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Atomistic aspects of ductile responses of cubic
silicon carbide during nanometric cutting
Saurav Goel, Xichun Luo*, Robert L Reuben and Waleed Bin Rashid

Abstract

Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties
which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems
applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning
process, the root cause of the ductile response of SiC has not been understood yet which impedes significant
exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to
investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results
show that cubic SiC undergoes sp3-sp2 order-disorder transition resulting in the formation of SiC-graphene-like
substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the
ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive
action between the diamond tool and SiC causes simultaneous sp3-sp2 order-disorder transition of diamond tool
which results in graphitization of diamond and consequent tool wear.

Keywords: ductile regime nanometric cutting, silicon carbide, diamond tool, tool wear

Introduction
Silicon carbide (SiC) is a promising ceramic material
suited for advanced neural interfaces, packaging for
long-term implantation, microfabricated neural probe as
well as for semiconductor devices used in severe envir-
onments, such as in military aircraft, combat vehicles,
power generation, and petrochemical industries [1]. SiC
is a very hard substance (9 to 9.5 on Mohs scale) having
comparable hardness to the hardest material known as
diamond (10 on Mohs scale). The unique blend of prop-
erties possessed by SiC which makes it suitable for var-
ious MEMS, bio-medical, and other applications can be
summarised in the form of Table 1 [2].
Moreover, SiC is also capable of meeting the require-

ments of operation in hostile environments (up to 873
K) where conventional silicon-based electronics (limited
to 623 K) cannot function. The National Aeronautics
and Space Administration agency, NASA, has recently
been making efforts to develop SiC as future material
for advanced semiconductor electronic device applica-
tions [3].

Single-point diamond turning (SPDT) is now an estab-
lished ultra-precision machining process to manufacture
free-form shapes and mirror-finished machined surfaces
[4,5]. SPDT was established by exploiting a so called
“brittle-ductile transition” phenomenon which has made
various brittle materials, amenable to ultra-precision
machining using a diamond cutting tool [6,7]. Investiga-
tions on exploring silicon carbide as a diamond-turnable
material are thus of scientific and technological interest.
Experimental investigation on the feasibility of ductile

regime machining of SiC through SPDT was first
reported in 2005 [8]. Common believe on machining
mechanism of SiC has been that a nanoscale unde-
formed chip thickness compounded with slow feed rate
helps to achieve high-pressure phase transformations
(HPPT) which causes ductile responses from this brittle
material [9,10]. However, no such evidence of HPPT
during nanometric cutting of SiC has been reported yet
and the root cause of ductile response of SiC is still
unknown. Molecular dynamics (MD) simulation results
have been successful in the past to address number of
problems concerning the nanometric cutting processes
of brittle materials like silicon [11-14].
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In this paper, Tersoff potential energy function [15] was
used in the MD simulation to elucidate the atomistic
mechanism underlying the ductile responses from the cubic
SiC during nanometric cutting. Resorting to the simulation
results, a theory has been presented and discussed.

MD simulation
MD simulation model
A schematic diagram of the nanometric cutting simula-
tion model is shown in Figure 1. In the simulation
model, the single-crystal diamond cutting tool has been
modelled as a deformable body. Accordingly, both the
work piece and the cutting tool are divided into three
different zones: Newton atoms, thermostatic atoms, and
boundary atoms. The boundary atoms are unaffected
during the simulation and remain fixed in their initial
lattice positions, serving to reduce the boundary effects
and maintain the symmetry of the lattice.
The motions of the atoms in the Newton and thermo-

static zones are assumed to follow the classical Newton’s
second law of motion which can be computed from the
interatomic forces produced by the interaction as follows:

aix =
Fix

mi
=

d2xi

dt2
Fix = −dV

dxi
(1)

where aix represents the ith atom’s acceleration in the
x direction, mi is the mass of the ith atom, Fix is the
interaction force acting on the ith atom by the jth atom
in the x direction, xi indicates the ith atom’s x-coordi-
nate and V is the potential energy.
During realistic machining operation, the energy from

plastic deformation in the primary shear zone and fric-
tion at the tool-chip interface transforms to cutting
heat, which is carried away by chips and lubricants. The
motion of the thermostatic atoms is therefore scaled
using the velocity scaling factor (shown in equation 2)
to incorporate the dissipation of heat in the simulation.

Velocity scaling factor =

√√√√ 3NkbT∑
i

mivi2
(2)

The temperature of atoms during the machining
simulation can be calculated using the conversion
between the kinetic energy (K.E.) and temperature as
shown in Eq. 3.

1
2

∑
i

mivi
2 =

3
2

NkbT (3)

where N is the number of atoms, vi represents the
velocity of ith atom, kb is the Boltzmann constant which

Table 1 Commercial applications of SiC [2]

Serial number Properties of SiC Applications Realisation

1 High sublimation temperature High temperature transducer elements High temperature sensor diaphragms and resonators

2 Large band gap High temperature electronics Sensors for smart engines

On chip signal conditioning

3 Low wear and high hardness Enhanced durability/operation Coated mechanical contacts

Microfabricated bearings

4 Chemically inert Stable in harsh environments Valve/pumps for corrosives

Flow sensors for acids

Figure 1 Schematic of MD simulation model.
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is equal to 1.3806503 × 10−23 J/K and T represents the
temperature on atoms. However, the instantaneous fluc-
tuations in K.E. of atoms could be very high so K.E.
should be averaged (time and/or spatial) over few time-
steps to be converted into equivalent temperature. It
shall be noted here that the movement of the tool will
also be a contributor to the kinetic energy so the tool
displacement was accordingly subtracted before equiva-
lent temperature conversion.

Selection of potential energy function
The interaction potential function governs the accuracy
of a molecular dynamic simulation which in turn defines
the reliability of simulation results. In this paper, Tersoff
potential energy function [15] was used in the simula-
tion for accurate description of the SiC mixture. Being a
three-body potential function, Tersoff function is suita-
ble to describe covalent interactions of Si and C atoms.
Therefore, it was used to describe Si-Si, C-C, and Si-C
interactions for interactions in and among the tool and
workpiece as follows:

E =
∑

i

Ei =
1
2

∑
i�=j

Vij, Vij = fc(rij)[fR(rij) + bijfA(rij)] (4)

fR(rij) = Aij exp(−λijrij), fA(rij) = −Bij exp(−μijrij) (5)

fc(rij) =

⎧⎪⎪⎨
⎪⎪⎩

1
1
2

+
1
2

cos[π
rij − Rij

Sij − Rij
]

0

rij < Rij

Sij > rij > Rij

rij > Sij

(6)

bij = χij(1 + βi
niζij

ni)−1/2ni , ζij =
∑
k �=i,j

fc(rik)ωikg(θijk) (7)

g(θijk) = 1 +
ci

2

di
2 − ci

2

[di
2 + hi − cos θijk]

(8)

where Ei is the site energy-the sub-function, Vij

describes the energy between two atoms (i and j), (i, j,
and k) label the atoms of the system, fR represents a
repulsive pair potential, fA represents an attractive pair
potential, fC represents a smooth cut-off function to
limit the range of the potential, rij is the length of the i-j
bond, bij is the bond order term, ζij counts the number
of other bonds to atom i besides the i-j bond and θijk is
the bond angle between the bonds i-j and i-k. Here the
indices ij represents the atom species. The mixing para-
meters between the two atomic species can be obtained
from the following mixing rules:

λij =
λi + λj

2
(9)

μij =
μi + μj

2
(10)

Aij =
√

AiAj (11)

Bij =
√

BiBj (12)

Rij =
√

RiRj (13)

Sij =
√

SiSj (14)

Parameter cij determines the attractive interactions
between two atoms. The potential function parameters
used in the study have been listed in Table 2.
Large-scale atomic/molecular massively parallel simu-

lator software [16] was used to perform the simulation.

Calculation of equilibrium lattice parameter
Using inappropriate lattice parameter will affect the total
energy content of the system which may lead to lots of
thermal vibrations during equilibration process. Thus,
the resulting fluctuations will alter the machining para-
meters like undeformed chip thickness, nose radius, etc.
to a large extent during energy minimization which will
produce erroneous simulation results. Goel et al. [17,18]
have recently suggested to use the equilibrium lattice
parameters to represent realistic MD simulation.
Accordingly, in the current work, equilibrium lattice

parameters as shown in Table 3 were used as an input
to the MD simulation in order to obtain meaningful
simulation results [19,20].

MD simulation setup
MD simulation model of single-crystal SiC and diamond
was built using the periodic boundary conditions along

Table 2 Tersoff potential parameters [15]

Si-Si C-C Si-C

A (eV) 1,830.8 1,544.8 1,681.731

B (eV) 471.18 389.63 432.154

l (Å−1) 2.4799 3.4653 2.9726

μ (Å−1) 1.7322 2.3064 2.0193

b 1.1 × 10−6 4.1612 × 10−6 -

n 0.78734 0.99054 -

c 1.0039 × 105 19981 -

d 16.217 7.034 -

h −0.59825 −0.33953 -

R (Å) 2.7 1.8 2.20454

S (Å) 3 2.1 2.50998

cSi-C 1.0086
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the z direction. This was followed by an energy minimi-
zation to avoid overlaps in the positions of the atoms.
The simulation model was equilibrated to 300 K under
the microcanonical (NVE) ensemble and the initial velo-
cities of the atoms were assigned in accordance with a
Maxwell-Boltzmann distribution. During the equilibra-
tion process, the trajectories must not be used to com-
pute any properties as the potential energy continues to
convert to kinetic energy or vice-versa. This causes the
temperature to fluctuate until it becomes stationary.
Once sufficient time has been given for equilibration,
velocity scaling is removed and the system then follows
NVE dynamics. Different variables which were used in
the current simulation model have been listed in Table 4.
A model output from the MD simulation after relaxa-

tion has been shown in Figure 2 where, ice blue coloura

and yellow colour correspond to silicon atoms and car-
bon atoms in the cubic SiC, respectively. The ochre col-
our represents carbon atoms in the diamond tool.
Visual Molecular Dynamics (VMD) [21]b along with
Ovito [22]c were used for the enhanced visualisation of
the atomistic data.
As shown in Figure 3, SiC has a tetrahedral molecular

geometry which has a central carbon atom surrounded
at equidistance by four silicon(Si) atoms or vice-versa
and thus bond angles are cos−1(−1/3) ≈ 109.5° between
them. A tetrahedral geometry can however, be distorted
by increasing the bond angles. This distortion of lattice
structure and consequent increase in the bond angle
is accompanied by the changes in the bond length.

This phenomenon is called planarization which causes
flattening of tetrahedron structure due to increment in
bond angle. During MD simulation, a similar phenom-
enon was observed which has been discussed further in
the subsequent sections.

Results and discussions
Observations from MD simulation results
Figure 4 shows the snapshot from the MD simulation
after 10 nm of tool advance. The work piece shown in
Figure 4 has Si-terminated surfaces having silicon atoms
at the edge of the workpiece. The nature of SiC is extre-
mely brittle and hence surface roughness on the
machined surface of SiC in Figure 4 appears to be rela-
tively higher as has been observed during the experi-
mental work [23].
Figure 4 also represents the chip morphology of b-sili-

con carbide (cubic) during the nanometric cutting pro-
cess against a deformable diamond tool. It can be seen
from Figure 4 that the cutting chips are curly shaped,
which suggests that material removal is occurring in
ductile regime by deformation rather than fracture. Dur-
ing the machining process, a few carbon atoms from the
diamond tool deformed and are separated from the tool
which can be seen on the machined surface of SiC.

Temperature during the machining process
Figure 5 represents the temperature distribution on the
workpiece and the cutting tool during nanometric cutting
after the cutting tool has advanced by 4 nm. It can be
seen that the maximum temperature in the primary shear
zone of the workpiece approaches to a value of 1,700 K.
The high temperature in the primary shear zone on SiC
during its nanometric cutting is closer in magnitude to
the enabling temperature(1,400°C) for the formation of
SiC-graphene on either Si- or C-terminated SiC surfaces
as reported [24]. Accordingly, it is plausible to state that
high temperature ignites the formation of SiC-graphene-
like substance during the nanometric cutting operation
of SiC. SiC-graphene being much weaker and slippery
compared to cubic SiC causes ductile responses in the
cutting zone. The formation of SiC graphene from cubic
SiC is essentially an outcome of sp3-sp2 order disorder
transition. In order to ensure the presence of a substance
like SiC-graphene during cutting, angular distribution
functions, and radial distribution functions of SiC before
and during the cutting were plotted which have been ela-
borated in subsequent sections.

Angular distribution function of SiC during cutting
Figure 6 represents angular distribution function of SiC
workpiece obtained from the simulation before and during
the cutting. It is evident from Figure 6 that before cutting,
the peak of angular distribution function of SiC is visible

Table 3 Comparison of lattice parameters obtained
through experiment and simulation

Material Experimental known
lattice parameter

at 300 K(Å)

Calculated equilibrium
lattice parameter

at 300 K (Å)

b-SiC
(cubic)

4.3596 [19] 4.28

Diamond 3.56683 [20] 3.56

Table 4 Variables used in the MD simulation model

Dimensions of SiC workpiece 14.2624 × 4.6353 × 5.4845
nm

Numbers of b-SiC atoms in the workpiece 38,324

Numbers of carbon atoms in the cutting
tool

27,373

Tool nose radius 2.2974 nm

Undeformed chip thickness 1.3128 nm

Tool rake and clearance angle -25° and 10°

Workpiece machining surface (010)

Tool orientation and cutting direction Cubic and <100>

Equilibration temperature 300 K

Cutting velocity 100 m/s

Timestep 0.5 fs
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at a bond angle of 109.5° which confirm the perfect sp3

tetrahedral bonding structure of SiC. During cutting, the
bond angle of around 5% of atoms reduces at the bond
angle of 109.5° with a corresponding increase and a small
peak at a value of 120°. A change in value of bond angle
from 109.5° to 120° is a strong indication of sp3-sp2 hybri-
disation in the manner shown in Figure 7.
As shown in Figure 7, the sp3 hybridisation has a tet-

rahedral geometry with a bond angle of 109.5°. However,
when this tetrahedral geometry is distorted the bond
angle changes to 120° and results in planarization and
consequent sp2 hybridisation. This sp3-sp2 transition
occurs due to the abrasive action between diamond cut-
ting tool and SiC workpiece. Thus, a change in bond
angle from 109.5° to 120° obtained through angular dis-
tribution function is an indication of sp3-sp2 order-disor-
der transition and transformation of cubic silicon
carbide to SiC-graphene-like substance.

Radial distribution function and relative tool wear
The radial distribution functions (RDF), g(r), also called
pair distribution functions or pair correlation functions,

are the primary linkage between macroscopic thermody-
namic properties and intermolecular interactions.
As illustrated in Figure 8[25], if the atoms are distrib-

uted homogeneously in space, then the RDF, g(r), gives
the probability of finding an atom in a shell dr at a dis-
tance r from another atom chosen as a reference point.
The number of atoms dn(r) at a distance between r and
r + dr from a given atom is expressed as follows:

dn(r) =
N
V

g(r)4πr2dr (15)

where N represents the total number of atoms, V is
the model volume and g(r) is the radial distribution
function. Thus, g(r) can be employed to observe the var-
iation in magnitude of bond length of atoms during
nanometric cutting. Accordingly, radial distribution

Figure 2 Orthographic view of model after relaxation.

Figure 3 Lattice structure of cubic SiC.
Figure 4 Chip morphology of b-SiC (cubic) during the
nanometric cutting process.
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functions of SiC workpiece and diamond tool were
plotted before and during the cutting process which has
been shown in Figure 9.
It is evident from Figure 9 that before cutting, the first

peak of RDF in SiC workpiece was visible at a bond
length of 1.85 Å which is the equilibrium bond length

of cubic SiC. A second small peak at a bond length of
1.9 Å was also evident which represents Si-terminated
dangling bonds on the surface. During nanometric cut-
ting, the number of atoms at a bond length of 1.85 Å
decreases with corresponding major increase at a bond
length of 1.9 Å while few others at a bond length of

Figure 5 Temperature distribution on the workpiece and the cutting tool after 4 nm of cut.

Figure 6 Angular distribution function of SiC before and during cutting.
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1.75 Å. These two bond lengths of 1.9 and 1.75 Å are in
excellent correlation with the reported bond length 1.87
Å [26] and 1.77 Å [27] of Si-terminated graphene and Si
= C double bond length respectively. Thus, RDF recon-
firms the presence of SiC-graphene-like substance dur-
ing the nanometric cutting process. The high magnitude
of abrasion between SiC and diamond tool also results
in the sp3-sp2 order-disorder transition and consequent
graphitization of diamond tool but at relatively slower
rate. The RDF of the diamond tool before and after the
cutting is shown in Figure 10.

It is widely known that the thermal stability of dia-
mond gets adversely effected in the environment of
severe temperature [28]. This causes graphitization/
sp3-sp2 order-disorder transition of the diamond tool
during nanometric cutting of SiC. It can be seen from
Figure 10 that at timestep 0, the RDF of diamond tool
shows its first peak at 1.54 Å which is the known bond
length of diamond [29] while few bonds(dangling
bonds) on the surface shows a small peak at 1.42 Å.
During cutting, the small peak continued to grow at a
bond length of 1.42 Å with corresponding decrease in
the number of atoms at the bond length of 1.54 Å.
The bond length of 1.42 Å is the known bond length
of another stable allotrope of carbon known as gra-
phite [29] which is much weaker than diamond due to
the layered structure. Thus, g(r) confirms the graphiti-
zation of the diamond tool during SPDT operation of
cubic SiC and consequent wear as earlier observed
from Figure 4. The numbers of the SiC atoms in the
cutting chips are more than those deformed carbon
atoms from the diamond tool and this proves that the
rate of sp3-sp2 transition of diamond tool is relatively
slower than SiC.
It thus becomes plausible to state that the abrasion

between SiC and the diamond tool causes the tempera-
ture rise in the cutting zone and consequent sp3-sp2

order-disorder transition of both these materials. The
disorder taking place inside the diamond tool has been
pictorially showed in Figure 11 where silver colour
atoms represent sp3; green colour represents sp2 while
yellow colours represent sp arrangement. The regular
arrangement of sp2 and sp bonds at the tool cutting
edges represents termination of bonds (dangling bonds)
on the surface and sides of the cutting tool. However,
the sp3-sp2-sp bond transition around the tool nose

Figure 7 sp3-sp2 hybridisation.

Figure 8 Space discretization for the evaluation of the radial
distribution function [25].
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appears as an initiation point of graphitization of dia-
mond tool.
The phenomenon of sp3-sp2 order-disorder transition

during SPDT of SiC also appears to be similar in nature
to what occurs during polishing of diamond, which has
been explained in details by Pastweka et al. [30] using
MD simulation studies.

Conclusions
The MD simulation has been used to gain extensive
insights into the atomistic aspects of ductile responses
of SiC during nanometric cutting operations. The fol-
lowing conclusions can be drawn accordingly:
During nanometric cutting, the tetrahedral bonding

structure of b-SiC work material gets distorted accompa-
nying the change of bond angle from 109.5° to 120° which
represents sp3-sp2 order-disorder transition of SiC.
This sp3-sp2 disorder causes the formation of SiC-gra-

phene-like substance which causes ductile response
from cubic SiC.
The formation of SiC-graphene-like substance is

attributed to the high temperature during the nano-
metric cutting which is consequent due to the abrasive
action between these two ultra-hard materials.
Abrasive action also causes simultaneous sp3-sp2

order-disorder transition of the diamond tool but at
relatively slower rate which results in tool wear.

Endnotes
a Readers are requested to refer to the web-based ver-
sion of this article for correct interpretation of the col-
our legends.

b Developed at the University of Illinois, USA
c Developed at LLNL, USA

Figure 9 Radial distribution function of SiC workpiece.

Figure 10 Radial distribution function of diamond tool.
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