Su (2011) who show that nonparametric relationships involving nonstationary shifts are

identi�ed without instruments and can be consistently estimated by using only local information.

Given a consistent estimator of the threshold parameter 
, we propose two estimators of � that are

suggested from the partial linear model structure of (2) that applies for known 
:2 An important di¤erence

between (2) and the usual partial linear structure is that both parametric and nonparametric components

of m(x; q) = g(x; q) + x0�1 (q � 
) rely on the same data (x; q): It is well-known that extra randomness
beyond (x; q) is usually required in the linear regressors of a partial linear model to ensure a su¢ cient signal

to identify the linear coe¢ cients: In the present model the linear component x01 (q � 
) is fully determined
by (x; q) given 
; a fact that may prima facie suggest identi�cation failure. However, the key argument for

1See Yu and Zhao (2013) for an example in treatment e¤ects evaluation.
2 In the notation of Robinson (1988), Z = (x0; q), X = x01 (q � 
), � = � and � (Z) = g(x; q).
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identi�cation failure is that the systematic part of the model (2) can be written as

m (x; q) = x0�1 (q � 
) + g(x; q) = [x0�1 (q � 
) + �(x; q)] + [g(x; q)� �(x; q)]

for all �(x; q), suggesting that the (partial linear) component x0�1 (q � 
) cannot be separated from g(x; q)

in the composite function m (x; q). But this argument assumes that �(x; q) is smooth (as is assumed for

the nonparametric component g(x; q)) and it ignores the identifying information for � in the discontinuity

structure of the component x0�1 (q � 
) that arises from the jump in m(x; q) at q = 
. It is this jump

discontinuity that assures identi�cation of the linear coe¢ cients �:

Although the coe¢ cient vector � is identi�ed, our two estimators do not achieve the usual semiparametric
p
n rate since these estimators use only local information in the neighborhood of q = 
. Further, the usual

semiparametric consistency proof (Robinson, 1988) relies on the assumption that E [x0�1 (q � 
) jx; q] is
smooth in (x0; q)0, but smoothness fails in the present case and the usual proof is no longer applicable.

Instead, the new proof provided here is based on projections of U-statistics. A �nal contribution of the

paper is to show that the optimal rate of convergence of � is nonparametric, i.e., slower than
p
n, and that

this rate is achieved by our suggested estimators. Section 3.3 of Porter (2003) and Section 2 of Yu (2010)

contain some related discussion on this point in the simple case where q is the only covariate.

When instruments are available, the coe¢ cients � can be estimated at a
p
n rate. In this case, for the

linear endogenous threshold model (1), � can also be estimated at a
p
n rate. So the role of instruments

in the model (1) is to provide identi�cation for � and to improve the convergence rate of estimates of �.

As for the threshold parameter 
 in (1), our results show that 
 can be estimated at the rate n even if no

instruments are available - so instruments have no import on this convergence rate. Instead, as with the

earlier �nding in Yu (2008), the role of instrumentation for 
 is not to improve the convergence rate or to

provide identi�cation, but to improve e¢ ciency. In summary, instrumentation plays di¤erent roles in the

estimation of the system parameters �, � and 
: only for � do instruments have the conventional role of

delivering identi�cation, whereas for � and 
 the presence of instruments serves to improve convergence rates

or e¢ ciency.

A brief simulation study is included to test the adequacy of the asymptotic theory of the estimation

procedures in �nite samples in the presence of threshold e¤ects and endogeneity. The results con�rm that

the IDKE estimation procedure has good bias and root mean squared error properties in �nite samples. An

empirical application is conducted to explore the e¤ects of 401(k) retirement programs on savings, giving

particular attention to the important policy question of whether contributions to tax-deferred retirement

plans represent additional savings or simply crowd out other types of savings, and illustrating the relevance

of threshold models in treatment e¤ects evaluation in the presence of endogeneity.

The remainder of the paper is organized as follows. In Section 2, we construct estimators of 
 and �

and derive their limit distributions. Section 3 investigates the role of instruments. Section 4 covers some

extensions and simpli�cations of our analysis. Section 5 reports the results of some �nite sample simulations.

Section 6 presents an empirical application to explore the e¤ects of 401(k) retirement programs on savings.

Section 7 concludes. Proofs with supporting propositions and lemmas are given in Appendices A, B and C,

respectively. A Supplement to the paper contains additional material, derivations, and proofs of subsidiary

results.

A word on notation. The letter C denotes a generic positive constant whose value may change in

each occurrence. The parameters � and � are partitioned conformably with the intercept and variables as�
��; �

0
x; �q

�0
and

�
��; �

0
x; �q

�0
. The symbol ` is used to indicate the two regimes in (1), and is not written out

explicitly as �̀ = 1; 20 except in Section 6 where there are three regimes. We use f; fxjq; and fq for the joint,
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conditional, and marginal probability densities of (x; q) ; xjq; and q; respectively; k�k denotes the Euclidean
norm unless otherwise speci�ed; and � signi�es that higher-order terms are omitted or a constant term is

omitted, depending on the context.

2 The Integrated Di¤erence Kernel Estimator (IDKE)

This section introduces a new methodology for consistently estimating 
 and � when instruments are absent.

The method involves a nonparametric kernel estimator that we call the integrated di¤erence kernel estimator

(IDKE) A related estimator of 
 that is already in the literature is the di¤erence kernel estimator (DKE)

of Qiu et al. (1991) where q is the only covariate. When there are additional covariates as in our setup,

Delgado and Hidalgo (2000) suggested that the DKE continue to be used to estimate 
. In the supplementary

materials, we explain some di¢ culties that arise in applying the DKE in the current case; we also explain

the di¢ culties in applying other estimators such as the LSE and the partial linear estimator (PLE). In the

following discussion, we concentrate on describing the construction of the IDKE, developing the limit theory

for the IDKE and associated coe¢ cient estimates, and providing an intuitive rationale for the identi�cation

and consistent estimation of 
 and � without instruments.

2.1 Construction of the IDKE of 


To construct the IDKE of 
, we start by de�ning a generalized kernel function, following Müller (1991).

De�nition: kh(�; �) is called a univariate generalized kernel function of order p if kh(u; t) = 0 if u > t or
u < t� 1 and for all t 2 [0; 1],

Z t

t�1
ujkh(u; t)du =

(
1;

0;

if j = 0;

if 1 � j � p� 1:

A popular example of a generalized kernel function is as follows. De�ne

Mp ([a; b]) =

(
g 2 Lip ([a; b]) ;

Z b

a

xjg(x)dx =

(
1;

0;

if j = 0;

if 1 � j � p� 1

)
;

where Lip([a; b]) denotes the space of Lipschitz continuous functions on [a; b]. De�ne k+(�; �) and k�(�; �) as
follows:

(i) The support of k�(x; r) is [�1; r]� [0; 1] and the support of k+(x; r) is [�r; 1]� [0; 1].

(ii) k�(�; r) 2Mp ([�1; r]) and k+(�; r) 2Mp ([�r; 1]) :

(iii) k+(x; r) = k�(�x; r).

(iv) k�(�1; r) = k+(1; r) = 0.

(iv) implies that k�(�; r) is Lipschitz on (�1; r] and k+(�; r) is Lipschitz on [�r;1). This assumption is
important in deriving the asymptotic distribution of the IDKE of 
; see Section 4.2.2 of Porter and Yu (2011)

for some related discussion in the DKE case.

To simplify the construction of kh(u; t), the following constraints are imposed on the support of x and

the parameter space.
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Assumption S: (y; x0; q)0 2 R � X � Q � Rd+1, X = [0; 1]d�1, Q = [q; q], and 
 2 � = [
; 
] � Q,
� 2 � � Rd+1, where q can be �1 and q can be 1, and � and � are compact.

Since �0 is assumed to be �xed, we work with the discontinuous threshold regression of Chan (1993) instead

of the small-threshold-e¤ect framework of Hansen (2000). We do not restrict �0 6= 0 in Assumption S, where
6= here means that at least one element is unequal; a more explicit version of the non-zero restriction on �0
is imposed in Assumption I of Section 2.2 below. We assume x is continuously distributed, but note that

continuous and discrete components may be dealt with, at least in a conceptually straightforward manner

by using the continuous covariate estimator within samples homogeneous in the discrete covariates, at the

expense of much additional notation. Requiring the support of x to be [0; 1]d�1 is not restrictive and can be

achieved by the use of some monotone transformation such as the empirical percentile transformation. The

compactness assumption on X simpli�es the proof and may be relaxed by imposing restrictions on the tail

of the distribution of x.

De�ne

k(�) = k+(�; 1) = k�(�; 1) 2Mp ([�1; 1]) , kh(u) = k(u=h)=h;
k+(�) = k+(�; 0) 2Mp ([0; 1]) , k

+
h (u) = k+(u=h)=h;

k�(�) = k�(�; 0) 2Mp ([�1; 0]) , k�h (u) = k�(u=h)=h;

and

kh(u; t) =

8><>:
1
hk
�
u
h

�
;

1
hk+

�
u
h ;

t
h

�
;

1
hk�

�
u
h ;

1�t
h

�
;

if h � t � 1� h;
if 0 � t � h;
if 1� h � t � 1:

: (4)

Then, kh(u; t) is a generalized kernel function of order p. We may construct a corresponding multivariate

generalized kernel function of order p by taking the product of univariate generalized kernel functions of

order p. We will only need kh(u; t) to be a �rst order kernel function to estimate 
.3 Formally, we require

Assumption K: kh(u; t) takes the form of (4) with p = 1 and k+(0) = k�(0) > 0.

The condition k+(0) = k�(0) > 0 di¤ers from that in Delgado and Hidalgo (2000). The following subsection

discusses the impact of this condition on the asymptotic distributions of estimators of 
.

Given kh(u; t), the IDKE of 
 is constructed as the extremum estimator

b
 = argmax



1

n

nX
i=1

24 1

n� 1

nX
j=1;j 6=i

yjK

�
h;ij �

1

n� 1

nX
j=1;j 6=i

yjK

+
h;ij

352 (5)

� argmax



1

n

nX
i=1

b�2i (
) � argmax



bQn (
) ;
where

K
+
h;ij =

Yd�1

l=1
kh(xlj � xli; xli) � k+h (qj � 
) � K

x
h;ijk

+
h (qj � 
) ;

K
�
h;ij =

Yd�1

l=1
kh((xlj � xli; xli) � k�h (qj � 
) � K

x
h;ijk

�
h (qj � 
) ;

3Note here that the usual symmetric kernel is a second order kernel, but the boundary kernel is only a �rst order kernel
because

R
ukh(u; t) 6= 0,
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with

Kx
h;ij =

Yd�1

l=1
kh(xlj � xli; xli) � Kx

h (xj � xi; xi) �
1

hd�1
Kx

�
xj � xi
h

; xi

�
:

For notational convenience, we here use the same bandwidth for each dimension of (x0; q)0; although there

may be some �nite sample improvement from using di¤erent bandwidths in each dimension. From Yu (2008),

it is known that to �nd b
 we need only check the middle points of the contiguous qi�s in the optimization
process. In other words, the argmax operator (or argmin operator in Theorem 1 which gives the asymptotic

distribution of b
) is a middle-point operator. The summation in the parenthesis of (5) excludes j = i, which is
a standard strategy in converting a V-statistic to a U-statistic. Also, the normalization factor

Pn
j=1;j 6=iK


�
h;ij

does not appear in the construction of b
, thereby avoiding random denominator issues in conditional mean

estimation and simplifying the derivation of the limit distribution of b
, a technique that dates back at least
to Powell et al. (1989). This form of b
 has some practical advantages especially when d is large. Since the
conditional mean is estimated at the boundary point q = 
, the local linear smoother (LLS) or the local

polynomial estimator (LPE) might be considered to ameliorate bias. However, when d is large, there are not

many data points in a h neighborhood of (x0i; 
)
0. As a result, not only does the LLS lose degrees of freedom

(by estimating more parameters) but its denominator matrix tends to be close to singular. Furthermore,

di¤erent from the regular parameter (such as the conditional mean) estimation, use of the LLS does not

a¤ect the �rst-order asymptotic distribution of b
.
The objective function in (5) may be viewed as a nonparametric extension of the objective function of

the parametric LSE of 
. With some preliminary algebra, it can be shown that the parametric LSE of 


satis�es

b
PLSE = argmax



�b�0X0
� h
X (X0X)

�1
X0
>
X>
 (X

0X)
�1
X0
�
X�
 (X

0X)
�1
X0
i �
Xb�� ;

where b� is the LSE of � based on the splitting of 
, and X, X�
 and X>
 are n � (d + 1) matrices that
stack the vectors x0i, x

0
i1(qi � 
) and x0i1(qi > 
), respectively. The objective function of b
PLSE uses the

weighted average form of Xb� which is the conditional mean di¤erences at all xi�s.4 The weights in (5) are
essentially given by f(xi; 
) (the probability limit of n�1

Pn
j=1;j 6=iK


�
h;ij), so that greater weight is placed on

the conditional mean di¤erence when there is more data around (x0i; 
)
0. This weighting scheme is intuitively

appealing for estimating the threshold parameter 
:

2.2 Limit Theory for the IDKE

We start with some intuitive discussion on the validity of b
. For this purpose, we impose the following
assumptions on the distribution of (x0; q)0 and on g(x; q).

Assumption F: The density f(x; q) of (x; q) is Lipschitz and satis�es 0 < f � f(x; q) � f < 1 for

(x; q) 2 X � ��, where �� �
�

 � �; 
 + �

�
for some � > 0 and some �xed quantities (f; f):

Assumption G: g(x; q) is Lipschitz on X � ��.

Assumption F implies that 0 < f
q
� fq(
) � fq < 1 for 
 2 �� and �xed

�
f
q
; fq

�
; and the conditional

density fxjq(xjq) is bounded below and above for (x; q) 2 X � ��. The �rst part of Assumption F implies
that there are no discrete covariates in x. As mentioned earlier in the remarks following Assumption S, this

4To show the weights more clearly, let x = 1. Then the objective function is equivalent to b� �n1
n
� n2
n

�b�, where n1 =Pn
i=1 1(qi � 
), and n2 = n � n1. If x = x, then the weights are

Pn
i=1 x

2
i 1(qi�
)Pn

i=1 x
2
i

Pn
i=1 x

2
i 1(qi>
)Pn

i=1 x
2
i

XX0Pn
i=1 x

2
i

, where X =

(x1; � � � ; xn)0.
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assumption is made for simplicity, just as in Robinson (1988), and is not critical to the methodology or the

limit theory. The second part of Assumption F implies that 
0 is not on the boundary of Q. Under these
two assumptions, we expect the objective function bQn (
) to converge to
E
h
fE[yjx; q = 
+]f(x; 
)� E[yjx; q = 
�]f(x; 
)g2

i
=

Z
(E[yjx; q = 
+]� E[yjx; q = 
�])2 f(x; 
)2f(x)dx:

Since f(x) and f(x; 
) are continuous in x and 
, there will be a jump in the limit only if 
 = 
0 which

provides identifying information. As a result, the threshold point can be identi�ed and consistently estimated

by maximizing bQn (
). Given that E[yjx; q = 
0+] � E[yjx; q = 
0�] = (1; x0; 
0) �0, we need the following
assumption to identify 
0.

Assumption I: (1; x0; 
0) �0 6= 0 for x in some set of positive Lebesgue measure in X .

Note that �0 6= 0 is not su¢ cient to satisfy Assumption I. For example, �0 =

8<:
�
1;0;� 1


0

�0
;

(0;0; 1)0;

if 
0 6= 0;
if 
0 = 0;

is nonzero but does not satisfy Assumption I. The stated condition implies that P ((1; x0; 
0) �0 6= 0) > 0,

which excludes the continuous threshold regression of Chan and Tsay (1998).

To facilitate expression of the limit distribution of b
, we de�ne the following quantities
z1i =

h
2 (1; x0i; 
0) �0ei + �

0
0 (1; x

0
i; 
0)

0
(1; x0i; 
0) �0

i
f(xi; 
0)f(xi);

z2i =
h
�2 (1; x0i; 
0) �0ei + �00 (1; x0i; 
0)

0
(1; x0i; 
0) �0

i
f(xi; 
0)f(xi):

Here, z1i represents the e¤ect on bQn(
) when the threshold point is displaced on the left of 
0, and z2i
represents the converse. If we assume f(ejx; q) is continuous in x and q, then z`i and qi have a continuous
joint density fz`;q(z`; q). We now de�ne z1i = lim�"0 z1i1 f
0 +� < qi � 
0g, the limiting conditional value
of z1i given 
0 + � < qi � 
0, � < 0 with � " 0, and z2i = lim�#0 z2i1 f
0 < qi � 
0 +�g, the limiting
conditional value of z2i given 
0 < qi � 
0 + �, � > 0 with � # 0. It follows that the density of the
quantity z`i is fz`;q(z`; 
0)=fq(
0), the conditional density of z` given q = 
0. The following assumption

allows f(ejx; q) to be discontinuous at q = 
0.

Assumption E:
(a) f(ejx; q) is continuous in e for (x0; q)0 2 X � ��� and (x0; q)

0 2 X � �+� , where ��� = (
 � �; 
0] and
�+� = (
0; 
 � �) for some � > 0.
(b) f(ejx; q) is Lipschitz in (x0; q)0 for (x0; q)0 2 X � ��� and (x0; q)

0 2 X � �+� .
(c) E[e4jx; q] is uniformly bounded on (x0; q)0 2 X � ��, where �� = ��� [ �+� .

Given Assumption E, we impose the following conditions on the bandwidth h.

Assumption H: h! 0 and
p
nhd= lnn!1.

Observe that nhd =
p
n lnn

p
nhd

lnn ! 1 when
p
nhd= lnn ! 1. The limit distribution of b
 is given in the

next result.

Theorem 1 Under Assumptions E, F, G, H, I, K and S,

n (b
 � 
0) d�! argmin
v
D(v)

7



where

D (v) =

8>><>>:
N1(jvj)P
i=1

z1i, if v � 0;
N2(v)P
i=1

z2i, if v > 0;

is a cadlag process with D(0) = 0, fz1i; z2igi�1, N1(�) and N2(�) are independent of each other, and N` (�) is
a Poisson process with intensity fq(
0).

The intuition for the rate n consistency of b
 is similar to that given in Porter and Yu (2011) where the
DKE is considered and q is the only covariate; see the supplementary materials for a brief summary. If we

neglect the factor f(xi; 
0)f(xi) in z`i, the asymptotic distribution is the same as that of the LSE in the

parametric model, see Section 4.1 of Yu (2008). The factor f(xi; 
0) appears in the limit theory because the

random denominator in the kernel has been eliminated in estimating the jumps of E [yjx; q]; see (5). If the
LLS is used in the construction of b
, the factor f(xi; 
0) will not appear. The factor f(xi) appears because
the summation in (5) is over all the xi�s, and the U-statistic projection generates the marginal density of x.

We remark that this theorem is relevant in very general frameworks. For example, it applies irrespective

of whether q is endogenous. It also applies to nonparametric threshold regression with endogeneity and

nonadditive errors, that is modifying (1) to

y = g1(x; q; "1)1(q � 
) + g2(x; q; "2)1(q > 
);

where g1 and g2 are di¤erent smooth functions and "1 and "2 are error terms with E["`jx; q] 6= 0. The only
di¤erence in the asymptotic distribution in this case is that the jump size at (x0i; 
0)

0 in z`i changes from

(1; x0i; 
0) �0 to the corresponding nonparametric form E[g1(xi; qi; "1i)jxi; qi = 
0] � E[g2(xi; qi; "2i)jxi; qi =

0].

For comparison, we state the following corollary for the asymptotic distribution of the DKE

e
 = argmax



b�2o (
) ;
where b�o (
) = 1

n

nX
j=1

yjK

�
h;j � 1

n

nX
j=1

yjK

+
h;j with

K
�
h;j =

Yd�1

l=1
kh(xlj � xol; xol) � k�h (qj � 
) , K


+
h;j =

Yd�1

l=1
kh(xlj � xol; xol) � k+h (qj � 
) ;

and where xo is some �xed point in the interior of X . As explained in the supplementary materials, selection
of xo is di¢ cult from both theory and practical perspectives. As distinct from the DKE, the IDKE procedure

integrates the jump information over all xi�s, thereby removing the problem of choosing xo. Further, use of

all the data ensures that the IDKE has greater identifying capability than the DKE. For ease of expression

in the following corollary, de�ne K (ux) =
Qd�1
l=1 k(uxl).

Corollary 1 Suppose (1; x0o; 
0) �0 6= 0 and d > 1. Then, under the same assumptions as in Theorem 1,

nhd�1 (e
 � 
0) d�! argmin
v
D(v);
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where

D(v) =

8>><>>:
N1(jvj)P
i=1

z1i, if v � 0;
N2(v)P
i=1

z2i, if v > 0;

is a cadlag process with D(0) = 0, z1i =
�
2 (1; x0o; 
0) �0e

�
i + �

0
0 (1; x

0
o; 
0)

0
(1; x0o; 
0) �0

�
K(U�i ) with e

�
i

following the conditional distribution of ei given xi = xo and qi = 
0� and U�i following the uniform

distribution on the support of K(�), z2i =
�
�2 (1; x0o; 
0) �0e+i + �

0
0 (1; x

0
o; 
0)

0
(1; x0o; 
0) �0

�
K(U+i ) with e

+
i

following the conditional distribution of ei given xi = xo and qi = 
0+ and U
+
i following the same distribution

as U�i ,
�
e�i ; e

+
i ; U

�
i ; U

+
i

	
i�1, N1(�) and N2(�) are independent of each other, and N` (�) is a Poisson process

with intensity 2d�1f(xo; 
0).

When d > 1, the convergence rate of e
 is slower than n although its asymptotic distribution is still related
to the compound Poisson process. This is because less data is used in the estimation of 
. Nevertheless,

the convergence rate is still faster than that of Delgado and Hidalgo (2000). In their setup in terms of

the DKE, k+(0) = k�(0) = 0,5 so that data in the neighborhood of 
0 are not used in estimating 
0.

Their convergence rate is
p
nhd�2 and the relative rate

p
nhd�2=nhd�1 = 1=

p
nhd ! 0. Compared to the

asymptotic distribution of b
, xi in z`i is changed to xo, the distribution of ei is conditional on xi = xo and
qi = 
0 rather than only on qi = 
0, and the intensity of N` (�) is related to f(xo; 
0) rather than fq(
0).
Those changes occur because only data in the neighborhood of xo is used to estimate the threshold point.

The appearance of U�i in z`i may at �rst appear mysterious. But note that the conditional distribution of

(xi � xo) =h given that it falls in the support of K(�) converges to a uniform distribution, which leads directly
to the presence of U�i in z`i: The factor 2d�1 in the intensity of N` (�) measures the volume of the support of
K(�):When the support of K(�) is large, more data is used in estimation and the intensity is larger. However,
use of K(�) with a larger support may not add e¢ ciency to e
 since K(U�i ) in z`i tends to be smaller. To
consider a simpler form of the limit process D(v), let K(�) be a uniform kernel on [�1=2; 1=2]d�1, in which
case both K(U�i ) in z`i and 2

d�1 in the intensity of N` (�) disappear.
When d = 1 (that is when there are no other covariates except q), Porter and Yu (2011) derive the

asymptotic distribution of the DKE. In that case, the convergence rate is nhd�1 = n, z1i = 2 (1; 
0) �0e
�
i +

�00 (1; 
0)
0
(1; 
0) �0 with e

�
i following the conditional distribution of ei given qi = 
0�, z2i = �2 (1; 
0) �0e

+
i +

�00 (1; 
0)
0
(1; 
0) �0 with e

+
i following the conditional distribution of ei given qi = 
0+, and the intensity of

N` (�) is changed to fq(
0). This asymptotic distribution then matches both that of e
 and b
 as d = 1.6
2.3 Estimation of �

Given b
, we can estimate � as if 
0 were known. Due to the superconsistency of b
, the asymptotic distribution
of our estimator b� is una¤ected by the estimation of 
 and is the same as when 
0 is known. We provide
two estimators of �, both of which are based on the observation that

m�(x)�m+(x) � E[yjx; q = 
0�]� E[yjx; q = 
0+] = ��0 + x0�x0 + 
0�q0: (6)

5This assumption guarantees that the DKE is asymptotically normally distributed. Moreover, the convergence rate requires
further conditions on the derivatives that k0+(0) > 0 and k

0
�(0) < 0. Otherwise, the convergence rate is even slower.

6 In (2), if we neglect the data on x, the relationship between y and q is y = E[g(x; q)jq] + E[x0�jq]1(q � 
) + v with
v = e + g(x; q) � E[g(x; q)jq] + (x0� � E[x0�jq]) 1(q � 
) satisfying E[vjq] = 0. From Porter and Yu (2011), in the limit
distribution of the DKE, z1i = 2E[x0�jq = 
0]v

�
i + (E[x

0�jq = 
0])
2 and z2i = �2E[x0�jq = 
0]v

+
i + (E[x

0�jq = 
0])
2 with v�i

similarly de�ned as e�i , so E[z`i] = (E[x0�jq = 
0])
2. On the other hand, if we neglect f(xi; 
0)f(xi) in the limit distribution

of the IDKE, E[z`i] = E[(x0�)
2 jq = 
0] � (E[x0�jq = 
0])

2, i.e., the average jump size in D(�) of the IDKE is larger than that
in D(�) of the DKE, which indicates that the IDKE is more e¢ cient than the DKE.
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The �rst estimator of � is the IDKE. From (6), �x0 and �q0 are the slope di¤erences of E[yjx; q] at the
left and right neighborhoods of q = 
0, so �xq0 � (�0x0; �q0)0 can be identi�ed using

b�xq = 1

nh

nX
i=1

k

�
qi � b

h

��bb�(xi)�bb+(xi)�, 1

nh

nX
i=1

k

�
qi � b

h

�
;

where bb�(xi) is the local polynomial estimator (LPE) of (@E[yijxi; qi = 
0�]=@x0; @E[yijxi; qi = 
0�]=@q)0.
Also, from (6),

��0 = m�(x)�m+(x)� (x0; 
0) �xq0

at any x, so ��0 can be identi�ed using

b�� = 1

nh

nX
i=1

k

�
qi � b

h

�hba�(xi)� ba+(xi)� (x0i; b
)b�(xi)i
,

1

nh

nX
i=1

k

�
qi � b

h

�
;

where ba�(xi) is the LPE of m�(xi), and b�(xi) = bb�(xi)�bb+(xi). To be speci�c, the LPE �ba+(xi);bb+(xi)0�0
is the �rst (d+ 1) elements of the solution to

min
�

nX
j=1;j 6=i

�
yj � (x0j � x0i; qj � b
)Sp��2Kb
+

h;ij ;

where for a row vector � 2 Rd, �Sp = (�S(�))�2f0;��� ;pg is a row vector, �
S(�) = (�s)jsj=� is a row vector of

length (� + d� 1)!=�!(d�1)!, s = (s1; � � � ; sd) is a vector with all its elements being nonnegative integers, the
norm of s is de�ned as jsj � s1 + � � � sd, and �s = �s11 � � � �

sd
d = (s1! � � � ; sd!). For convenience, we assume that

f(s1; � � � ; sd)g in the de�nition of �Sp are ordered lexicographically.
�ba�(xi);bb�(xi)0�0 is similarly de�ned

with Kb
+
h;ij replaced by K

b
�
h;ij , where K


�
h;ij is de�ned in (5).

If 
0 were known, this model can also be treated as a regression discontinuity design with covariates. In

this case, we are interested in the treatment e¤ect at q = 
0, say,

�0 = E [m�(x)�m+(x)] ;

which can be estimated as

b� = 1

nh

nX
i=1

k

�
qi � b

h

�
[ba�(xi)� ba+(xi)], 1

nh

nX
i=1

k

�
qi � b

h

�
:

From Theorem 3 of Heckman et al. (1998), ba�(xi) and bb�(xi) are asymptotically linear, so the numerators
of b� = �b��;b�0xq�0 and b� are asymptotically U-statistics. To ensure the validity of the linear approximation,

we need the following conditions which strengthen assumptions G and H.

Assumption G0: g(x; q) is (p+ 1)-times continuously di¤erentiable on X � �� with p > d.

Assumption H0: h! 0,
p
nhh!1,

p
nhhp+1 ! C 2 [0;1), and

p
nhd= lnn!1.

Note from the remarks following Assumption H that
p
nhd= lnn ! 1 assures nhd ! 1. Also

p
nhh =p

nhd

lnn h
3
2�d lnn!1 when

p
nhd= lnn!1 and d � 2.
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The following theorem gives the asymptotic distribution of b�. For convenience of exposition, we introduce
some notation. Let M+

o be the square matrix of size
Pp

�=0 (� + d� 1)!=�!(d � 1)! with the l-th row, t-th
column �block�beingZ 1

0

Z
(u0x; uq)

S(l)0
(u0x; uq)

S(t)
K (ux) k+(uq)duxduq; 0 � l; t � p:

Let B+ be the
Pp

�=0 (� + d� 1)!=�!(d� 1)! by (p+ d)!=(p+ 1)!(d� 1)! matrix whose l-th block isZ 1

0

Z
(u0x; uq)

S(l)0
(u0x; uq)

S(p+1)
K (ux) k+(uq)duxduq;

and let M�
o and B� be similarly de�ned with

R1
0
and k+ in M+

o and B+ being replaced by
R 0
�1 and k�

respectively. Further, let

C+l (vq) =

Z
k (uq) e

0
l

�
M+
o

��1 h
(u0x; vq)

Sp
i0
K (ux) duxduq;

where el is a
Pp

�=0 (� + d� 1)!=�!(d � 1)! by 1 vector with the lth element being 1 and all other elements
being 0, l = 1; � � � ; d+ 1, and C�l (vq) be similarly de�ned with M+

o in C+l (vq) replaced by M
�
o .

C+(x; vq) =

Z
k (uq) (x

0; 
0) (0; Id;0)
�
M+
o

��1 h
(u0x; vq)

Sp
i0
K (ux) duxduq;

where (0; Id;0) is a d�
Pp

�=0 (� + d� 1)!=�!(d� 1)! matrix with the �rst zero matrix being a column vector
and Id being an identity matrix of size d: C�(x; vq) is similarly de�ned with M�

o in C+(x; vq) replaced by

M�
o .

�2�(x) = E[e2jx; q = 
0�]:

g(p+1)(x; 
0) is a (p+ d)!= (p+ 1)!(d � 1)! by 1 vector of the (p + 1)th-order partial derivatives of g(x; q)
with respect to (x0; q)0 at q = 
0, where the elements of g

(p+1)(x; q) are ordered in the same way as

f(s1; � � � ; sd)gs2S(p+1).

Theorem 2 Under Assumptions E, F, G0, H0, I, K, and S,

p
nhh

�b�� � ��0 + hpE h (x0; 
0) (0; Id;0) h�M�
o

��1
B� �

�
M+
o

��1
B+
i
g(p+1)(x; 
0)

��� q = 
0i� d�! N (0;��) ;

p
nhh

�b�xl � �xl0 � hpe0l+1 h�M�
o

��1
B� �

�
M+
o

��1
B+
i
E[g(p+1)(x; 
0)

��� q = 
0]� d�! N (0;�xl) ;

p
nhh

�b�q � �q0 � hpe0d+1 h�M�
o

��1
B� �

�
M+
o

��1
B+
i
E[g(p+1)(x; 
0)

��� q = 
0]� d�! N (0;�q) ;

for l = 1; � � � ; d� 1, where

�� = E
�Z �

k2+ (vq)�
2
+(x)C

+(x; vq)
2 + k2� (vq)�

2
�(x)C

�(x; vq)
2
�
dvq

���� q = 
0�� fq(
0);

�xl = E
�Z �

k2+ (vq)�
2
+(x)C

+
l+1(vq)

2 + k2� (vq)�
2
�(x)C

�
l+1(vq)

2
�
dvq

���� q = 
0�� fq(
0);

�q = E
�Z �

k2+ (vq)�
2
+(x)C

+
d+1(vq)

2 + k2� (vq)�
2
�(x)C

�
d+1(vq)

2
�
dvq

���� q = 
0�� fq(
0):

According to this theorem, the bias and variance of b� are the integrated bias and variance of (ba�(xi)�ba+(xi) � (x0i; b
)b�(xi);bb�(xi)0 � bb+(xi)0)0 for xi in the neighborhood of q = 
0. As shown in the proof,
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the convergence rate of b� is
p
nh. Since b�� is based on ��0 = m�(x) �m+(x) � (x0; 
0) �xq0, the slower

convergence rate of b�xq contaminates the convergence rate of b��. The theorem implies that the estimation

of � does not su¤er the curse of dimensionality since the convergence rate is the same as the nonparametric

slope estimator with a single covariate. This is understandable as all data in the h neighborhood of q = 
0,

or O(nh) data points, are used in estimation.

For completeness, we state the asymptotic distribution of b� in the following corollary. For this purpose,

we change Assumption H0 to

Assumption H00: h! 0,
p
nhhp+1 ! C 2 [0;1), and

p
nhd= lnn!1.

Compared with Assumption H0, Assumption H00 neglects
p
nhh ! 1. We need nh ! 1 in the following

corollary, but it is implied by
p
nhd= lnn!1 as d � 1:

Corollary 2 Under Assumptions E, F, G0, H00, I, K, and S,

p
nh
�b���0 �B�� d�! N (0;��) ;

where

B� = hp+1e01

h�
M�
o

��1
B� �

�
M+
o

��1
B+
i
E[g(p+1)(x; 
0)

��� q = 
0]
+
Xp+1

l=1

hl

l!

�Z
k (vq) vq

ldvq

� Z
(m�(x)�m+(x))

f
(l)

 (x; 
0)

fq(
0)
dx

��0
Xp+1

l=1

hl

l!

�Z
k (vq) vq

ldvq

�
f
(l)

 (
0)

fq(
0)
;

and

�� = E
�Z �

k2+ (vq)�
2
+(x)C

+
1 (vq)

2 + k2� (vq)�
2
�(x)C

�
1 (vq)

2
�
dvq

���� q = 
0�� fq(
0)

+

Z
k (vq)

2
dvq

�
E[(m�(x)�m+(x))

2 jq = 
0]��20
��

fq(
0);

with f (l)
 (x; 
0) being the lth order partial derivative of f(x; q) with respect to q evaluated at q = 
0, and

f
(l)

 (
0) being the lth order derivative of fq(
) with respect to 
 evaluated at 
 = 
0.

The convergence rate of the DKE of �0 in Delgado and Hidalgo (2000) is
p
nhd, which is much slower

than
p
nh especially when d is large. This is because we integrate the information of jumps at all the xi�s

whereas the DKE uses only the information of the jump at some �xed xo. Compared with b�, the asymptotic
bias and variance of b� is a little more complicated. This is because

p
nh
�b���0� =

p
nh
�b�N ��N�+pnh ��N ��0�bfq(b
) :

where b�N is the numerator of b�,
�N =

1

nh

nX
i=1

k

�
qi � b

h

�
(m�(xi)�m+(xi)) ;
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and bfq(b
) = 1
nh

Pn
i=1 k

�
qi�b

h

�
. As a result, �N and bfq(b
) will also contribute to the asymptotic distribution

of
p
nh
�b���0�. The three terms of B� are attributed to b�N��N , �N��0 and bfq(b
), respectively. The

�rst term of �� is attributed to b�N ��N , and the second term is attributed to �N ��0 and bfq(b
). The
convergence rate of b� is

p
nh as expected, but its bias is O(h). This large bias is due to �N ��0 and bfq(b
).

In the local linear case, i.e., p = 1, Frölich (2010) suggests using a new kernel k� in the construction of b�
to achieve a bias with rate hp+1 = h2. This new kernel implicitly carries out a double boundary correction.

Frölich considers the case with discontinuous f(x; q) at q = 
0. In our setup, a higher-order kernel k(�) in
the construction of b� can be used to achieve bias reduction.

The second estimator of � is based on another implication of (6), namely that �0 is the coe¢ cient from

projecting m�(x)�m+(x) on x in the neighborhood of q = 
0. Empirically, we can project ba�(xi)�ba+(xi)
on xi in a h neighborhood of b
 to estimate �. However, ba�(x)�ba+(x), as an estimate of m�(x)�m+(x), is

constructed at q = b
 so does not have variation in the direction of q. As a result, if we regress ba�(xi)�ba+(xi)
on xi directly, the probability limit of the resulting estimator of �q is zero. To avoid this problem, we may

regress ba�(xi)� ba+(xi) only on (1; x0i)0. Speci�cally, de�ne
(��;e�0x)0 = argmin

�

1

n

nX
i=1

k

�
qi � b

h

�
[ba�(xi)� ba+(xi)� (1; x0i) �]2 : (7)

Note that �� estimates ��0 + 
0�q0, so we can estimate ��0 by

e�� = �� � b
b�q;
where b�q is the IDKE of �q0. Before stating the asymptotic distribution of (e��;e�0x)0, we introduce some
further notation. De�ne the d� d matrix

M =

 
1 E[x0jq = 
0]

E[xjq = 
0] E [xx0jq = 
0]

!
;

and the (l; t) element of the d� d matrix 	 as

E
�
xlxt

Z �
k2+ (vq)�

2
+(x)C

+
1 (vq)

2 + k2� (vq)�
2
�(x)C

�
1 (vq)

2
�
dvq

���� q = 
0� ;
where xl is the lth element of (1; x0)0.

Theorem 3 Under Assumptions E, F, G0, H00, I, K, and S,

p
nh
�e�xl � �xl0 � hp+1e0l+1M�1E

h
(1; x0)

0
e1

h�
M�
o

��1
B� �

�
M+
o

��1
B+
i
g(p+1)(x; 
0)

��� q = 
0i� d�! N (0;
xl)

for l = 1; � � � ; d� 1, where

xl = e0l+1M

�1	M�1el+1
�
fq(
0):

When 
0 = 0,

p
nh
�e�� � ��0 � hp+1e01M�1E

h
(1; x0)

0
e1

h�
M�
o

��1
B� �

�
M+
o

��1
B+
i
g(p+1)(x; 
0)

��� q = 
0i� d�! N
�
0;
(1)�

�
;

where


(1)� = e01M
�1	M�1e1

�
fq(
0):
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If Assumption H00 changes to H0 and 
0 6= 0, then
p
nhh

�e�� � ��0 + hp
0e0d+1 h�M�
o

��1
B� �

�
M+
o

��1
B+
i
E[g(p+1)(x; 
0)

��� q = 
0]� d�! N
�
0;
(2)�

�
;

where


(2)� = 
20�q

with �q de�ned in Theorem 2.

Di¤erent from b�xl , the convergence rate of e�xl is pnh rather than pnhh. Also, the convergence rate ofe�� depends on whether 
0 = 0 or not. When 
0 = 0, the convergence rate of e�� is pnh which di¤ers from
that of b��. When 
0 6= 0, the asymptotic distribution of e�� is the same as �
0b�q, so the convergence rate is
still

p
nhh. See Section 3.1 for more discussion on the di¤erences between b� and e�. Finally, since consistent

estimation of the biases and variances of the estimators of � (which are necessary for statistical inference) is

a standard econometric exercise, it is omitted here.

2.4 Intuition for the Identi�ability of 
 and �

Although our analysis shows that 
 and � can be identi�ed it may still appear mysterious that they are

identi�able without instruments. An intuitive explanation is provided here. It is convenient to start by

reviewing how instrumentation helps to identify a demand curve in classical simultaneous systems of supply

and demand. We then explain how instrumentation is implicitly involved in the present threshold model

setup.

Consider the following linear Marshallian stochastic demand/supply system

Demand: qi = a+ bpi + ui;

Supply: qi = c+ dpi + vi;

where pi and qi are prices and quantities, respectively, ui represents other factors that a¤ect demand (such as

income and consumer taste), vi represents factors that a¤ect supply (such as weather and union status), and

a; b; c and d are parameters. It is well-known that a and b cannot be identi�ed and are inconsistently estimated

by least squares due to simultaneous equations bias. Conventionally, therefore, an explicit instrument z is

introduced which shifts only the supply curve (e.g., weather conditions as in Angrist et al. (2000)) enabling

equilibria to trace out the shape of the demand curve. This textbook argument is illustrated in the left panel

of Figure 1. Given the linear structure of the demand curve, two values of z are enough to identify the whole

straight line, which generates the famous Wald estimator (Wald, 1940).

If the system is nonparametric, e.g., the demand function takes the form of qi = g(pi) + ui, then g(�) is
generally considered to be much harder to identify due to the notorious ill-posed inverse problem. Most of

the existing literature such as Newey et al. (1999), Ai and Chen (2003), Newey and Powell (2003), Hall and

Horowitz (2005), and Darolles et al. (2011) use a nonparametric IV approach to help resolve this problem but

with deleterious e¤ects on the convergence rate; see Florens (2003) and Carraso et al. (2007) for a summary

of the related literature. The nonparametric IV approach identi�es g(�) globally, which means that some
regularity conditions such as bounded supports and bounded densities on (qi; pi)0 are required to facilitate

the theoretical development. Such regularities may not be innocuous in practice, as explained in Phillips

and Su (2011). In contrast to the treatment of ill-posed inversion in nonparametric IV regression, Wang and

Phillips (2009, 2015) and Phillips and Su (2011) show how the endogeneity problem may be resolved locally

using characteristic nonstationary features of the data that implicitly provide instrumentation. That is, they
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Parametric Endogeneity
and Global Identification

Nonparametric Endogeneity
and Local Identification

Threshold Regresion with Endogeneity
and Local Identification

Figure 1: Graphical Intuition for the Identi�cation of the Demand Curve under Endogeneity in Parametric,
Nonparametric and Threshold Regression Models

show how to identify g(�) locally in some region of p where the data are informative. Intriguingly, when the
system contains local shifters of the supply curve it transpires that no external instruments are required.

In Wang and Phillips (2009, 2015), time series �nonstationarity�plays the role of the local shifter, and in

Phillips and Su (2011), cross section locational shifts (such as geographical e¤ects) play the same role. The

middle panel of Figure 1 gives some graphical intuition exhibiting this identi�cation scheme.

In threshold regression with endogeneity, the system contains a local shifter that helps to identify 
0 in

a similar fashion. This local shifter is the threshold indicator 1(qi > 
); which plays a role analogous to the

time series nonstationarity in Wang and Phillips (2009) and the location shifts in Phillips and Su (2011).

The threshold indicator can identify 
0 even in nonparametric threshold regression with endogeneity. To

be explicit, suppose yi = g(qi) + "i = g1(qi)1(qi � 
) + g2(qi)1(qi > 
) + "i, where g1 and g2 are smooth

functions with g1(
0) 6= g2(
0), and E["jq] 6= 0. For simplicity, we here neglect other covariates. In this

setup, the objective function of the IDKE is equivalent to������ 1n
nX
j=1

yjk
+
h (qj � 
)�

1

n

nX
j=1

yjk
�
h (qj � 
)

������ ;
which is roughly

jE[y1(q > 
)jq 2 (
 � h; 
 + h)]� E[y1(q � 
)jq 2 (
 � h; 
 + h)]j :

In other words, we may use the indicator 1(q > 
) to shift y from the left neighborhood of 
 to the right

neighborhood, and check which shifter provides the largest variation in E [y]. Carefully checking this objective
function, we see that it is the numerator of the Wald estimator using only local-to-
 data.7 In regression

discontinuity designs (RDDs), Hahn et al. (2001) also �nd that the treatment e¤ects estimator is numerically

equivalent to the Wald estimator (see also Section 4.2 of Yu (2010) for an extensive discussion). However,

7Since in the neighborhood of 
, E [q] does not have much variation, the denominator is not needed.
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the RDD literature concentrates on identifying the jump size, while we are interested in the jump location.8

To identify the jump size g1(
0)� g2(
0), we must assume E["jq] is continuous. This continuity assumption
is key to identifying treatment e¤ects in RDDs. In other words, the RDDs allow for endogeneity but require

the endogeneity to be continuous (see Van der Klaauw (2002) for a convincing application with continuous

endogeneity). In contrast, to identify the jump location, we do not need a continuity assumption as long

as the discontinuity in endogeneity does not o¤set the original jump completely; see Section 4.1 for further

discussion on this point. When there exist other covariates xi, the local shifter 1(qi > 
) is valid at any xi,

so integrating all the jump information can provide a stronger signal for the jump location. This integration

is precisely what the IDKE seeks to accomplish.

To understand why the local shifter 1(qi > 
0) can identify the jump size, recall from Lee and Lemieux

(2010) that this local shifter plays the role of local randomization if E["jq] is continuous. From Section II

of Heckman (1996), randomization plays the role of balancing (rather than eliminating) endogeneity biases.

In our setup, the bias E["jq = 
0+] balances the bias E["jq = 
0�], so the jump size can be identi�ed even
in the presence of endogeneity. However, as emphasized by Heckman, �structural parameters�such as g1(�)
and g2(�) cannot be identi�ed by this local randomization scheme without other instruments, which means
that counterfactual analysis is hard in RDDs with endogeneity. When there are other covariates xi, Section

III of Heckman (1996) mentions that randomization can play the role of an instrumental variable for any

xi, so m�(xi) �m+(xi) in (6) can be identi�ed for any xi. Following the discussion in Section 2.3, b� or e�
can be used to identify �0. The right panel of Figure 1 illustrates this intuition concerning the identi�cation

schemes for 
0 and �0.

3 The Roles of Instrumentation

When instruments are available, they can play multiple roles. To fully appreciate the various roles of

instrumentation, we need to be clear about the best that can be achieved with and without instruments. In

the �rst subsection below, we state some optimality results for �, � and 
 when instruments are absent. The

following subsection explores some of the extra roles that instruments can play.

3.1 Optimality Results Without Instruments

The coe¢ cient vector � cannot be identi�ed without instrumentation since the e¤ect of x0� and E["jx; q]
are intermixed, just as the parameter � cannot be identi�ed in the linear regression model y = x0� + " with

endogenous regressors. On the other hand, the analysis of the previous section shows both � and 
 can be

identi�ed, with � being estimable at a nonparametric rate whereas 
 is estimable at the same rate as the

parametric case. In this section, we �rst study the optimal rate of convergence for estimates of � and then

give the optimal estimation rate for 
 from the existing literature.

To obtain the optimal rate of convergence for �, we cast the model into the following general framework.

Suppose P is a family of probability models on some �xed measurable space (
;A). Let � be a functional
de�ned on P. Given an estimator b� of � and a loss function L�b�; ��, the maximum expected loss over P 2 P
is de�ned to be

R
�b�;P� = sup

P2P
EP
h
L
�b�; �(P )�i ;

where EP is the expectation operator under the probability measure P . A popular loss function (e.g., Stone
8The RDD literature usually assumes the jump location is known; see Porter and Yu (2011) for work on identifying treatment

e¤ects without this assumption.
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(1980)) is the 0-1 loss

L
�b�; �� = 1n���b� � ���� > �

2

o
for some �xed � > 0, which will be used in this paper.9 Under this loss, R

�b�;P� is the maximum probability
that b� is not in the �=2 neighborhood of �. The goal is to �nd an achievable lower bound for the minimax
risk de�ned by

infb� R
�b�;P� = infb� supP2P

EP
h
L
�b�; �(P )�i : (8)

The right side generally converges to zero; the best rate of convergence of R
�b�;P� to zero is called the

optimal rate of convergence or the minimax rate of convergence.

Since 
0 can be estimated at rate n, its estimation does not a¤ect the optimal rate of convergence of �.

We therefore assume that 
0 is known in deriving the optimal rate of convergence of �.
10 Now P 2 P is

characterized by � and g(x; q) as follows

P(s;B) =
�
Pg;� :

dPg;�
d�

= f(x; q)'x;q (y � g(x; q)� x0�1(q � 
0)) ; g(x; q) 2 Cs (B;X �N ) ; k�k � B
�
;

where � is Lebesgue measure on Rd+1, 'x;q is the conditional density of e given (x0; q)
0, and Cs (B;X �N ) is

the class of s times continuously di¤erentiable functions on X �N with all derivatives up to order s bounded

by B and with N being a neighborhood of q = 
0. The parameter of interest � can be any element of �,

e.g., �� (Pg;�) = ��. The following theorem provides upper bounds for the rates of convergence.

Theorem 4 Under Assumptions E, F, G0, and S, if P 2 P(s;B) with s = p+ 1, then for l = 1; � � � ; d� 1;

lim
n!1

infb�xl sup
P2P(s;B)

P
����n s

2s+1

�b�xl � �xl(P )���� > �

2

�
� C;

lim
n!1

infb�q sup
P2P(s;B)

P
����n s�1

2s+1

�b�q � �q(P )���� > �

2

�
� C;

and

lim
n!1

infb�� sup
P2P(s;B)

P
����n s�1

2s+1

�b�� � ��(P )���� > �

2

�
� C if 
0 6= 0;

lim
n!1

infb�� sup
P2P(s;B)

P
����n s

2s+1

�b�� � ��(P )���� > �

2

�
� C if 
0 = 0

for some positive constant C and small � > 0.

This theorem has interesting consequences. First, the main result is that we can estimate � at most at a

nonparametric rate. Second, estimation of � does not su¤er the curse of dimensionality. Speci�cally, an upper

bound to the rate of convergence for �x is the same as for one-dimensional conditional mean estimation, and

the upper bound for �q is the same as for one-dimensional slope estimation. As for ��, the upper bound

depends on whether 
0 = 0 or not: if 
0 6= 0, the upper bound is the same as in slope estimation; otherwise,
it is the same as in level estimation. The upper bound for �q is not a surprise because �q is the slope di¤erence

in the neighborhood of q = 
0. However, it may seems mysterious why �x, as the slope di¤erence in the

9Quadratic loss is also popular, see, e.g., Fan (1993). Since the expected mean square error may not exist for the IDKE of
�, it is convenient to use the 0-1 loss function here.
10The problem with unknown 
0 is harder than the problem with known 
0, so the upper bounds in Theorem 4 below are also

the upper bounds for the problem with unknown 
0. Given that these upper bounds are achievable even if 
0 were unknown,
these bounds are also the optimal rates of convergence with unknown 
0.
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neighborhood of q = 
0, has the same upper bound as in level estimation. The result may be understood as

in an analogous way to average derivative estimation (ADE) (see, e.g., Stoker (1986), Powell et al. (1989),

and Härdle and Stoker (1989) among others). Although the nonparametric derivative cannot be estimated

at a
p
n rate, the average derivative can be. In our case, only the data in a h neighborhood of 
0 are used

to estimate the average derivative, so the convergence rate should be
p
nh, and correspondingly, the optimal

rate should be s
2s+1 (rather than

s�1
2s+1 ). Actually, the present case is closer to the single index model of

Ichimura (1993). Here the index is x0�, so the slope di¤erences in the left and right neighborhoods of q = 
0
are the same at any x. This is also why we do not need the boundary condition that f(xjq) = 0 for q in

a neighborhood of 
0 and x on the boundary of its conditional support (see, e.g., Assumption 3 of Stoker

(1986), Assumption 2 of Powell et al. (1989), Assumption 3.1 of Newey and Stoker (1993) or Assumption

A.1.2 of Härdle and Stoker (1989) for counterparts in the average derivative estimation) to achieve this

optimal rate. Without such boundary conditions, the average derivative cannot be estimated at a
p
n rate;

nevertheless,
p
n-consistency can still be achieved by the weighted semiparametric least squares estimator

(WSLSE) of Ichimura (1993). See Yu (2014b) for more discussion on this point.

With this intuition on the optimal rate for �x, the upper bound for �� is not hard to understand. Recall

that ��0 = E [m�(x)�m+(x)] �
�
E [x]0 �x0 + 
0�q0

�
. E [m�(x)�m+(x)], as a level di¤erence, has the

optimal rate s
2s+1 , and �x has the optimal rate

s
2s+1 , so the optimal rate for �� is determined by whether


0 = 0 or not. If 
0 = 0, its optimal rate is determined by the optimal rate of E [m�(x)�m+(x)] and �x,

which is s
2s+1 . Otherwise, its optimal rate is determined by the optimal rate of �q, which is

s�1
2s+1 and is

slower than the 
0 = 0 case.

Checking the asymptotic distribution of b� and e� in Theorem 2 and 3, we can see that the estimatorse��, e�x and b�q each achieve the optimal rate for ��, �x and �q, respectively, provided the optimal bandwidth
h = O(n�1=(2s+1)) is used. It is interesting to notice that b�x does not achieve the optimal rate of �x, wherease�x does. This result parallels the e¢ ciency comparison between the ADE and the WSLSE. Although both
estimators are

p
n-consistent, the ADE is generally less e¢ cient than the WSLSE; see, e.g., Section 5 of

Newey and Stoker (1993). This is because the ADE does not fully explore the linear index structure of the

single index model. In our case, the IDKE of � is like the ADE and does not use the information in the

linear index structure x0�. On the contrary, e�x fully exploits this linear index structure and so achieves the
optimal rate of �x.11 In contrast to the semiparametric case, in a nonparametric model the convergence rate

of an estimator is inevitably slower if it does not fully exploit the linear index structure.

For 
, the optimality result is more subtle. In the parametric model, Yu (2012) shows that the Bayes

estimator is e¢ cient in the minimax sense and is more e¢ cient than the maximum likelihood estimator

(MLE). Based on this result, Yu (2008) shows that the semiparametric empirical Bayes estimator (SEBE)

can adaptively estimate 
0 in the semiparametric case; in other words, the nonparametric components of

the model do not a¤ect the e¢ ciency of 
0, so that 
0 can be estimated as if these components were known.

Speci�cally, the following procedure is used to adaptively estimate 
0 in the present case.

Algorithm G:

Step 1: Compute the IDKE
�b
;b�0�0, bg(xi; qi) = 1

(n�1) bfi
nX

j=1;j 6=i
Kh;ij

�
yj � x0jb�1(qj � b
)� and the corre-

sponding residuals bei = yi � x0ib�1(qi � b
) � bg(xi; qi), i = 1; � � � ; n, where bfi = 1
n�1

nX
j=1;j 6=i

Kh;ij with

11Another estimator that fully exploits the linear index structure of the model is the PLE of � as discussed in the supplementary
materials. We conjecture that this estimator also achieves the optimal rate of �. However, a formal development of its asymptotic
properties is beyond the scope of this paper; see Yu (2010) for such a development in the simple case of d = 1.
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Kh;ij = K
x
h;ij � kh(qj � qi) is the kernel estimator of fi � f(xi; qi).

Step 2: Obtain a uniformly consistent estimator of the joint density of w � (e; x0; q)0 by kernel smoothing,
and denote the estimator as bf (w).

Step 3: De�ne the SEBE as b
o = argmin
t

Z
�

ln(t� 
) bLn(
)� (
) d
:
where ln(t� 
) = l (n (t� 
)) is the loss function of 
, � (
) is the prior of 
, e.g., � (
) could be the
uniform distribution on �, and

bLn(
) =
nY
i=1

h bf �yi � x0ib�1(qi � b
)� bg(xi; qi); xi; qi� 1(qi � 
) + bf (yi � bg(xi; qi); xi; qi) 1(qi > 
)i
= exp

(
nX
i=1

1(qi � 
) ln
� bf �yi � x0ib�1(qi � b
)� bg(xi; qi); xi; qi��+ nX

i=1

1(qi > 
) ln
� bf (yi � bg(xi; qi); xi; qi)�)

� exp
nbLn(
)o

is the estimated likelihood function.

The asymptotic distribution of b
o is argmin
t

R
R l (t� v) p

�(v)dv, where p�(v) = expfDo(v)gR
R expfDo(ev)gdev , and Do(v) is

similar to D(v) in Theorem 1 except that now z1i � ln
fejx;q( ei+x0i�0jxi;qi)

fejx;q(eijxi;qi) and z2i � ln
fejx;q( ei�x0i�0jxi;qi)

fejx;q(eijxi;qi) .

Note also that the nonparametric posterior interval (NPI) based on bLn(
) is a valid con�dence interval for

0;

12 for other inference methods for 
, see Liao et al. (2015).

3.2 Optimality Results With Instruments

With instruments z in hand, we can estimate regular parameters
�
�0; �0

�0
by means of the moment conditions

E [z"1 (q � 
0)] = 0, and E [z"1 (q > 
0)] = 0; (9)

where z 2 Rdz with dz � d+1. Note that here we do not require E["jz; q] = 0 as in Caner and Hansen (2004)
to identify

�
�0; �0

�0
.13 Also, it is irrelevant whether the reduced form is stable (i.e., the relationship between

x and z is stable), which is important in the literature of 2SLS estimation. Since 
0 can be consistently

estimated by the IDKE, we can treat it as known in constructing the GMM objective function and estimates.

Speci�cally, �b�0GMM ;
b�0GMM

�0
= argmin

�;�
nmn(�; �)

0Wnmn(�; �); (10)

where

mn(�; �) =
1

n

nX
i=1

 
zi (yi � x0i� � x0i�1(qi � b
)) 1(qi � b
)
zi (yi � x0i� � x0i�1(qi � b
)) 1(qi > b
)

!
;

and Wn is a consistent estimator of the inverse of


 = E

" 
zz0"21 (q � 
0) 0

0 zz0"21 (q > 
0)

!#
�
 
C 0

0 D

!
:

12See Section 4.1 of Yu (2014a) for a summary of valid inference methods in threshold regression without endogeneity.
13Since � is already identi�ed, we need only one of the two moment conditions in (9) to identify �.

19



For example, Wn can be the inverse of the sample analog of 
, say,

b
 = 1

n

nX
i=1

 
ziz

0
ie"2i 1 (q � b
) 0

0 ziz
0
ie"2i 1 (q > b
)

!
;

where e"i = yi � x0ie� � x0ie�1(qi � b
), and �e�0;e�0�0 is the 2SLS estimator of ��0; �0�0 which is de�ned as the
minimizer of (10) with

W�1
n =

1

n

nX
i=1

 
ziz

0
i1 (q � b
) 0

0 ziz
0
i1 (q > b
)

!
:

It is easy to obtain  b�GMMb�GMM

!
=
� bG0b
�1 bG��1 bG0b
�1 bZ 0y;

where bG = 1

n

nX
i=1

 
zix

0
i1 (q � b
) zix

0
i1 (q � b
)

zix
0
i1 (q > b
) 0

!
;

is a consistent estimator of

G =

 
E [z0x1 (q � 
0)] E [z0x1 (q � 
0)]
E [z0x1 (q > 
0)] 0

!
�
 
A A

B 0

!
;

and bZ and y denote matrices of stacked vectors (z0i1 (q � b
) ; z0i1 (q > b
)) and yi respectively. The following
theorem gives the asymptotic distribution of

�b�0GMM ;
b�0GMM

�0
.

Theorem 5 Suppose b
 � 
0 = op(n�1=2), E hkxk4i <1, E[q4] <1, E["4] <1 and E[kzk4] <1; then

p
n

 b�GMM � �0b�GMM � �0

!
d�! N

�
0;
�
G0
�1G

��1�
;

where the inverse of 
 and G0
�1G are assumed to exist.

Compared to Theorem 2 and 3, the convergence rate of b� is improved from a nonparametric rate to
p
n.

This is due to the fact that the moment conditions provide global information about �; in contrast to the

purely local identi�cation information that is used when z is absent. Meanwhile, �, which is not identi�able

without instruments, can now be identi�ed. Note that we only assume b
 � 
0 = op(n
�1=2) rather than

Op(n
�1) in the above theorem, an assumption that covers estimators of 
 other than the IDKE.

From Hansen (1982),
�
G0
�1G

��1
is the optimal asymptotic variance under moment conditions (9)

with 
0 known. Actually, according to Yu (2008), the GMM estimator is semiparametrically e¢ cient even

when 
0 is unknown and the estimate b
 is used, as long as the loss function imposed on (�0; �0)0 and 

is additively separable. Alternatively, the empirical likelihood estimator of Qin and Lawless (1994) can

be applied to achieve the semiparametric e¢ ciency bound. Given the special forms of G and 
, it can

be shown that the asymptotic variance of b�GMM is
�
B0D�1B

��1
, and the asymptotic variance of b�GMM is�

A0C�1A
��1 h�

A0C�1A
��1 � �A0C�1A+B0D�1B

��1i�1 �
A0C�1A

��1
, so b�GMM only exploits information

in the data with qi > b
 while b�GMM uses information in all the data. These asymptotic variance matrices

are consistently estimated using sample analogs, as is standard in the literature.
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As to the e¢ cient estimation of 
, we can still adaptively estimate it but now the joint density in Step 2

of Algorithm G also covers z. Speci�cally, we adjust Algorithm G as follows. In Step 1, we get a consistent

estimator of "i (rather than ei) as b"i = yi � x0ib�GMM � x0ib�GMM1(qi � b
o).14 In Step 2, we estimate the
joint density of ("; x0; q; z0)0 by kernel smoothing

�
(b"i; x0i; qi; z0i)0	ni=1 and still denote the estimator as bf . In

Step 3, we estimate 
0 by argmin
t

R
�
ln(t� 
) bLn(
)� (
) d
, where bLn(
) in bLn(
) is equal to

nX
i=1

1(qi � 
) ln
� bf �yi � x0ib�GMM � x0ib�GMM1(qj � b
o); xi; qi; zi��+ nX

i=1

1(qi > 
) ln
� bf �yi � x0ib�GMM ; xi; qi; zi

��
:

The asymptotic distribution of this estimator is similar to that of b
o except that now z1i � ln f"jx;q;z( "i+x0i�0jxi;qi;zi)f"jx;q;z("ijxi;qi;zi)

and z2i � ln
f"jx;q;z( "i�x0i�0jxi;qi;zi)

f"jx;q;z("ijxi;qi;zi) . So the information provided by z to 
 improves its e¢ ciency without

a¤ecting the convergence rate.

The following speci�c calculation illustrates the e¤ect of z on the e¢ ciency of 
 estimation. Consider a

simple threshold model

y = �1 (q � 
) + "; (11)

E ["jq] = g(q) 6= 0, E["] = 0:

Suppose the joint distribution of ("; q; z)0 is multivariate normal with mean 0 and variance matrix0B@ 1 � 0

� 1 �

0 � 1

1CA ;
where � is de�ned in the reduced-form regression q = �+z�+v with E[vjz] = 0. A careful calculation shows

that both z1i and z2i follow N
�
� (1��20)�

2
0

2(1��20��20)
;
(1��20)�

2
0

(1��20��20)

�
. Note that E [z1i] < 0 is a decreasing function of

�20, so the instrument z indeed improves the e¢ ciency of 
 estimation. Table 1 provides numerical results

for this example based on the algorithms in Appendix D of Yu (2012). The risk calculation in Table 1 is

based on the asymptotic distribution rather than the �nite-sample distribution, and RMSE entries are for

the posterior mean and MAD for the posterior median. In Table 1, �0 = 0:5, �0 = 1, and 
0 = 0. Evidently,

as �0 increases, z indeed provides more information about 
 raising e¢ ciency. Note that the case with �0 = 0

corresponds to the risk of b
o; where z does not provide extra information. Note further that z may provide
information for 
 without assuming E["jz] = 0 or Cov(z; x) 6= 0 as long as z is not independent of ("; x0; q)0.
The assumptions that E["jz] = 0 and Cov(z; x) 6= 0 are used mainly to identify the parameters � and � and
achieve a

p
n convergence rate.

RMSE MAD

�0 = 0 9.109 6.093

�0 = 0:1 9.017 6.085

�0 = 0:5 8.143 5.473

Table 1: E¢ ciency Improvement in 
 Estimation by z:

�0 = 0:5, �0 = 1, and 
0 = 0.

14bei may be used, but we expect that the performance based on b"i is better since the residuals are derived from a parametric
(rather than semiparametric) model. Also, b
o is preferable to b
 since the former is more e¢ cient than the later.
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In summary, instruments play di¤erent roles in relation to �, � and 
 as summarized in Table 2. From

this table, the parameters �, � and 
 are a¤ected in di¤erent ways by the presence of instrumentation,

leading to di¤ering convergence rates for the estimates of (�; 
) with and without instruments and e¢ ciency

improvements for estimates of 
.

Without Instruments With Instruments

� Unidenti�ed
p
n-consistency

� Nonparametric Consistency
p
n-consistency


 n-consistency E¢ ciency Improvement

Table 2: The Role of Instruments on the Estimation Properties of the Parameters

4 An Extension and Simpli�cation

This section considers an extension and simpli�cation of the earlier framework and analysis. We �rst examine

the more general case where all elements of (x0; q)0 are endogenous but E["jx; q] is not smooth at q = 
0, and
then look at the simpler case where some elements of (x0; q)0 are exogenous.

4.1 E["jx; q] is Not Smooth at q = 
0
When E["jx; q] is not smooth at q = 
0, there are two cases. First, E["jx; q] is continuous but has a cusp
at q = 
0; second, E["jx; q] is discontinuous at q = 
0. For example, consider the simple threshold model

y = �1 (q � 
) + ", where " = �1u1(q � 
) + �2u1(q > 
), and �10 6= �20. Also suppose E[ujq] = aq for a
scalar a 6= 0: Then

E ["jq] = �10aq1(q � 
0) + �20aq1(q > 
0):

If 
0 = 0, then E ["jq] is continuous, but has a cusp at q = 
0. If 
0 6= 0, then E ["jq] is discontinuous at
q = 
0. In the general case where other covariates x are present, E["jx; q] may be a mixture of all three cases
(smooth, continuous but having a cusp, and discontinuous) at q = 
0 for di¤erent areas of x. To simplify the

analysis, we discuss each case separately. Table 3 summarizes the identi�cation and e¢ ciency results with

and without instruments in the latter two cases.

E["jx; q] Has a Cusp at q = 
0 E["jx; q] is Discontinuous at q = 
0
Without Instruments With Instruments Without Instruments With Instruments

� Unidenti�ed
p
n-consistency Unidenti�ed

p
n-consistency

��; �q Unidenti�ed
p
n-consistency Unidenti�ed

p
n-consistency

�x Nonparametric Consistency
p
n-consistency Unidenti�ed

p
n-consistency


 n-consistency E¢ ciency Improvement n-consistency E¢ ciency Improvement

Table 3: The Role of Instrumentation for Estimation Properties of Di¤erent Parameters when E["jx; q] is
Not Smooth at q = 
0

When E["jx; q] is continuous but has a cusp at q = 
0, we �nd that lim
q!
0+

@E["jx; q]=@x = lim
q!
0�

@E["jx; q]=@x
by using a contradiction argument. So the estimators of �x in Section 2.3 are still applicable. On the other

hand, �� and �q cannot be identi�ed. This is because although m�(x) �m+(x) = ��0 + x
0�x0 + 
0�q0 can

be identi�ed and thus the component ��0 + 
0�q0 can also be identi�ed, ��0 and �q0 cannot be individually
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identi�ed since �q0 cannot be identi�ed due to the cusp at 
0.
15 When E["jx; q] is discontinuous at q = 
0,

we exclude the trivial case that E["jx; q] equals �x0�01(q � 
0) plus a smooth function of (x0; q)0 as there will
be no threshold e¤ect in m(x; q) at all in that case. If m(x; q) indeed has a jump at q = 
0,

16 no elements

of � can be identi�ed, but 
 can still be identi�ed and estimated at the rate of n by the IDKE.

4.2 Part of (x0; q)0 is Exogenous

When part of (x0; q)0 is exogenous, we can simplify our estimators in Section 2. Partition the variates (x0; q)0

into (x01; x
0
2)
0, where x1 is exogenous, and x2 is endogenous and includes q. Importantly E["jx1] = 0 does not

imply the mean independence condition E["jx; q] = E["jx2] � g2(x2), that is, we cannot express E[yjx; q] as

E[yjx; q] = �1�1 (q � 
) + �2�1 (q > 
) + x01�21 + g(x2) + (x01�1 + x02�2)1 (q � 
)
= [�1� + x

0
1�11 + g(x2) + x

0
2�2] 1 (q � 
) + [�2� + x01�21 + g(x2)] 1 (q > 
)

which takes an additively separable form in x1 and x2, where �` and � are partitioned according to the

partition of x = (1; x01; x
0
2)
0 as

�
�`�; �

0
`1; �

0
`2

�
and

�
��; �

0
1; �

0
2

�
, and g(x2) = x02�22 + g2(x2). In other words,

the fact that only some of the regressors are endogenous does not provide extra identi�cation information.

So the estimation procedures given in Section 2 are still appropriate. But if the condition E["jx; q] = E["jx2]
indeed holds almost surely, as is assumed by Newey et al. (1999) in the nonparametric estimation of triangular

simultaneous equations models, then we can simplify the �general endogenous case�estimation procedure.

First, the IDKE of 
 can be simpli�ed. For each 
 2 �, E[yjxi; q = 
�] can be estimated as follows.
The components �11 and �1� + g(x2i) + x

0
2i�2 are estimated by extremum estimators b�11 and bai that are

obtained from the following minimization problem

min
�11;a1;��� ;an

1

n

nX
i=1

nX
j=1

K
x2
h;ijk

�
h (qj � 
)

�
yj � ai � x01j�11

�2
; (12)

where x2 is x2 excluding q, and K
x2
h;ij is similarly de�ned as K

x
h;ij in (5). Note that �11 is the same for all

x2i in the objective function (12). In other words, the data in the left h neighborhood of q = 
 satis�es a

partially linear model. The systematic part E[yjxi; q = 
�] is then estimated as x01ib�11+bai, which is denoted
as bm�(xi; 
). The convergence rate of b�11 is expected to be pnh if

E
�
(x1 � E[x1jx2; q = 
�]) (x1 � E[x1jx2; q = 
�])

0�� q = 
�� > 0;
and the convergence rate of bai is expected to be pnhd2 , where d2 = dim(x2), and the positive-de�niteness
condition is a localized version of condition (3.5) in Robinson (1988). Similarly, E[yjxi; q = 
+] can be

estimated by bm+(xi; 
). Then, we can estimate 
0 via the extremum problem

b
 = argmax



1

n

nX
i=1

[bm�(xi; 
)� bm+(xi; 
)]
2
;

which is expected to be n-consistent.

Given b
, we can use the data with q � b
 and q > b
 to estimate �11 and �21 using either the double
residual regression method of Robinson (1988) or the pairwise di¤erence estimator of Powell (1987, 2001).

15This is entirely analogous to the corresponding result in the linear model setting where both �� and �q cannot be identi�ed
in y = �� + �qq + " if q is endogenous. If 
0 = 0, then �� can be identi�ed but this case is very special.
16More rigorously, P (m�(x) 6= m+(x)) > 0.
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The resulting estimators are expected to be
p
n-consistent when

E
�
(x1 � E[x1jx2]) (x1 � E[x1jx2])0 1(q � 
0)

�
> 0 and E

�
(x1 � E[x1jx2]) (x1 � E[x1jx2])0 1(q > 
0)

�
> 0:17

Note that here we use all the data with q � b
 to estimate �11 but only the data in the left h neighborhood
of q = 
 to estimate �11 in (12). This is because for an arbitrary 
 2 �, E[yjx; q] may not take a partially
linear form when q � 
. For example, suppose 
 > 
0. Then for 
0 < q � 
, E[yjx; q] = �2�+x01�21+g(x2),
while for q � 
0, E[yjx; q] = �1� + x01�11 + g(x2) + x02�2. So, there is no uniformly partially linear form for

all q � 
. Nevertheless, E[yjx; q] must take a partially linear form in the left neighborhood of q = 
 although
we are unsure a priori which one of the two forms it will take. In other words, b�11 in (12) may actually
be estimating �21. Given the estimates of �11 and �21, which we still denote as b�11 and b�21 to simplify
notation, we can construct ey = y � x01b�111 (q � b
)� x01b�211 (q > b
) ;
which satis�es

E [eyjx2] � �2� + g(x2) + (�� + x02�2) 1 (q � 
0) :
So here �� and �2 can be estimated using the procedures in Section 2.3 by only f(eyi; x02i; qi)0gni=1.
Often endogeneity a¤ects only a single covariate, in which case x2 is one-dimensional. In this case, the

simpli�ed estimators do not su¤er the curse of dimensionality as do the general estimators. In the empirical

application of Section 6, where x2 is binary, we show that even kernel smoothing is not required. If we

further assume that " is independent of x1 conditional on (x02; z
0)0 when instruments z are available, we need

only estimate the joint density of ("; x02; z
0)0 in Step 2 of the modi�ed Algorithm G in Section 3.2.18

5 Simulation Results

This section presents a simple simulation study designed to assess the adequacy of the limit theory. The

simulation compares the e¢ ciency of the IDKE and DKE of 
.

According to our earlier �ndings, the DKE is less e¢ cient asymptotically than IDKE. Also, in applying the

DKE, the �xed point xo used in the criterion function is hard to select since E[yjx; q = 
0�]�E[yjx; q = 
0+]
and fxjq(xj
0) have unknown forms. In implementing the simulation, we used for illustration the simple
model y = 1(q � 
) + ", where 
0 = 0, �0 = (1; 0; 0)0, x and q are independent and each is uniformly

distributed over [�0:5; 0:5], and "j (x; q) � N(�q; 0:22). The threshold e¤ect does not depend on x and xjq
is uniformly distributed, and so the DKE of Delgado and Hidalgo (2000) can be applied. We set xo = 0, and

� = [�0:2; 0:2]. Three bandwidths are used based on the formula Cn�1=6 with proportionality constants
C = 0:3, 0:5 and 0:7.19 The simulation study in Müller (1991) shows that a bandwidth without boundary

adjustment works well, and we therefore use the same bandwidth for both interior and boundary points.

17This de�nition covers the case where q is included in x2. If q is included in x1, the corresponding conditions can be written

as E[mm0] > 0, where m =

�
(x11(q � 
0)� E[x11(q � 
0)jx2]) 1(q � 
0)
(x11(q > 
0)� E[x11(q > 
0)jx2]) 1(q > 
0)

�
.

18Note also that if e is independent of (x0; q)0, then in Step 2 of Algorithm G, we need only estimate the density of e. Of
course, " cannot be independent of (x0; q)0, but it is quite possible that " is independent of (x0; q)0 conditional on z as in the
control function approach. In this case, we need only estimate the joint density of ("; z0)0 in Step 2 of the modi�ed Algorithm
G in Section 3.2.
19C = 0:3 roughly approximates the standard deviation (0.289) of the uniform distribution on [�0:5; 0:5]. 1=6 = 1=(2s + d)

with s = d = 2. There are roughly N = n� (2Cn�1=6)�Cn�1=6 = 2C2n2=3 data points in a h neighborhood of (xi; 
). When
c = 0:3 and n = 200, N � 6. When c = 0:7 and n = 800, N � 84.
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The rescaled Epanechnikov kernel is used, viz.,

k�(x; r) =
3

4
(1� x2)1(�1 � x � r)

��
1

2
+
3

4
r � 1

4
r3
�
; 0 � r � 1;

which degenerates to the Epanechnikov kernel when r = 1, and k+(x; r) = k�(�x; r). This kernel function
guarantees that k�(0; r) > 0. Note that the kernel functions in Table 1 of Müller (1991) do not satisfy this

condition and so they are not used in this simulation.

n 200 800

Estimators b
 e
 b
 e

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

C = 0:3 -5.144 8.296 -7.853 10.309 -0.498 1.891 -5.473 8.575

C = 0:5 -1.632 3.937 -4.100 6.720 -0.262 0.665 -1.906 4.125

C = 0:7 -1.258 3.059 -2.750 5.158 -0.252 0.579 -0.958 2.192

Table 4: Bias and RMSE of b
 and e
 (in 10�2): xo = 0
(Based on 500 Repetitions)

We consider 500 random samples of size n = 200 and 800. The simulation results are summarized in Table

4. The following conclusions are drawn. First, the IDKE performs better than the DKE in terms of both bias

and RMSE for all bandwidths and sample sizes. For this simple setup, a larger bandwidth seems preferable.

For the bandwidth speci�cation Cn�1=6 � 0:3 when C = 0:7 and n = 200, which roughly corresponds to the
parametric estimation, noticing that the distance between 
 (= 0:2) and the right boundary of q�s support

(0.5) is 0.3. Understandably, parametric estimation is more e¢ cient.

To illustrate why the IDKE is more e¢ cient than the DKE, Figure 2 shows typical objective functions

of the IDKE and DKE. There are local maximizers in both objective functions. But since the DKE is

determined only by the information in the neighborhood of the chosen point xo, this estimator turns out to

be determined by a global-maximizer (in this case a pseudo-maximizer) that lies further from the true value

in the parameter space than the local maximizer. In contrast, the IDKE incorporates jump information

from other areas of the sample space X , and turns out to be determined by the maximizer that is closer
to the true value. Second, comparing the RMSE of b
 and e
 for n = 200 and 800, it is apparent that the

convergence rate of b
 is much faster than e
. Taking the ratio of the RMSEs for n = 200 and n = 800; the
convergence rate of e
 is clearly slower than n, whereas for b
 the convergence rate seems close to O (n) 20 .
Another interesting phenomenon is that all biases are negative. This is mainly due to the bias problem in

the construction of the objective functions for b
 and e
, as mentioned in Section 2.1. But if the local linear
smoother is used, then the algorithm was found to be unstable in our simulations because the denominator

matrix tends to be singular.

6 Empirical Application

In the early 1980s, the United States introduced several tax-deferred savings options designed to increase

individual savings for retirement, the most popular being Individual Retirement Accounts (IRAs) and 401(k)

plans. IRAs and 401(k) plans are similar in that both allow the individual to deduct contributions to

retirement accounts from taxable income and they both permit tax-free accrual of interest. The key di¤erence

between these schemes is that employers provide 401(k) plans and may match some percentage of the

20For example, when C = 0:3 we have 8:296=1:891 = 4:387 for 
̂ and 10:309=8:575 = 1:202 for e
.
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Figure 2: Objective Functions of the DKE and IDKE

employee 401(k) contributions. Therefore, only workers in �rms that o¤er such programs are eligible, whereas

IRAs are open to all.21

An interesting question that has attracted attention in the literature is whether contributions to tax-

deferred retirement plans represent additional savings or simply crowd out other types of savings. A central

di¢ culty that complicates empirical investigation of this question is the presence of saver heterogeneity cou-

pled with nonrandom selection into the participation states. Individuals who participate in tax-advantaged

retirement savings plans are likely to already have a strong preference for savings, implying that they would

have saved more than those who do not participate even in the absence of such schemes. The econometric

consequence is that conventional least squares regression may overestimate the e¤ects of these plans. A

common solution to this endogeneity problem is to select an instrument and apply 2SLS. As suggested by

Poterba et al. (1994, 1995, 1998), 401(k) eligibility is exogenous given some observables (most importantly,

income).22 Their suggestion is based on the observation that 401(k) eligibility is decided by employers, and

unobserved preferences for savings may play a minor role in the determination of eligibility once we control

for the e¤ects of observables. Following this suggestion, we use 401(k) eligibility as an instrument for par-

ticipation in 401(k) programs. The same approach is used by Abadie (2003) and Chernozhukov and Hansen

(2004) in estimating local average treatment e¤ects (LATEs) and the quantile treatment e¤ects, respectively.

We use the same data set as Abadie (2003), comprising 9275 observations from the Survey of Income

and Program Participation (SIPP) of 1991. This sample is often referred to as the 1991 SIPP, and is used

extensively in the literature to examine the e¤ect of 401(k) plans on wealth; see, inter alia, Benjamin (2003),

Engen and Gale (2000), Engen et al. (1996), and Poterba et al. (1994, 1995, 1998). As discussed in

Chernozhukov and Hansen (2004), the sample is con�ned to households in which the reference person is

25-64 years old (with spouse if present) and at least one family member is employed and no member is self-

21See the Employee Bene�t Research Institute (1997) for a detailed description of tax-deferred retirement programs, their
history and regulations.
22See Engen et al. (1996) for a di¤erent point of view. These authors contend that eligibility should not be treated as

exogenous.
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employed. Annual family income is required to fall in the $10,000-$200,000 interval. Outside this interval,

401(k) eligibility in the sample is rare. See Table 1 of Abadie (2003) for descriptive statistics of the data set.

There is no literature considering possible threshold e¤ects in the evaluation of treatment e¤ects under

endogeneity. Our threshold treatment model is motivated by the 2SLS estimates of the treatment e¤ects for

di¤erent income categories. Table 5 summarizes the OLS and 2SLS estimates of the e¤ect of 401(k) partic-

ipation for the full sample and the six income categories (as similarly speci�ed in Table 3 of Chernozhukov

and Hansen, 2004). The model is formulated as

y = D�+X 0� + ";E ["jz;X] = 0;

where y is net �nancial assets, D is 401(k) participation status, z is 401(k) eligibility, and X includes a

constant and �ve covariates (family income, age, age squared, marital status and family size) just as in

Abadie (2003).

Sample n First Stage OLS 2SLS OLS 2SLS

Full Sample 9275
0:6883

(0:0080)

13527:05

(1809:59)

9418:83

(2152:08)
D

13527:05

(1809:59)

9418:83

(2152:08)

I: $10� 20K 1848
0:6433

(0:0253)

5486:07

(1476:71)

5716:16

(1629:46)
Constant

�23549:00
(2177:26)

�23298:74
(2166:58)

II: $20� 30K 2093
0:6120

(0:0193)

8029:73

(1422:41)

4507:68

(2243:38)

Family Income

(in thousand $)

976:93

(83:34)

997:19

(83:82)

III: $30� 40K 1693
0:6677

(0:0178)

12626:59

(2525:26)

9348:88

(2715:16)
Age� 25

�376:17
(236:89)

�345:95
(238:01)

IV: $40� 50K 1204
0:7194

(0:0187)

14780:65

(2433:97)

11297:49

(3563:82)
(Age� 25)2

38:70

(7:66)

37:85

(7:69)

V: $50� 75K 1572
0:7452

(0:0147)

24309:73

(3332:90)

23107:01

(3911:53)
Married

�8369:47
(1829:24)

�8355:87
(1828:98)

VI: > $75K 765
0:8341

(0:0174)

27948:78

(10463:97)

25965:50

(12987:00)
Family Size

�785:65
(410:62)

�818:96
(410:39)

Table 5: OLS and 2SLS Estimates of the E¤ect of 401(k) Participation for Six Income Categories

[�rst �ve columns] and All Coe¢ cients for the Full Sample [last three columns]

Notes: n is the sample size for each row, column �First Stage�contains the coe¢ cients of 401(k)

eligibility in the �rst stage regression, and standard errors are reported in parentheses.

The �ndings that emerge from Table 5 are as follows. From the �rst stage regression results reported in

column 3, it is evident that the instrument z is not weak either for the full sample or for the subsamples

within each income category. Second, there is an obvious upward bias in the OLS estimates (except for

Category I). Third and most importantly for the present study, there are obvious threshold e¤ects evident

in the 2SLS estimates: Category V and VI clearly di¤er from the other four categories; and Category III

and IV (especially IV) di¤er from the �rst two categories. The 2SLS estimate using the full sample is close

to the 2SLS estimate for Category III but di¤ers from the 2SLS estimates for all other categories. Based on
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these �ndings, we specify the model as23

y =

8><>:
D�1 +X

0�1 + ";

D�2 +X
0�2 + ";

D�3 +X
0�3 + ";

inc � 
1;

1 < inc � 
2;
inc > 
2;

(13)

where inc, the family income, is the threshold variable. The three regimes correspond to low-income, middle-

income and high-income individuals.

Model (13) is very special since the only endogenous variable D is binary. As in Section 4.2, suppose "

is mean independent of X given D, that is, E["jD;X] = E["jD]. Then because D is binary, E["jD] must be
a linear function of D.24 In other words, the relationship between y and (D;X 0)0 satis�es

y =

8><>:
De�1 + e�10 +X 0�

1
+ e;

De�2 + e�20 +X 0�
2
+ e;

De�3 + e�30 +X 0�
3
+ e;

inc � 
1;

1 < inc � 
2;
inc > 
2;

(14)

where X (�
`
) is X (�`) excluding the constant (the intercept), e�` and e�`0, ` = 1; 2; 3, may di¤er from those

in (13), but �
`
, ` = 1; 2; 3, are the same as in (13). The new error term satis�es E[ejD;X] = 0. Given this

structure, the LSEs of 
1 and 
2 are consistent although the LSEs of �`, ` = 1; 2; 3, are inconsistent. We

use the sequential estimation procedure of Bai (1997) to consistently estimate 
1 and 
2. Given a consistent

estimator of 
1 and 
2, �` and �` can be consistently estimated by the 2SLS procedure developed here, and

a consistent estimate of " follows. A testable restriction of E["jD;X] = E["jD] can be based on the di¤erence
between the LSE of �

`
and the 2SLS estimator of �

`
. We will conduct such tests after estimation.

Given the LSE of 
1 and 
2, we can use the modi�ed Algorithm G in Section 3.2 to improve e¢ ciency

in estimation of 
1 and 
2. To simplify the estimation of the likelihood function, assume " ? Xj (D; z)
where �?�denotes independence (c.f., Dawid, 1979) and variables to the right of �j�are the conditioning
variables.25 Then as argued in Section 4.2, we need only estimate f("jD; z) to construct the nonparametric
posterior interval (NPI) for 
. In other words, only three univariate density functions are estimated.26 The

bandwidths in the density estimation are selected by the method proposed in Botev et al. (2010). For

computational convenience we combine Regimes I and II in (13) to construct the NPI for 
1, and combine

Regimes II and III to construct the NPI for 
2, rather than constructing the NPI for 
1 and 
2 simultaneously.

All implementation details and code are available upon request.


1 
2 n in Regime I n in Regime II n in Regime III

OLS 42:870 69:006 6112 2151 1012

CH (2004)+Linear 42:870 68:225 6112 2116 1047

CH (2004)+Probit 42:870 69:006 6112 2151 1012

Posterior Mean 42:866 71:326 6112 2260 903

Posterior Median 42:869 71:349 6112 2262 901

NPI [42:810; 42:876] [71:087; 71:358]

23 In the notation of (1), x = (D;x0)0, q = inc, where x is X excluding the constant and inc.
24This result is not correct when D is continuous or can take more than two values when it is discrete. Note that Perron and

Yamamoto (2012b) use OLS to estimate the structural change points even when D is continuous and the resulting estimates
are generally inconsistent; see Yu (2015) for more discussions on the consistency of the LSE for the threshold points in the
presence of endogeneity.
25E["jD;X] = E["jD] does not imply " ? XjD, but when one more variable z is put in the conditional set, " ? XjD; z is

more likely to hold.
26Note that z = 0 and D = 1 are an impossible outcome since only eligible individuals can open a 401(k) account.
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Table 6: Estimates of 
1 and 
2, the NPI and Numbers of Data Points in Each Regime

Another estimator of 
1 and 
2 is the 2SLS estimator of Caner and Hansen (2004), as mentioned in the

Introduction. That estimator is inconsistent unless a consistent estimator of E[Djz;X] rather than the linear
projection of D on (z;X 0)0 is used in the second stage (see Yu, 2013a). To illustrate, we use both the linear

projection of D on (z;X 0)0 and the Probit �t of D on (z;X 0)0 in the second stage to show the di¤erences in

the corresponding 2SLS estimators. All the estimators of 
1 and 
2 mentioned above and the corresponding

three regimes are summarized in Table 6. Some of the �ndings in Table 6 are summarized as follows. First,

Regime I is the same for all estimators. Second, compared to the Caner-Hansen 2SLS estimator, the LSE of


2 is closer to the posterior mean (or median) which is most e¢ cient. When the Probit �t of D on (z;X 0)0

is used in the second stage of Caner-Hansen 2SLS estimation, the resulting estimate is the same as the LSE.

This result corroborates the �nding in Yu (2013a) that a consistent estimator of E[Djz;X] is preferable to
linear projection of D on (z;X 0)0 in that procedure. Third, the NPIs for both 
1 and 
2 are narrow (each

interval covers only 12 data points), which indicates that regime splitting by the posterior mean (or median)

is precise here.

Table 7 reports the OLS and 2SLS estimates of
�
�`; �

0
`

�0
in the three regimes split according to the

posterior median. (Results based on the posterior mean are similar and are omitted here). First, the 2SLS

estimates of �` in all three regimes are signi�cantly di¤erent from zero at all conventional signi�cance levels.

This result implies that participation in the 401(k) plans indeed increases savings for all individuals across

di¤erent levels of income, and that the putative crowding-out e¤ect on savings is not signi�cant. Second,

the savings of the high-income individuals increase the most, i.e., the greatest advantage of 401(k) plans is

taken by rich people. Third, the OLS and 2SLS estimates of �
`
are similar. Rigorous tests cannot reject

the null that they are equal in all three regimes, which supports the assumption that E["jD;X] = E["jD].
Fourth, the OLS and 2SLS estimates of �` are quite di¤erent, which con�rms that D is endogenous. Fifth,

the �
`
�s in the three regimes are all quite di¤erent. In other words, saving behavior of these three groups

of individuals di¤ers empirically. More speci�cally, we note the following: (i) family income has a larger

(positive) impact on savings for richer people; (ii) di¤ering from people in Regime I and II, age has a large

positive impact on savings for people in Regime III; (iii) married persons generally have less savings than

unmarried persons, and the extent is larger for richer people; (iv) family size does not have much impact

on savings for high-income individuals, whereas it has a signi�cantly negative impact for low-income and

middle-income individuals. All these results are intuitively reasonable. Importantly, compared to the last

three columns of Table 5, the 2SLS estimates using the full sample obscure the di¤erences in the roles of

covariates (especially the participation in 401(k) plans) on savings amongst various income groups.

These �ndings have signi�cant policy implications. The intended purpose of IRAs and 401(k) plans was to

encourage savings for retirement rather than encourage investment by avoiding taxation. IRAs have already

witnessed large balances since their introduction, which triggers limitations on deductable levels of income.

Speci�cally, the amount of IRA contributions deductable from current-year taxes is partially reduced for

levels of income beyond a threshold, and eliminated entirely beyond another threshold.27 ,28 Such limitations

do not exist for 401(k) plans, although there is a maximum deductible level.29 The analysis above shows

27This rule applies if the contributor and/or the contributor�s spouse is covered by an employer-based retirement plan; see
IRS Publication 590 for the details.
28This policy can be justi�ed by repeating the analysis above with the IRA participation status added to X. The coe¢ cients

of D are qualitatively similar to those in Table 7. Also, the coe¢ cients of the IRA participation status are statistically signi�cant
and show threshold e¤ects among the three regimes. We did not conduct such an analysis in the main text because the IRA
participation status is also endogenous, while the (comprehensive) IRA eligibility (unlike 401(k) eligibility) is trivially satis�ed
and is not a valid instrument.
29See http://www.irs.gov/uac/2013-Pension-Plan-Limitations, but this maximum deductible level is much higher than ourb
2.
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that the limitation structure of two thresholds on income are also applicable to 401(k) plans. This �nding

may help to determine suitable threshold levels in managing 401(k) plans.

Since the analysis above rests on the assumption that there are threshold e¤ects, we conduct two spec-

i�cation tests developed in Liao et al. (2015) to assess evidence for this assumption. The corresponding

hypotheses are

H0 :
�
�1; �

0
1

�0
=
�
�2; �

0
2

�0
=
�
�3; �

0
3

�0
;

H1 : at least two of
�
�`; �

0
`

�0
, ` = 1; 2; 3, are not equal.

The �rst test is based on (14) with no instruments available. We adapt both the (sup and average) Wald

test and the score test to this environment; all four tests reject the null strongly with p-values equal to zero.

The second test is based on (13) with z as the instrument. Again, all four tests reject the null with zero

p-values. These results strongly validate the presence of threshold e¤ects in the data and serve to support

the empirical analysis given above.

Finally, it deserves mention that OLS estimation of 
1 and 
2 and 2SLS estimation of �` are suited

to the case where only the selection e¤ect is present, not to cases where essential heterogeneity is also

present. Notwithstanding this shortcoming, an objective function for the LATE as in Abadie (2003), which

incorporates threshold e¤ects, can be used to estimate the 
 and � parameters provided we use the model

(14) for compliers. A formal extension of our analysis to this framework is of interest but is beyond the

scope of the current work.

Regime I:

inc � 42:869
Regime II:

42:869 < inc � 71:349
Regime III:

inc > 71:349

OLS 2SLS OLS 2SLS OLS 2SLS

D
9811:47

(1141:41)

7258:49

(1342:37)

19663:49

(2428:96)

18164:69

(3092:96)

29982:27

(9373:62)

26214:79

(11641:56)

Constant
�7238:00
(1013:07)

�7321:94
(1014:93)

�16469:57
(11204:50)

�16507:50
(11183:96)

�165023:82
(39491:72)

�163662:09
(40063:86)

Family Income

(in thousand $)

418:12

(47:56)

441:63

(50:48)

731:03

(168:01)

741:16

(162:89)

1967:02

(451:03)

1970:89

(448:38)

Age� 25
�47:94
(138:58)

�36:512
(137:85)

�551:01
(620:08)

�532:28
(615:95)

2882:54

(1910:19)

2892:55

(1918:83)

(Age� 25)2
17:58

(4:72)

17:25

(4:70)

65:34

(20:66)

64:87

(20:55)

4:68

(54:48)

4:18

(54:94)

Married
�1446:37
(1084:75)

�1532:38
(1089:54)

�12534:08
(5587:10)

�12558:78
(5585:97)

�15314:22
(17556:90)

�14876:92
(17614:99)

Family Size
�1152:91
(245:35)

�1160:58
(245:41)

�2198:98
(892:00)

�2213:39
(893:10)

8:09

(3665:470)

�57:14
(3652:44)

Table 7: OLS and 2SLS Estimates of
�
�`; �

0
`

�0
in the Three Regimes Split by the Posterior Median

Note: standard errors are reported in parentheses.
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7 Conclusion

Just as in conventional linear regression, endogeneity of the covariates complicates threshold regression. In

both models, the complications are commonly addressed by the use of instrumentation. The present paper

studies estimation and speci�cation testing in threshold regression under endogeneity with a focus on what

can be achieved without instruments.

As we have shown, it turns out that threshold points can be identi�ed at an O (n) rate and parameters

of threshold e¤ects can be identi�ed at a nonparametric rate even when instruments are absent. This

somewhat surprising �nding is the direct result of the nonstationary discontinuity structure induced by

threshold e¤ects, which provides identifying information. Thus, important parameters in threshold regression

are identi�able and estimable under endogeneity without instrumentation. When instruments are available,

they deliver identi�cation for the remaining structural coe¢ cients in the usual way but play di¤erent roles

for the threshold parameter and related coe¢ cients by improving e¢ ciency or raising convergence rates.

Our simulation results con�rm the relevance of the asymptotic theory in �nite samples and our empirical

�ndings con�rm the usefulness of these new procedures in detecting important threshold e¤ects in IRA/401(k)

retirement programs on savings.

As indicated earlier in the paper, the estimation procedures can be extended to more general models and

these can be simpli�ed in cases where only a subset of the covariates is endogenous. There are many other

relevant issues that deserve study and we conclude by outlining some of these here.

1. Assumption H does not provide speci�c criteria for bandwidth selection besides the constraints on

rates. Porter and Yu (2011) suggest using cross validation to select h in the simple case with d = 1:

Their procedure may be extended to the more general context of the present paper at the cost of more

complex analysis.

2. The simulation studies reported here are limited in view of the time-intensive nature of the calculations.

A large-scale simulation study that provides further information on the performance of the procedures

and the e¤ects of bandwidth selection would be useful.

3. The model considered here is based on threshold e¤ects in the conditional mean. Two obvious ex-

tensions that are relevant in applications are threshold models involving conditional variances and

conditional quantiles. The former extension is potentially useful in �nancial econometrics �see Sec-

tion 7 of Tong (2011) for a review of the related time series literature and Chan et al. (2014) for an

analysis of the conditionally heteroscedastic AR model with thresholds. As for the latter, a parametric

endogenous quantile regression model without threshold e¤ects was considered in Chernozhukov and

Hansen (2006) and applied in Chernozhukov and Hansen (2004). Also, Yu (2013b) showed how to

integrate quantile di¤erence information to improve e¢ ciency in threshold estimation in models with

no endogeneity. Combining the ideas in these literatures with those of this paper seems promising and

useful for many microeconometric applications where thresholding e¤ects are suspected.

4. This paper is based on the �xed-threshold-e¤ect framework of Chan (1993). Using the IDKE procedure

to estimate threshold points in the small-threshold-e¤ect framework of Hansen (2000) would be a useful

extension of our theory. In a �xed design model with only one covariate, Müller and Song (1997) have

shown that the DKE has a similar asymptotic distribution to that of the parametric case.

5. The limit theory developed here is for i.i.d. data. Extension of our �ndings to stationary and ergodic

time series data will be useful in many applications in macroeconomics and �nance. For simple time

series speci�cations this extension seems quite straightforward but if the covariates x and q involve
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lagged dependent variables, the extension is not trivial in view of the complications involved in dynamic

fully nonparametric threshold autoregressions.

6. The estimation techniques developed in this paper can also be used to other microeconometric models.

For example, (i) the transformation model, � (y) = x0� + x0�1 (q � 
) + ", where �(�) is an unknown
strictly increasing transformation; (ii) the limited dependent variable model, y = �(y�), where �(�)
is a known noninvertible function, and the latent variable y� = x0� + x0�1 (q � 
) + "; (iii) threshold
panel data models, yit = �i + x0it� + x

0
it�1 (qit � 
) + "it, where xit may include lagged yit�s and qit

may be a lagged yit. As long as the observed dependent variable has a jump at q = 
, we can use the

IDKE to identify the threshold point 
.

7. The limit theory considers only a single threshold point. This simpli�cation in the theory was made to

facilitate access to an already complex body of theory and notation. Extending our analysis to the mul-

tiple threshold case (e.g., along the lines of Bai and Perron, 1998) does not involve any fundamentally

new di¢ culties. In fact, we already consider the two threshold points case in our application.

8. Due to space constraints, the present paper has concentrated on model identi�cation and estimation.

In a parallel and complementary work, Liao et al. (2015) develop methodology for speci�cation testing,

focussing on a test for endogeneity and a test for the presence of threshold e¤ects, working as here

both with and without instruments.
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Appendix A: Proofs

In the following proofs, some steps are omitted for brevity whenever they are available in the literature and

references are provided. This simpli�cation makes the proofs cleaner and more readable. Derivations that

di¤er from the existing literature are given in full detail. Propositions that are used in these derivations are

given in Appendix B and additional lemmas that are needed are given in Appendix C. Also, to save space,

the proofs for the asymptotic distributions of � estimators in Section 2.3 and GMM estimators in Section

3.2 are relegated to supplementary materials.

Proof of Theorem 1. Proposition 1 proves the consistency of b
, and Proposition 2 proves b
 � 
0 =
Op(n

�1), so we can apply the argmax continuous mapping theorem (see, e.g., Theorem 3.2.2 of Van der

Vaart and Wellner (1996)) to establish the asymptotic distribution of n (b
 � 
0). From Proposition 3, for v

in any compact set of R,

nh
� bQn �
0 + v

n

�
� bQn(
0)�. 2k+(0)

= �
nX
i=1

z1i1
�

0 �

v

n
< qi � 
0

�
�

nX
i=1

z2i1
�

0 < qi � 
0 +

v

n

�
+ op(1);

where z1i and z2i are de�ned in the main text. Now, we can obtain the asymptotic distribution of n (b
 � 
0)
by applying the same argument as in the proofs of Theorem 1 and 2 in Yu (2012). The only di¤erence lies

in the de�nitions of z1i and z2i.

Proof of Corollary 1. The proofs of the consistency of e
 and nhd�1 (e
 � 
0) = Op(1) are similar

to Theorem 1, so are omitted here. We concentrate on deriving the weak limit of the localized process

nhd
�b�2o (
)� b�2o (
0)� for 
 in an �nhd�1��1 neighborhood of 
0 .
Let an = nhd�1(= o(h)), then

nhd
�b�2o�
0 + v

an

�
� b�2o (
0)� = �b�o�
0 + v

an

�
+ b�o (
0)�nhd�b�o�
0 + v

an

�
� b�o (
0)� :

It is easy to show that b�o �
0 + v
an

�
� E

hb�o �
0 + v
an

�i
p�! 0 for v in any compact set. Without loss of

generality, let 
 > 
0 or v > 0: Then

E
hb�o (
)i = Z 0

�1

Z
Kx(ux; xo)k�(uq)g(xo + uxh; 
 + uqh)f(xo + uxh; 
 + uqh)duxduq

+

Z 
0�

h

�1

Z
Kx(ux; xo)k�(uq)

�
1; (xo + uxh)

0
; 
 + uqh

�
�0f(xo + uxh; 
 + uqh)duxduq

�
Z 1

0

Z
Kx(ux; xo)k+(uq)g(xo + uxh; 
 + uqh)f(xo + uxh; 
 + uqh)duxduq

= (1; x0o; 
0) �0f(xo; 
0) +O(h):
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Now, we need only consider the behavior of nhd
�b�o �
0 + v

an

�
� b�o (
0)�. Proposition 4 shows that

nhd
�b�o�
0 + v

an

�
� b�o (
0)�) Do(v);

where ) signi�es the weak convergence on a compact set of v,

Do (v) =

8>><>>:
N1(jvj)P
i=1

z1i, if v � 0;
N2(v)P
i=1

z2i, if v > 0;

is a cadlag process with Do(0) = 0,

z1i =
�
�2e�i � (1; x0o; 
0) �0

�
K(U�i )k� (0) , z2i =

�
2e+i � (1; x0o; 
0) �0

�
K(U+i )k+ (0) ;

and the distributions of e�i ; e
+
i ; U

�
i ; U

+
i are de�ned in the corollary. So

nhd
�b�2o�
0 + v

an

�
� b�2o (
0)�) D(v);

where D(v) takes a similar form to Do(v), but now

z1i = 2
�
�2 (1; x0o; 
0) �0e�i � �

0
0 (1; x

0
o; 
0)

0
(1; x0o; 
0) �0

�
K(U�i )f(xo; 
0)k� (0) ;

and

z2i = 2
�
�2 (1; x0o; 
0) �0e+i � �

0
0 (1; x

0
o; 
0)

0
(1; x0o; 
0) �0

�
K(U+i )f(xo; 
0)k+ (0) :

Given the weak limit of nhd
�b�2o �
0 + v

an

�
� b�2o (
0)�, we can apply the argmax continuous mapping

theorem (Theorem 3.2.2 in Van der Vaart and Wellner, 1996) to obtain the asymptotic distribution of e
. We
need to check four conditions, just as in the proof of Theorem 2 of Yu (2012). Since these checks are all similar,

we omit the details here and only note that argmax
v
D(v) = argmin

v
D(v); given that k� (0) = k+ (0) > 0 and

f(xo; 
0) > 0.

Proof of Theorem 4. Assume the densities of (x0; q)0 and e are known. Since the minimax risk for a

larger class of probability models must not be smaller than that for a smaller class of probability models,

the lower bound for a particular distributional assumption also holds for a wider class of distributions. To

simplify the calculation, assume ei is iid N(0; 1) and (x0i; qi)
0 is iid uniform on X �N , where N is speci�ed as

[��; �]. Such a speci�cation also appears in Fan (1993) where it is called the assumption of richness of joint
densities. We will use the technique in Sun (2005) to develop our results. This technique is also implicitly

used in Stone (1980) and the essential part of the technique can be cast in the language of Neyman-Pearson

testing.

Let P;Q be probability measures de�ned on the same measurable space (
;A) with the a¢ nity between
the two measures de�ned as usual to be

�(P;Q) = inf (EP [�] + EQ [1� �]) ;

where the in�mum is taken over the measurable function � such that 0 � � � 1. In other words, �(P;Q) is
the smallest sum of type I and type II errors of any test between P and Q. It is a natural measure of the
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di¢ culty of distinguishing P and Q. Suppose � is a measure dominating both P and Q with corresponding

densities p and q. It follows from the Neyman-Pearson lemma that the in�mum is achieved by setting

� = 1(p � q) and then

�(P;Q) =

Z
1(p � q)pd�+

Z
1(p > q)qd�

= 1� 1
2

Z
jp� qj d� � 1� 1

2
kP �Qk1 ;

where k�k1 is the L1 distance between two probability measures. Now consider a pair of probability models
P;Q 2 P(s;B) such that j��(P )� ��(Q)j � �. For any estimator b�, we have

1
�


b�� � ��(P )


 > �=2�+ 1�


b�� � ��(Q)


 > �=2� � 1:

Let

� =
1
����b�� � ��(P )��� > �=2�

1
����b�� � ��(P )��� > �=2�+ 1����b�� � ��(Q)��� > �=2� :

Then 0 � � � 1 and

sup
P2P(s;B)

P
����b�� � ��(P)��� > �=2� � 1

2

n
P
����b�� � ��(P )��� > �=2�+Q����b�� � ��(Q)��� > �=2�o

� 1

2
EP [�] +

1

2
EQ [1� �] :

Therefore

infb�� sup
P2P(s;B)

P
����b�� � ��(P)��� > �=2� � 1

2
�(P;Q)

for any P and Q such that j��(P )� ��(Q)j � �. So we need only search for the pair (P;Q) which minimize
�(P;Q) subject to the constraint j��(P )� ��(Q)j � �. To obtain a lower bound with a sequence of inde-

pendent observations, let (
;A) be the product space and P(s;B) be the family of product probabilities on
such a space. Then for any pair of �nite-product measures P =

Qn
i=1 Pi and Q =

Qn
i=1Qi, the minimax

risk satis�es

infb�� sup
P2P(s;B)

P
����b�� � ��(P)��� > �=2� � 1

2

�
1� 1

2




Yn

i=1
Pi �

Yn

i=1
Qi





1

�
provided that j��(P )� ��(Q)j � �. From Pollard (1993), if dQi=dPi = 1 +�i(�), then




Yn

i=1
Pi �

Yn

i=1
Qi





1
� exp

 
nX
i=1

�2i

!
� 1;

where �2i = EPi [�2i (�)] is �nite. So

infb�� sup
P2P(s;B)

P
����b�� � ��(P)��� > �=2� � 1

2

 
3

2
� exp

 
nX
i=1

�2i

!!
(15)

provided that j��(P )� ��(Q)j � �.
It remains to �nd probabilities P and Q that are di¢ cult to distinguish by the data set f(x0i; qi; yi)g

n
i=1.
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First assume 
0 6= 0. Without loss of generality, let 
0 > 0. Under P , the data is generated according to

yi = gP (xi; qi) + (��P + x
0
i�xP + qi�qP ) 1(qi � 
0) + ei;

and under Q, gP and �P are changed to gQ and �Q, respectively. We now specify g and � for each model.

For P , let gP = 0 and �P = 0; for Q, let

gQ(x; q) = ���s'q
�
q � 
0
�

�
, ��Q = ��
0�s�1, �xQ = 0, and �qQ = ��s�1;

where � is a positive constant, � = n�1=(2s+1), 'q is an in�nitely di¤erentiable function in q satisfying (i)

'q(v) = 0 for v � 0, (ii) 'q (v) = v, for v � ��, and (iii) v � 'q (v) 2 (0; 1) for v 2 (��; 0). It is not hard
to check that gQ(x; q) 2 C (s;B) for some B > 0, so it remains to compute the L1 distance between the two
measures. Let the density of Qi with respect to Pi be 1 + �i(�), then

�i(xi; qi; yi) =

(
�(yi � gQ(xi; qi)� ��Q � qi�qQ)=�(yi)� 1;

0;

if qi 2 [
0 � ��; 
0];
otherwise

where �(�) is the standard normal pdf. Therefore,

EPi [�2i ] =

Z 
0


0���

Z 1

0

� � �
Z 1

0

Z 1

�1
[�(y � gQ(x; q)� ��Q � q�qQ)=�(y)� 1]2 �(y)f(x; q)dydxdq

=
1

2�

Z 
0


0���

Z 1

0

� � �
Z 1

0

Z 1

�1
�(y � gQ(x; q)� ��Q � q�qQ)2=�(y)dydxdq

�1
�

Z 
0


0���

Z 1

0

� � �
Z 1

0

Z 1

�1
�(y � gQ(x; q)� ��Q � q�qQ)dydxdq +

�

2

=
1

2�

Z 
0


0���

Z 1

0

� � �
Z 1

0

Z 1

�1
�(y � gQ(x; q)� ��Q � q�qQ)2=�(y)dydxdq �

�

2
:

Plugging in the standard normal pdf yields

EPi [�2i ] =
1

2�

Z 
0


0���

Z 1

0

� � �
Z 1

0

Z 1

�1

1p
2�
exp

�
�2(y � gQ(x; q)� ��Q � q�qQ)

2

2
+
y2

2

�
dydxdq � �

2

=
1

2�

Z 
0


0���

Z 1

0

� � �
Z 1

0

exp
n
[gQ(x; q) + ��Q + q�qQ]

2
o
dxdq � �

2

=
1

2�

Z 
0


0���
exp

(
�2�2s

�
q � 
0
�

� 'q
�
q � 
0
�

��2)
dq � �

2

� �

2
exp

�
�2�2s

�
� �
2
=
�

2

�
exp

�
�2�2s

�
� 1
�
=
�2

2
�2s+1(1 + o(1)) � �2

2n
;

when n is large enough.

When � is small enough, say �2=2 � log(5=4), we have

exp

 
nX
i=1

�2i

!
� exp

�
�2

2

�
<
5

4
:
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It follows from (15) that

infb�� sup
P2P(s;B)

P
����b�� � ��(P)��� > �

2
n�

s�1
2s+1

�
� 1

2

�
3

2
� 5
4

�
=
1

8
� C;

on choosing C � 1=8, where �
2n

� s�1
2s+1 appears because j��(P )� ��(Q)j = 
0�n�

s�1
2s+1 � �n�

s�1
2s+1 for a small

�.

When 
0 = 0, we choose

gQ(x; q) = ���s'q
�
q

�

�
, ��Q = ��s, �xQ = 0, and �qQ = 0;

where 'q is an in�nitely di¤erentiable function in q satisfying (i) 'q(v) = 0 for v � 0, (ii) 'q (v) = 1, for

v � ��, and (iii) 'q (v) 2 (0; 1) for v 2 (��; 0), then

EPi [�2i ] =
1

2�

Z 0

���
exp

(
�2�2s

�
1� 'q

�
q

�

��2)
dq � �

2
� �

2
exp

�
�2�2s

�
� �
2
;

and following similar steps to those above we have infb�� sup
P2P(s;B)

P
����b�� � ��(P)��� > �

2n
� s
2s+1

�
� C for some �

and C.

The above argument also shows that the optimal rate of convergence for �q is n
� s�1
2s+1 . As for �x, we need

only choose another pair of probabilities P and Q. To simplify notation, let d � 1 = 1 so that x is only

one-dimensional. Let P be the same as above, and

gQ(x; q) = ���s'q
�
q � 
0
�

�
x, ��Q = 0, �xQ = ��s, and �qQ = 0;

where 'q is an in�nitely di¤erentiable function in q satisfying (i) 'q(v) = 0 for v � 0, (ii) 'q (v) = 1, for

v � ��, and (iii) 'q (v) 2 (0; 1) for v 2 (��; 0): Then

EPi [�2i ] =
1

2�

Z 
0


0���

Z 1

0

exp

(
�2�2sx2

�
1� 'q

�
q

�

��2)
dxdq � �

2
� �

2
exp

�
�2�2s

�
� �
2
;

and it follows that infb�x sup
P2P(s;B)

P
����b�x � �x(P)��� > �

2n
� s
2s+1

�
� C for some � and C.

Appendix B: Propositions

The following propositions are needed in the proof of Theorem 1 and Corollary 1 and hold under the

conditions of that theorem.

Proposition 1 b
 � 
0 = Op(h).
Proof. We apply Lemma 4 of Porter and Yu (2011) to prove this result. De�ne Qn(
) as the probability
limit of bQn(
). Lemma 1 shows that

sup

2�

��� bQn(
)�Qn(
)��� p�! 0;
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where

Qn(
) =

Z " R 0
�1
R
Kx(ux; x)k�(uq)m(x; 
 + uqh)f(x+ uxh; 
 + uqh)duxduq

�
R 1
0

R
Kx(ux; x)k+(uq)m(x; 
 + uqh)f(x+ uxh; 
 + uqh)duxduq

#2
f(x)dx:

Let Nn = [
0�h; 
0+h] and 
n = argmax

2�

Qn(
), then it remains to show that sup

2�nNn

Qn(
) < Qn(
n)�C

for some positive constant C. It is easy to show that sup

2�nNn

Qn(
) = O(h
2). On the contrary, for 
 2 Nn,

Qn(
) behaves quite di¤erently. Speci�cally, let 
 = 
0 + ah, a 2 (0; 1), then

Qn(
) =

Z 264
R 0
�1
R
Kx(ux; x)k�(uq)g(x; 
 + uqh)f(x+ uxh; 
 + uqh)duxduq

+
R �a
�1
R
Kx(ux; x)k�(uq) (1; x

0; 
 + uqh) �0f(x+ uxh; 
 + uqh)duxduq

�
R 1
0

R
Kx(ux; x)k+(uq)g(x; 
 + uqh)f(x+ uxh; 
 + uqh)duxduq

375
2

f(x)dx:

The di¤erence of the �rst and the third terms in brackets is O(h2), so the second term will dominate. From

Assumption I, (1; x0; 
0) �0 6= 0 for some x 2 X , so
R �R

Kx(ux; x) (1; x
0; 
0) �0f(x; 
0)dux

�2
f(x)dx > C

for some positive constant C. Because k�(0) > 0 and k�(�) � 0,
R �a
�1 k�(uq)duq < 1 and is a decreasing

function of a. As a result, Qn(
) is a decreasing function of a for a 2 (0; 1) up to O(h2). Similarly,

it is an increasing function of a for a 2 (�1; 0). So Qn(
) is maximized at some 
n 2 Nn such that
Qn(
n) > sup


2�nNn

jQn(
)j+ C=2 for n large enough. The required result follows.

Proposition 2 b
 � 
0 = Op(n�1).
Proof. We use the standard shelling method (see, e.g., Theorem 3.2.5 of Van der Vaart and Wellner (1996))

to prove this result.

For each n, the parameter space can be partitioned into the �shells�Sl;n =
�
� : 2l�1 < n j
 � 
0j � 2l

	
with l ranging over the integers. If n jb
 � 
0j is larger than 2L for a given integer L, then b
 is in one of
the shells Sl;n with l � L. In that case the supremum of the map 
 7! bQn(
) � bQn(
0) over this shell is
nonnegative by the property of b
. Note that

P
�
n jb
 � 
0j > 2L�

� P

 
sup

2L<nj
�
0j�nh

 
1

n

nX
i=1

b�2i (
)� 1

n

nX
i=1

b�2i (
0)
!
� 0
!
+ P (jb
 � 
0j � h)

�
log2(nh)X
l=L

P

 
sup
Sl;n

1

n

nX
i=1

b�2i (
) � 1

n

nX
i=1

b�2i (
0)
!
+ P (jb� � �0j � h)

�
log2(nh)X
l=L

P

 
sup
Sl;n

1

n

nX
i=1

b�2i (
)1(�(xi) > 0) � 1

n

nX
i=1

b�2i (
0)1(�(xi) > 0)
!

+

log2(nh)X
l=L

P

 
sup
Sl;n

1

n

nX
i=1

b�2i (
)1(�(xi) < 0) � 1

n

nX
i=1

b�2i (
0)1(�(xi) < 0)
!

+P (jb� � �0j � h)
� T1 + T2 + T3;
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where �(xi) � (1; x0i; 
0) �0. T3 converges to zero by the last proposition, so we concentrate on the �rst two
terms. T2 can be analyzed similar to T1, so we only consider T1 in the following discussion.

T1 �
log2(nh)X
l=L

P

 
sup
Sl;n

1

n

nX
i=1

�b�i(
)� b�i(
0)� 1(�(xi) > 0) > 0
!

+

log2(nh)X
l=L

P

 
sup
Sl;n

1

n

nX
i=1

�b�i(
) + b�i(
0)� 1(�(xi) > 0) < 0
!
:

We concentrate on the �rst term since the second term is easier to analyze given that �(xi) > 0. To simplify

notations, we neglect 1(�(xi) > 0) in the following discussion.

Note that

1

n

nX
i=1

�b�i(
)� b�i(
0)�
=

1

n(n� 1)

nX
i=1

nX
j=1;j 6=i

�
yjK


�
h;ij � yjK


+
h;ij

�
� 1

n(n� 1)

nX
i=1

nX
j=1;j 6=i

�
yjK


�0
h;ij � yjK


+0
h;ij

�
=

1

n(n� 1)

nX
i=1

nX
j=1;j 6=i

h�
mjK


�
h;ij �mjK


+
h;ij

�
�
�
mjK


�0
h;ij �mjK


+0
h;ij

�i
+

1

n(n� 1)

nX
i=1

nX
j=1;j 6=i

�
ejK


�
h;ij � ejK


+
h;ij

�
� 1

n(n� 1)

nX
i=1

nX
j=1;j 6=i

�
ejK


�0
h;ij � ejK


+0
h;ij

�
� D1 +D2;

where mj = gj + (1; x
0
j ; qj)�01(qj � 
0) with gj = g(xj ; qj). Suppose 
0 < 
 < 
0 + h: Then

D1 =
1

n(n� 1)

nX
i=1

nX
j=1;j 6=i

gj

�
K

+0
h;ij �K


+
h;ij

�
+

1

n(n� 1)

nX
i=1

nX
j=1;j 6=i

gj

�
K
�
h;ij �K


�0
h;ij

�
+

1

n (n� 1)

nX
i=1

nX
j=1;j 6=i

(1; x0j ; qj)�0

�
K
�
h;ij �K


�0
h;ij

�
1(qj � 
0)

� �C j
 � 
0j
h

;

for some C > 0 with probability approaching 1 by calculating the mean and variance ofD1 in its U-projection,

where the �rst two terms contribute only Op(j
 � 
0j), and the third term contributes to �C j
�
0j
h because

for each i, K
�
h;ij covers less j terms than K


�0
h;ij given that 
 > 
0 and k�(0) > 0. In consequence, for � � h,

P

 
sup

j
�
0j<�

1

n

nX
i=1

�b�i(
)� b�i(
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By Lemma 8.4 of Newey and McFadden (1994), we can show
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1
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�
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�
0
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1
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�
1
nh

j
�
0j
h

�
. By the independence of U-projections of D21; D22 and D23, we have
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�
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:

In consequence,
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2
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� C
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by Markov�s inequality. So
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0)� > 0
!

�
X
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C
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X
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1
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as L!1, and the proof is complete.

Proposition 3 For v in any compact set of R,
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�
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Proof. We use the same notation as the last proposition and denote 
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v
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v
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Following Lemma B.1 of Newey (1994), we can show that b�i(
v0) p�! (1; x0i; 
0) �0f(xi; 
0) � �f (xi) =

Op(1) uniformly in i and v, so b�i(
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Our target is to show that
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and
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The �rst result is shown in Lemma 2, and the second is shown in Lemma 3.
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Proposition 4 On any compact set of v, nhd
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0 + v
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�
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5 to illustrate the argument. Suppose v1 and

v2, 0 < v1 < v2 <1, are stopping times. Then for any � > 0,

P

 
sup

jv2�v1j<�

��T+5 (v2)� T+5 (v1)�� > �
!

� P

0@ nX
j=1

K

�
xj � xo
h

�
k+

�
qj � 
0
h

�
jej j sup

jv2�v1j<�
1(
v10 < qj � 
v20 ) > �

1A
�

nX
j=1

E

"
K

�
xj � xo
h

�
k+

�
qj � 
0
h

�
jej j sup

jv2�v1j<�
1(
v10 < qj � 
v20 )

#,
�

� C�=�;

46



where the second inequality is from Markov�s inequality, and C in the last inequality can take

sup
(x;q)2N

E [jej jx; q] f(x; q) sup
ux;uq

K(ux)k+(uq)

with N being a neighborhood of (x0o; 
0)
0. The required result now follows.

Appendix C: Lemmas

To save space, the proofs for all lemmas are relegated to the supplementary materials.

Lemma 1 sup

2�

��� bQn(
)�Qn(
)��� p�! 0:

Lemma 2
nP
i=1

4P
l=1

Tli = op(1) uniformly in v:

Lemma 3
nP
i=1

(T5i + T6i)�f (xi) = �k+(0)
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[(1; x0i; 
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0 < qi � 
v0)f(xi)�f (xi) + op(1):

Lemma 4
4P
l=1

T+l +
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T�l = op(1) uniformly in v:

Lemma 5 T+5 + T
+
6 + T

�
5 + T

�
6
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