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Abstract: Colorectal cancer results from genetic aberrations which accumulate over a long period of
time, with malignant and metastatic properties acquired at a relatively late stage. A subpopulation
of CD26+ colorectal cancer stem cells are known to be implicated in metastasis. We quantified
CD26+ cancer cells in 11 primary tumor samples by flow cytometry, and showed that tumors having
confirmed or suspected metastases harbored a relatively high CD26+ level in these samples. We
hypothesized that this subpopulation of cancer stem cells arises in the late stage of carcinogenesis
from the bulk of tumor daughter cells which are CD26−. The manipulation of PIK3CA and TP53,
two genes commonly deregulated in the late stage, had an effect on the maintenance of the CD26+
cell population. When CD26− tumor daughter cells were sorted and cultured, the emergence of
tumor spheres containing CD26+ cells occurred. These findings shed light to the origin of colorectal
cancer stem cells with metastatic properties, which has an implication on conventional treatments by
surgery or adjuvant chemotherapy for tumor debulking.
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1. Introduction

Patients with colorectal cancer may suffer from grave prognostic implications when metastatic
disease develops. The understanding of cancer metastasis has evolved with the cancer stem cell model,
which proposes that cancer is maintained and initiated by a rare population of tumor cells having
unique self-renewal properties [1]. Recently, our group has discovered that a subpopulation of CD26+
cancer cells has stem-like features and may play a crucial role in leading to liver metastasis in colon
cancer [2]. These cells are found preferentially in clinically metastatic liver tissues, having an increased
ability to generate metastasis in mouse models accompanied with a higher resistance to traditional
chemotherapy [2,3]. Importantly, a high percentage of CD26+ tumor cells in colorectal cancer was
shown to correlate with a higher tumor stage and poor survival [4].

The prevailing model of colorectal cancer suggests that carcinogenic and metastatic properties are
acquired in a stepwise process, with accumulations of new genetic aberrations [5]. Given that CD26+
colorectal cancer stem cells (CSC) with metastatic properties are preferentially found in metastatic
tissues and advanced colorectal cancers with poor prognosis [2], we hypothesized that CD26+ CSC
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are generated during the later stage of carcinogenesis, where the cancer cells acquire a new genetic
aberration leading to a CD26+ phenotype.

We focused on genes which likely play a role in the later stage of carcinogenesis, such as TP53 and
PIK3CA. Mutations in both these genes are considered late events and occur in a substantial proportion
of colorectal cancer, with approximately 70% of sporadic tumors harboring TP53 mutations [6] and
around 25% harboring PIK3CA mutations [7,8].

The current study focused on the possible origin and mechanism of maintenance of CD26+
colorectal cancer cells, which were shown to be CSC with metastatic properties. We quantified
CD26+ in tumor samples by flow cytometry and correlated the findings with clinical data, in order to
investigate if a high CD26+ level correlates with a later stage of cancer. We evaluated the functional
roles of PIK3CA and TP53 on CD26+ tumor cell maintenance. We hypothesized the possibility that
these CSC with metastatic properties may arise from non-stem tumor cells. Finally, we discussed how
our findings may apply to the current models of colorectal carcinogenesis.

2. Results

2.1. Primary Tumors with Confirmed or Suspected Metastases Harbor a Relatively High Proportion of CD26+
Cancer Stem Cell Subpopulation

To investigate the notion that CD26+ cells appear in the later stage of colorectal carcinogenesis,
we identified the percentage of CD26+ cells within clinical specimens from various tumor stages by
flow cytometry. Our group has previously demonstrated that the number of primary tumors with
liver metastases harboring >1% of CD26+ CSC was greater than that of primary tumors without
metastases [2]. We have also showed that a higher proportion of CD26+ on immunohistochemistry
correlates with a higher tumor stage and a poorer survival rate [4]. In this study, we performed flow
cytometry on clinical specimens to quantify the accurate percentage of CD26+ cancer cells within the
samples and subsequently correlated this result with the patient clinical data (Figure 1 and Table 1).

Clinical information and the percentage of CD26+ subpopulation in 11 patients are shown in
Table 1. At the time of surgery, one patient had stage I disease, four had stage II disease, two had stage
III disease, and four were known to have metastases (stage IV). These four patients all underwent
resection of both the primary colorectal tumor and the liver (patients 7, 8, 9) or lung metastases (patient
6). For patient 9, new lung metastases were detected 19 months after the operation. For all patients, the
percentage of CD26+ cancer cells in the primary colorectal resection specimen was 5.35 ± 5.38% (range
= 0.2–13.2%). Tumors of stages I to III did not appear to show a trend of increasing CD26+ populations
with stage in the analyzed cohort. Meanwhile, when the six patients with tumors harboring >1%
CD26+ cell population were examined (patients 6–11), four of them were already diagnosed with
metastatic disease (stage IV) at the time of surgery as mentioned above; the other two patients who had
a particularly high proportion of CD26+ tumor cells had an initial pathological stage of IIA according
to the TNM classification. However, patient 11 (Table 1), whose tumor consisted of 13.2% CD26+
cells, was later found to have liver metastases on ultrasonography 5 months after tumor resection and
subsequently died. Meanwhile, patient 10 (Table 1), whose tumor harbored 12.7% CD26+ population,
was found to have a suspected lung metastasis on reassessment computed tomography 21 months
after the initial operation. She declined further investigations due to advanced age and was placed
under close surveillance. Cases harboring a higher CD26+ level (defined by ≥median, i.e., 3.3%)
appeared to correlate with the presence of confirmed or suspected metastases (p = 0.061, Table 2). The
CD26+ proportion was 7.20 ± 5.20% in tumors with suspected or confirmed metastasis, and was 0.43
± 0.15% in those without, showing a tendency to be higher in the former group (p = 0.13, data not
shown). Univariate analyses were performed to investigate the prognostic implication of age, gender,
metastases, tumor size, degree of differentiation, and CD26+ population percentage (Table S1). We
also studied whether the emergence of increasing CD26+ subpopulation correlated with any clinical
parameters. For tumor size, degree of differentiation, and disease stage at operation, no correlation
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with CD26+ level was found (p > 0.05, Pearson correlation). The site of metastases was also not found
to be related to CD26+ level (Figure S1).Int. J. Mol. Sci. 2017, 18, 1106  3 of 11 

 

 
Figure 1. Representative flow cytometry plot of tumour sample of patients with (A–D, patients 2–5) 
lower than median, (E, patient 6) median, and (F–H, patients 9–11) higher than median level of CD26+ 
cancer cells. Grey line, isotype control. Black line, samples stained with CD26 antibody. The 
percentage of CD26+ cancer cells in each patient (defined by >99th percentile of CD26 intensity stained 
with isotype control) is listed in Table 1. 

 

Figure 1. Representative flow cytometry plot of tumour sample of patients with (A–D, patients 2–5)
lower than median, (E, patient 6) median, and (F–H, patients 9–11) higher than median level of CD26+
cancer cells. Grey line, isotype control. Black line, samples stained with CD26 antibody. The percentage
of CD26+ cancer cells in each patient (defined by >99th percentile of CD26 intensity stained with
isotype control) is listed in Table 1.
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Table 1. Flow cytometry analysis of CD26+ cancer cells in colorectal cancer patients and clinical data.

Patient Gender
and Age

CD26+
Cells %

Stage at
Surgery

Tumour Size
(cm)

Degree of
Differentiation

Metastasis Diagnosed or
Suspected

Survival
Status

Metastasis-Free
Survival
(Months)

Overall
Survival
(Months)

1 M/81 0.2 III 9 Moderate Liver Deceased 5.40 9.70
2 F/80 0.3 I 5 Moderate None Alive 39.23 39.23
3 F/68 0.4 IIA 10 Moderate None Alive 36.20 36.20
4 M/71 0.5 IIIC 5 Moderate Peritoneum and bone Deceased 13.97 19.83
5 M/79 0.6 IIA 11 Poor None Alive 33.17 33.17
6 M/83 3.3 IV 12 Moderate Lung Deceased NA 19.47
7 M/74 8.2 IV 5 Poor Liver Deceased NA 51.97
8 F/56 9.6 IV 5.5 Moderate Liver Deceased NA 29.67
9 M/68 9.9 IV 9 Moderate Lung and liver Alive NA 47.50

10 F/84 12.7 IIA 10 Moderate Suspected lung metastasis Alive 21.30 31.23
11 M/78 13.2 IIA 15 Moderate Liver Deceased 5.10 5.17

CD26+ positive cells were defined by >99th percentile of CD26 intensity stained with isotype control. For the tumor size, the largest tumor dimension was given. All patients underwent
surgery for colorectal cancer, whereas for patients 6, 7, 8, and 9, surgery for both the primary and metastatic tumors were performed. For patients 1, 4, 10, and 11, metastatic disease was
suspected or confirmed after the initial surgery. NA, not applicable.

Table 2. Presence of confirmed or suspected metastases correlated with higher CD26+ cell proportion.

Number of Patients
Confirmed or Suspected Metastases

Absent Present

CD26+ cell proportion low 3 2
high 0 6

Presence of confirmed or suspected metastases correlated with higher CD26+ cell proportion (≥ median, which is 3.3% of CD26+ level). p = 0.061, Fisher exact test.
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2.2. PIK3CA Inhibitor Decreases the Maintenance of CD26+ Cell Population in Culture

We hypothesized that CD26+ cells emerged from non-stem colon cancer cells under the influence
of genes which characterize the late stage of colorectal carcinogenesis. We investigated whether an
inhibition of PIK3CA may decrease the CD26+ subpopulation within colorectal cancer cells. PIK3CA
inhibitor was added to cultures of cells lines HCT116 and SW480, and the proportion of CD26+ cells
of the resultant culture was measured by flow cytometry after an incubation period of 3–5 days.
In HCT116, the baseline proportion of CD26+ cells in HCT116 was 6.17%, which was reduced to
1.67% after the addition of PIK3CA inhibitor, translating to an overall decrease of CD26+ cells by
66.0% (p = 0.048, n = 3) (Figure 2). Experiments were also performed on additional cell lines. For
SW480, because the baseline (control) proportion of CD26+ cells was small, this limited the possible
decrease of CD26+ cells population by the modulation of PIK3CA inhibitors, and was too modest
to be statistically significant (Figure S2A). For SW48, PIK3CA inhibitors decreased the CD26+ level
to about 0.75 ± 0.29-fold (Figure S2B, n = 3, p = 0.28). As was the case for SW480, the low baseline
level of CD26+ restricted the possible effect of PIK3CA inhibitors and thus may have impacted the
statistical significance.
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To investigate whether the tumor suppressor TP53 could influence the percentage of CD26+ cells 
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after transfection (Figure 3A). TP53 knockdown increased the percentage of the resulting CD26+ cells 
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whether the increase in the proportion of cells expressing the CD26+ phenotype may be due to an 
increased proliferation rate of the cells after TP53 knockdown, the number of cells harvested at the 
end-point of the experiments was counted. TP53 knockdown did not appear to have increased the 
rate of cell proliferation in SW480 (p > 0.05, n = 6) (Figure 3D). 

Because the cancer stem cell population in a cancer is by definition small, the effect exerted on 
this intricate cell population by the knockdown of a tumor suppressor gene could be minute. When 

Figure 2. PIK3CA inhibitor decreases CD26+ stem cell population in colorectal cancer cell line.
(A) Representative flow cytometry plots after treatment with PIK3CA-inhibitor in HCT116, showing
decrease of CD26+ cell population. Grey dotted line, isotype control. Black dashed line, untreated.
Black solid line, treated with PIK3CA-inhibitor. CD26 positivity was defined by >99th percentile of
CD26 intensity stained with isotype control. (B) Bar chart shows decrease in CD26+ population after
PI3KCA-inhibitor treatment in HCT116 cell line. Bar = Mean + SEM. p = 0.048, n = 3, * p < 0.05.

2.3. TP53 Knockdown Increases the Maintenance of CD26+ Cell Population in Culture

To investigate whether the tumor suppressor TP53 could influence the percentage of CD26+ cells
found in the resultant cultures, TP53 was knocked down within the SW480 cell line using a targeting
small interfering RNA (siRNA). The maximal knockdown as evidenced by Western blot was 48 h after
transfection (Figure 3A). TP53 knockdown increased the percentage of the resulting CD26+ cells by
1.50-fold, from the baseline of 1.83% to that of 2.51% after transfection, suggesting that either CD26+
cells production or maintenance was increased (p = 0.047, n = 7) (Figure 3B,C). To investigate whether
the increase in the proportion of cells expressing the CD26+ phenotype may be due to an increased
proliferation rate of the cells after TP53 knockdown, the number of cells harvested at the end-point
of the experiments was counted. TP53 knockdown did not appear to have increased the rate of cell
proliferation in SW480 (p > 0.05, n = 6) (Figure 3D).

Because the cancer stem cell population in a cancer is by definition small, the effect exerted on
this intricate cell population by the knockdown of a tumor suppressor gene could be minute. When
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another cancer cell line, SW620, was tested, the change in CD26+ cell population was about 3.88 ±
3.42-fold (Figure S3).
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percentile of CD26 intensity stained with isotype control. (C) Bar chart shows increase in CD26+ 
population after siP53 treatment in SW480 cell line. Bar = Mean + SEM. p = 0.047, n = 7. * p < 0.05. (D) 
TP53 knockdown did not significantly alter cell number after 48 h in SW480 cell culture. p > 0.05, n = 
6. 
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The origin of cancer stem cells is still unsettled in the research community. Possibilities include 
tumor daughter cells, transit amplifying cells, or tissue stem cells [9,10]. The discovery of CSC with 
metastatic properties further complicates the picture [11]. Our study aims to provide some 
preliminary evidence on this topic.  

Our group previously demonstrated that a CD26+ tumor cell subpopulation in primary tissue 
has stem-like properties in that these cells can initiate sphere formation and tumor formation in serial 
dilution implantation experiments [2]. We have also shown that CD26+ correlates with the clinical 
stage on immunohistochemistry [4]. This study shows that confirmed or suspected stage IV primary 
tumors have a relatively large CD26+ subpopulation, while in stage I to III disease there is no 
apparent trend of the CD26+ population increasing with the increase of the disease stage. One 
argument is that the emergence of CD26+ may be an event that occurs as late as after stage III in the 
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Figure 3. TP53 knockdown in colorectal cancer cell results in a greater proportion of CD26+ cell
population. (A) TP53 knockdown with siP53 as identified by Western blot. (B) TP53 knockdown leads
to a greater proportion of CD26+ cancer stem cells. Representative flow cytometry plots after treatment
with siP53 in SW480. Grey dotted line, isotype control. Black dashed line, Control transfected with
siSCRAMBLE. Black solid line, treated siP53. CD26 positivity was defined by >99th percentile of CD26
intensity stained with isotype control. (C) Bar chart shows increase in CD26+ population after siP53
treatment in SW480 cell line. Bar = Mean + SEM. p = 0.047, n = 7. * p < 0.05. (D) TP53 knockdown did
not significantly alter cell number after 48 h in SW480 cell culture. p > 0.05, n = 6.

3. Discussion

The origin of cancer stem cells is still unsettled in the research community. Possibilities include
tumor daughter cells, transit amplifying cells, or tissue stem cells [9,10]. The discovery of CSC with
metastatic properties further complicates the picture [11]. Our study aims to provide some preliminary
evidence on this topic.

Our group previously demonstrated that a CD26+ tumor cell subpopulation in primary tissue
has stem-like properties in that these cells can initiate sphere formation and tumor formation in serial
dilution implantation experiments [2]. We have also shown that CD26+ correlates with the clinical
stage on immunohistochemistry [4]. This study shows that confirmed or suspected stage IV primary
tumors have a relatively large CD26+ subpopulation, while in stage I to III disease there is no apparent
trend of the CD26+ population increasing with the increase of the disease stage. One argument is that
the emergence of CD26+ may be an event that occurs as late as after stage III in the disease, just before
metastasis sets in. There is a possibility that micrometastases may have occurred in a patient with an
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initial low pathological TNM stage disease. Also, the high percentage of CD26+ cancer cells in two
patients later found to have confirmed or suspected metastases may imply the role of CD26+ on occult
micrometastases. However, we are cautious while interpreting these preliminary observations.

TP53 is a tumor suppressor gene, whose mutation is known to be a late event and is implicated
in around 70% of colorectal cancer cases [5]. PIK3CA is an oncogene found to be mutated in around
25% of tumors and is also a late event [7]. Our study showed that the knockdown of TP53 enlarges
the CD26+ population, while inhibition of PIK3CA has the opposite effect. We further hypothesized
that this CD26+ cell population had stem-like properties, and could arise in a colorectal tumor with a
predominant population of CD26− daughter cells at the late stage.

To this end, we used fluorescent-activated cell sorting to select CD133−/CD26− cells for culture
using colorectal cancer cell lines HCT116 and HT29. After a period of 7 to 14 days, sphere formation
was detected in CD133−/CD26− cell cultures from both cell lines, indicating the formation of cells with
stem cell-like properties (Figure S4C). Cells were later retrieved from the cultures (including spheres
and supernatant) and subjected to flow cytometry, confirming the emergence of CD26+ cells (Figure
S4A,B). Immunofluorescence staining was carried out (Figure S4D), and demonstrated the presence of
both CD133+ and CD26+ cells in the tumor sphere. Taken together, the results suggest that the tumor
spheres containing CD26+ cells arise in a predominant CD26− colorectal cancer cell culture. When
CD133+/CD26− sorted cells were cultured, this population consisting of presumed stem cell properties
(CD133+) did not appear to produce more CD26+ tumor cells than the CD133−/CD26− population
(Data not shown). Unless a single cell sorting was carried out, cross-contamination between different
populations remains a possibility. However, even if modest CD26+ cell contamination occurred
in the CD26− cell culture, these CD26+ cells did not appear to be selectively enriched under the
culture condition, as a significant proportion of CD133−/CD26− cells were still present after the
culture period.

Taken together, the emergence of the CD26 cell surface marker allows for two possible
interpretations; either the cells has acquired stem-like properties during the cell culture, or the change
in the cell surface marker is merely an effect of non-genetic phenotype plasticity in response to
environmental stress [12]. However, by manipulating the expression of cancer genes implicated in
the late stage of colorectal carcinogensis, PIK3CA and TP53, we observed that the CD26+ population
with stem-like properties can be initiated or maintained. This finding does not favor the mechanism
of non-genetic phenotype plasticity, although this possibility is not completely excluded. Also, the
increase in CD26+ CSC subpopulations can be due to either an increase in cell formation, an increase in
cell survival, or a decrease in cell differentiation. Each mechanism likely contributes to some extent to
our observation. As CD26− and CD26+ cells may interchange in the cell culture due to some inherent
genetic changes, each population should not be viewed in isolation but in a dynamic equilibrium.

Various research groups have shown that differentiated cells may spontaneously convert to
stem cells [13,14]. Provided that daughter cells greatly outnumber stem cell populations in a given
tumor, the contribution of daughter cells to the generation of stem cells may be significant. This
study suggests the dynamic relationship between daughter cancer cells and stem cells, and also the
relationship between metastatic colon cancer stem cells and late genes in carcinogenesis. This has
several implications. The evidence is in line with the established postulate that colon cancer occurs in
a long sequence with the addition of genetic aberrations over many years [5,15–17], with metastatic
properties acquired at late stage [5]. If the generation of CD26+ metastatic CSC occur at a late stage,
early treatment of colon cancer may not leave latent micrometastatic foci in a patient.

We understand the limitations of this study include several aspects. While the CD26+ level is
expected to be high in tumors with confirmed or suspected metastases, it is also important from
the clinical point of view to quantify CD26+ levels in patients with early stages of cancer in the
hope of identifying those who may be more prone to developing metastatic disease. It remains
unknown whether a high CD26+ level in early-stage tumors represents the possibility of undetected
micrometastases or truly increased risks of future metastasis, or whether this is merely an incidental
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finding. The limitation in obtaining viable cell samples from clinical specimens for flow cytometry,
which is particularly true for the inherently contaminated colorectum, complicated the analyses. Future
investigations correlating the CD26+ level of the primary tumor with quantities of circulating tumor
cells or cell-free nucleic acid may be useful.

Limitations were also identified for the in vitro studies. First, cancer cell lines may have acquired
many more genetic aberrations with passages compared to cancer cells in vivo. Second, the percentage
of CD133+ and CD26+ cells were found to be much greater in cancer cell lines than in tissue obtained
from patients. Third, the in vitro model is at its best a simulation of its in vivo counterpart, where the
tumor microenvironment may contribute to malignant cell growth, maintenance, and metastasis [18,19].
We discussed above that contamination during cell sorting may not be a significant confounder to the
current analysis. Nevertheless, in order to definitively examine the notion that cancer stem cells can
arise from daughter tumor cells, the single cell sorting of CD26− cells may eventually be required,
and the number of single cells required for this purpose is expected to be very large. Meanwhile, if
the implantation of pure tumor (non-stem) cells in mice can give rise to stem cells, the cancer bulk
can in theory be maintained. Further cell sorting for stem cells and limiting dilution assays would
be definitive. These are important research directions. As for the current preliminary observations,
we believe the in vitro finding that CD26+ CSC can emerge from CD26− daughter cells suggests this
conversion may well occur in patients.

The theory of cancer stem cells has casted doubt on the current treatment for cancer, because
chemotherapy at its best only debulks the tumor, while many of the CSC, critical to tumor maintenance
but more resistant to chemotherapy [20–22], are left untouched. Our study supports the current
rationale of surgical debulking and adjuvant chemotherapy of colon cancer. If a vast majority of tumor
daughter cells are removed, the niche from which CSC can form decreases vastly. We believe that
gaining knowledge on the interaction between cancer stem cells and daughter cells will continue to
shift the paradigm in stem cell research and patient care.

4. Materials and Methods

4.1. Cell Culture

HT29, SW480, SW48, SW620 and HCT116 (obtained from American Type Culture Collection
(ATCC), Manassas, VA, USA) were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM)
(Life Technologies, Carlsbad, CA, USA) and supplemented with 10% fetal bovine serum (FBS) (Life
Technologies) and 1% Penicillin-Streptomycin (Life Technologies), and placed in an incubator with
a temperature of 37 ◦C, under 5% CO2 humidity. For sphere formation, cancer cell obtained from
fluorescent-activated cell sorting (FACS) were cultured on ultra-low attachment plates (Corning Inc.,
Corning, NY, USA), and also incubated under the aforementioned conditions.

4.2. Flow Cytometry and Fluorescent-Activated Cell Sorting (FACS)

Cells were harvested from culture, washed with phosphate buffered saline (PBS), and incubated
with the appropriate staining antibodies in binding buffer for 15 min at room temperature in the
dark. After being washed with PBS twice, the cells were analyzed on a Cytomics FC500 (Beckman
Coulter, Fullerton, CA, USA) or BD FACSCalibur (BD Biosciences, San Jose, CA, USA)). Cell sorting
was performed with a MoFlo XDP Cell Sorter (Beckman Coulter). In all cytometry analyses and
cell sorting experiments, an appropriate isotype control was used, and the positive population was
defined where the fluorescent signal intensity exceeded that of the 99th percentile of the isotype
control. The data acquired were analyzed using FlowJo (version 8.7, Tree Star, Inc., Ashland, OR,
USA). Antibodies used include CD133-PE (Miltenyi Biotech, Bergisch, Gladbach, Germany) and
CD26−PE/Cy5 (Miltenyi Biotech).
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4.3. PIK3CA Inhibitor Assay

One hundred and fifty thousand cells per well were seeded in an adherent six-well culture
plate (Corning Inc.) under the culture conditions described above. On the subsequent day,
fresh antibiotics-free DMEM with 10 µM PIK3CA inhibitor (LY294002, Cell Signaling Technology
Inc., Danvers, MA, USA) was used as a culture medium. Cells were harvested after 48 h for
downstream analyses.

4.4. Knockdown of P53

Small interfering RNA (siRNA) targeting p53 (s605, ThermoFisher Scientific, Waltham, MA, USA)
at 40 nM was delivered to the cells using Lipofectamine 2000 (Invitrogen Inc., Carlsbad, CA, USA),
according to the manufacturer’s instruction. Nonsense scrambled oligo (Stealth RNAi siRNA Negative
Control, Invitrogen) was used as a control. Cells were harvested after 48 h post-transfection for analyses.
For Western blot analyses, ice-cold radioimmunoprecipitation assay buffer (RIPA) buffer (Cell Signaling
Technology, Danvers, MA, USA) containing phenoylmethylsulfonyl fluoride (1 mmol/L) and protease
inhibitor was used for cell lysis. The lysate was centrifuged at 12,000× g for 15 min to obtain the
supernatant. The harvested protein was suspended in sodium dodecyl sulfate buffer and resolved by
sodium dodecyl sulfate—polyacrylamide gel electrophoresis. Transfer to polyvinylidene difluoride
(PVDF) membranes (GE Healthcare, Piscataway, NJ, USA) was carried out. The antibody against TP53
was purchased from Cell Signaling Technology (Danvers, MA, USA). The membranes were developed
after probing with horseradish peroxidase-conjugated secondary antibodies.

4.5. Clinical Specimens

Fresh tumor resection specimens were obtained with informed consent from 11 colorectal cancer
patients who underwent surgical resection at the Department of Surgery, Queen Mary Hospital,
University of Hong Kong, approved by the Institutional Review Board of the University of Hong
Kong/Hospital Authority Hong Kong West Cluster (HKU/HA HKW IRB). The specimens were
immediately minced on ice, suspended in DMEM/F12 medium (Invitrogen, Carlsbad, CA, USA),
and dissociated with collagenase (Invitrogen) and hyaluronidase (Calbiochem, La Jolla, CA, USA).
Enzymatically disaggregated suspensions were filtered and washed three times with PBS. Red blood
cells were removed by Histopaque-1077 (Sigma, St. Louis, MO, USA). The resulting single tumor cells
were used for flow cytometry analyses.

4.6. Statistical Analysis

Continuous variables were expressed as means ± SD. Treatment groups were compared with
the independent or paired sample t test where appropriate. Comparisons involving variables with
non-normal distribution were performed by the Mann-Whitney U test. Comparisons of nominal
variables were performed via Chi-square test or Fisher’s exact test where appropriate. p-Values < 0.05
were considered statistically significant. Analyses were performed with the SPSS 20 statistics software
(version 20, SPSS Inc., Chicago, IL, USA).

5. Conclusions

Knowledge of the timing and cell type where cancer stem cells with metastatic properties may
arise is critical for effective treatment, although this probably varies with different cancers. In colorectal
cancer, disease develops over a long period of time by stepwise acquisitions of mutations which are
relatively well-defined. Detectable metastases usually occur as the terminal event. This study supports
the possibility that emergence of CD26+ colorectal cancer stem cells with metastatic properties can be
under the influence of genes that are usually mutated late in the disease course.
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