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Abstract 

Aeolian vibration in bare and iced cable was simulated using the theory of cable vibration. 

High frequency vibration creates stresses in the cable and consequently in the ice covering 

that cable, which may result in ice failure and eventually ice shedding. These stresses were 

estimated in this study. Displacement of the cable during vibration was determined; 

furthermore, instantaneous wind loads in vertical and transverse directions, additional 

stresses induced by the motion in the cable and in the atmospheric ice, as well as torque due 

to cable springback were calculated. In order to simulate the loading conditions of a chunk of 

atmospheric ice in the middle of a span, a new model was developed using ABAQUS. 

Results from this model show in spite of high frequency vibration, the resulting level of 

stress in atmospheric ice is far less than its failure limit. In other words, the atmospheric ice 

under the condition assumed in this investigation does not shed due to aeolian vibration.  
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GLOSSARY OF NOTATIONS 

Ac Cross section area of the cable 

Ai Cross section area of the atmospheric ice 

C Damping coefficient per unit length 

CD Drag coefficient 

C1 Material constant 

CL Lift coefficient 

d Sag of the cable  

dc Cylinder diameter  

Di Diameter of atmospheric ice 

ds Cable segment 

ds′  Deformed cable segment 

Ec Young’s modulus of the cable 

Ei Young’s modulus of the atmospheric ice 

F0 Cable excitation amplitude 

fv Vortex shedding frequency 

GJ Torsional rigidity of the cable 

H Horizontal component of the cable tension 

h(t) Additional horizontal component of cable tension  as a function of time 

h
~

 Constant 

L Span length 

L1 Length of a piece of cable in the middle of the span 

Lc Cable length 

m Mass per unit length of the cable including the ice mass  

p Wind power 

s Spatial coordinate along the curved length of the cable 

Ss Strouhal number 

t Time 

T0 Static tension of the cable 

Ta Additional dynamic tension in the cable 



TA Torque at the suspension points of the cable 

Tc Torque due to springback of the cable 

U(s, t) Cable displacement in the horizontal direction 

Uo Velocity of wind or flow  

V(s, t) Cable displacement in the vertical direction 

W(s, t) Cable displacement in the transverse direction 

x Coordinate along the cable span 

y Amplitude of the vibration 

y(s) Static profile of the cable 

θ  Cable rotation at mid-span around its centerline  

sω  Frequency of aeolian vibration 

ξ  Damping ratio in vertical direction 

( )siϕ  Mode shape in the vertical direction 

aρ  Air density  

airν  Kinematic viscosity of air. 

 

  
 

1. Introduction 

Power transmission lines are vulnerable to winds and storms, particularly in cold climate 

regions where atmospheric ice accretes on network equipment. The interaction of natural 

wind with the surface roughness of the earth produces a wind character that is gusty or 

turbulent as opposed to being smooth and uniform. Wind turbulence or gusts produce 

velocity fluctuations that are spatial and temporal in character. Therefore, the wind force 

acting on a cable will vary in direction as well as in magnitude vertically and horizontally at 

any point in time. When ice or wet snow accretion builds up on conductors of overhead 

power lines, and a wind force acts across the resulting profile, the conductors can rotate and 

move with low amplitude high frequency vibration (aeolian vibration), with high amplitude 



low frequency vibration (galloping), or with vibration of amplitude and frequency in between 

(wake-induced oscillation). However, this latter type of vibration is peculiar to bundled 

conductors only. The primary cause of aeolian vibration is the alternate shedding of wind-

induced vortices from the top and bottom sides of the conductor. This action creates an 

alternating pressure imbalance, inducing the conductor to move up and down at right angles 

to the direction of airflow. 

When the cable is covered with ice, stresses develop both in the cable and in the ice. The 

stresses developing in the ice during galloping were studied in [9]; whereas the purpose of 

the present paper is to estimate those stresses during aeolian vibration. 

2.  Aeolian vibration in power transmission lines 

The three primary variables involved in vortex shedding from a circular cylinder are the 

cylinder diameter, the fluid velocity, and the kinematic viscosity of the particular fluid. The 

wind power, p, transferred from the wind to a vibrating conductor may be expressed in the 

following general form: 
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where dc is the outside diameter of the bare or iced cable, fv is the vortex shedding frequency 

in units of Hz, and y is the vibration amplitude [2].  

The vibration amplitude is determined by a power balance between what is provided by 

the wind and what is dissipated by the cable self-damping and by any dampers. Ice and/or 

snow precipitations affect aoelian vibration through different mechanisms. A snow cover 

may smooth terrain obstacles that would normally contribute to wind velocity fluctuations. A 

more closely constant wind velocity and azimuth will give results that are more propitious to 

severe aeolian vibration [13].  



When ice is present, other factors will also contribute to increasing the severity of aeolian 

vibration. For example, an iced conductor may lock cable strands together so that cable 

internal damping through strand slippage decreases. Moreover, it is well known that internal 

cable damping depends heavily on the cable’s mechanical tension. The ice weight will 

increase cable tension, which will also reduce conductor self-damping. 

Eq. 1 shows that when ice accretion increases, assuming the cable diameter and frequency 

remains constant, aeolian power increases to about the fourth power of the outside diameter 

of the iced cable [5]. 

Aeolian vibration has been studied by other researchers (e.g. [3, 4]). To the authors’ 

knowledge, however, a comprehensive analysis for determining the displacement of each 

point of the cable with accreted ice in aeolian vibration that covers the damping effect and 

wind force has never previously been published.   

In order to simulate aeolian vibration and estimate the stresses in atmospheric ice during 

that vibration, it is necessary to model the cable motion and obtain the position of each point 

along the cable. Therefore, the equation of motion describing cable vibration should be 

studied. For a more accurate estimation, the following forces and stresses should be applied 

onto atmospheric ice: aerodynamic forces, additional tension in cable due to vibration, ice 

mass inertia and torque due to cable springback. 

Owing to the complexity of this problem, some sophisticated aspects of the natural 

conditions must be simplified, as follows: 

a) Normally, ice shapes on power transmission lines are not exactly cylindrical and uniform; 

it is more closely symmetrical in the middle of the span than in other parts. Still, cylindrical 

and uniform ice shape is assumed all along the cable. However, in the calculation of wind 



loads on the cable, the wind force functions obtained from wind tunnel tests for 

asymmetrically iced cables are used. 

b) Movements and vibration of towers during cable vibration are assumed to be negligible. 

c) Wind velocity is assumed to be constant during aeolian vibration, and uniform all along 

the cable. 

2.1 Equation of motion in aeolian vibration 

The basic equations of motion of a suspended cable are the following [1, 6, 10, 11]. 
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where s is the spatial coordinate along the curved length of the cable; t is the time; x is the 

coordinate along the cable span; y(s) is the cable static profile; U(s, t), V(s, t) and W(s, t) are, 

respectively, the displacement in the horizontal, vertical and transverse directions (Fig.1), m 

is the cable mass per unit length, including ice mass, c is the damping coefficient per unit 

length, T0 is the static tension; Ta is the additional dynamic tension in the cable; F1(s, t), and 

F2(s, t) are, respectively, the external loading per unit length in the vertical and transverse 

directions. When additional dynamic tension is applied to the cable with accreted ice, this 

tension is divided between the cable and ice according to the following relations: 
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 where Ei and Ec are Young’s modulus of atmospheric ice and cable, and Ai  and Ac are cross 

section areas of the ice and cable, respectively. Since the ratio of sag to span in power 

transmission lines is less than 1:8 and horizontal loads are negligible in our model, we can 

consider the horizontal displacement U to be equal to zero [1, 6, 10]. 

 As mentioned before, the conductor motion during aeolian vibration occurs only in 

vertical direction whereupon the displacement in transverse direction W will be zero as well. 

Then, Equation (3) can be written for aeolian vibration as below [6]: 
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where h(t) is defined as the additional horizontal component of cable tension induced by the 

motion and is a function of time alone, and H denotes the horizontal component of cable 

tension which can be obtained by solving (8) numerically: 
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where d is the sag of the cable and L is span length. The last two terms in the right-hand side 

of Eq. (7) account for cable damping and the excitation due to wind. The amplitude of the 

excitation force per unit length, 0F , and circular frequency, sω , of this excitation are 

determined as follows: 
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respectively, where 
aρ  is air density , CL is the lift coefficient, Di is the diameter of iced 

cable, U0 is air velocity, Ss is Strouhal number, and the circular frequency, sω , obtained this 

way is the circular vortex shedding frequency. 

Eq. (7) is solved by assuming that 
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where )(xiϕ  is obtained by using the linear theory of cable vibration [6]: 
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and    
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with iv,ω  denoting the natural frequency in the vertical direction.  

The parameter iβ  can be calculated from the following equation [6]: 
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where 2λ  takes the form: 
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Substituting (11) and (12) into (7) gives: 
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According to [6], )(xiϕ is a solution of  
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with Eqs. (11) and (12). Then, the equation for the ith vibration mode takes the form 
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where Ti(t) is defined as follows: 
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Substituting (21) into (20) gives 
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Dividing (22) by e ij tω  and substituting it into (18) we obtain: 
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Multiplying each term by )(xnϕ and integrating gives: 
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Applying the orthogonality conditions: 
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Equation (26) can be rewritten as below 
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where      

nnn mc ζω2=          (28) 

with nζ  standing for structural damping factor [2]. Equation (27) depends only on time, and 

its general solution is the sum of the homogeneous, hT , and particular, pT , solutions: 

phn TTT +=          (29) 



The homogeneous solution of this differential equation is obtained by solving the 

characteristic equation: 

022 =++ nn mrcmr ω                     (30) 

where r is the characteristic root: 
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Therefore, the homogeneous solution is   
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The particular solution of Equation (27) is obtained by substituting  

                                       tqtpT snsnp ωω sincos +=            (33) 

into Equation (27). After determining the constants np  and nq , the particular solution is 

expressed in the form 
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Since aeolian vibration in steady state is modeled here, and 0→hT  when ∞→t , the 

vertical displacement, ( )txVn , , may be written as a product of ( )xnϕ  given by Equation (13) 

for i = n and ( )tTp  given by Equation (34). This expression provides the displacements of 

each point along the cable in vertical direction that will be calculated and tabulated by a 

MATLAB code. 

2.2 Loads and stresses in atmospheric ice during aeolian vibration 

• Stresses due to cable vibration 



A dynamic load acting from ice during aeolian vibration is induced by acceleration due to 

cable motion or gravity force.  This vibration also creates some elastic deformation in the 

cable that induces more stresses in the atmospheric ice. The effect of these loads is calculated 

in this model by means of the ABAQUS software. The position of each point along the cable 

during aeolian vibration (calculation results are presented in Section 2.1) will be used as 

input in the ABAQUS model to determine the stresses developing in the atmospheric ice.  

• Aerodynamic forces 

As mentioned above, aerodynamic forces cause cable vibration and this movement can 

produce some stresses and additional tension in the cable. However, these forces also apply 

some loads directly on the atmospheric ice which are expressed by the following equations 

[2]: 

                                          ( )tFF sv ωsin0=       (35) 
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where CD is the drag coefficient. To take into account the effect of these forces on a piece of 

atmospheric ice in the middle of a span, it is sufficient to apply them in the ABAQUS model 

as a distributed force on the ice (see Fig. 2). 

• Torsional loads  

 Power transmission cables are very flexible and tend to rotate when ice builds up 

asymmetrically on their surface. As mentioned in [9], the relationship between the rotation of 

the cable at mid-span around its centerline,θ , and the torque at the suspension points, TA, due 

to cable springback can be written as follows : 
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where GJ is the torsional rigidity of cable, Lc is the cable length, and where constant ice 

thickness is assumed along the entire span. Once θ  is known, the torque of springback ,Tc, 

which is applied by the cable to the end point of a piece of ice located in the middle of the 

span, can be determined as follows: 
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where L1 is the length of the piece of cable (torque in Fig. 2). Since a short piece of the cable-

ice composition in the middle of the span is analyzed, i.e. 
cLL <<1 , the torque, TC, is 

significantly smaller than the other loads discussed above.  

• Additional dynamic tension in the cable and the ice 

As mentioned above, cable motion during aeolian vibration induces additional tension in 

the cable and atmospheric ice. The stresses due to these additional tensions are calculated 

using the following formulae: 
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where sd ′ is the deformed cable segment. These terms were considered in the model 

constructed with ABAQUS (additional tensions in Fig. 2). 

Also, the stresses due to ice load and ice mass inertia will be taken into account in the 

ABAQUS model. 



The results of all calculations are eventually used in a model constructed using the 

ABAQUS finite element software. This model provides an estimation of stress level in 

different parts of the ice on the cable and its variation during aeolian vibration. 

2.3 Calculation of forces and displacements  

The cable motion during aeolian vibration is simulated by a program developed with 

MATLAB. The cable and ice characteristics, the wind velocity, U0, and the damping ratio in 

the vertical direction, ζ , are defined as input data for the MATLAB implementation. This 

program determines the displacements of two ends of a piece of cable with ice in the middle 

of the span. Furthermore, it computes the aerodynamic forces on the ice, the torque applied to 

the ice due to cable springback, and the additional tension induced by the motion in the cable 

and the ice. All of these values are tabulated as time functions, and then are used as loads and 

displacements in the ABAQUS model described in the next section. 

3. Modeling stress variation during aeolian vibration with ABAQUS  

The simulation of cable motion and the load calculation provide all the parameters needed 

to determine the stress in the ice and its variation during aeolian vibration. A model of a 

piece of cable with uniform cylindrical ice accretion is constructed in ABAQUS, which 

computes the stress developing in the ice through one or more cycles of aeolian vibration. 

The curves representing cable motion at each end of the modeled piece, as sketched in Fig. 2, 

are obtained as output data of the MATLAB program. The additional cable tension and 

aerodynamic forces are also added as input data, while the effect of ice load and inertia is 

determined in the ABAQUS calculation.  

The analysis was carried out in Dynamic Explicit condition with ABAQUS, which uses a 

consistent, large-deformation theory, so that the model can undergo large rotations and large 



deformation. The element type for cable and ice is C3D8R. This is a three-dimensional 

element with 8 nodes and suitable for continuum stress/displacement analysis with reduced 

integration. The variations of vertical displacement, aerodynamic forces, additional tension in 

the cable and the ice were tabulated in 6 tables. Each table has two columns, the first one 

containing the time data, while the second one lists the above-mentioned parameters at each 

instance. The total time of analysis is 0.3 s. In order to have more accurate estimation, both 

ends of the cable-ice piece at the beginning of the analysis were set in the positions which 

represent the initial shape of the ice and cable before any deformation. The ice was assumed 

to adhere strongly to the cable surface without sliding and separation.  

4. Results and discussion 

The preliminary calculations with MATLAB and the stress analysis in ABAQUS were 

applied for a typical example. Table 1 shows the characteristics of the span, cable and ice 

considered in this example. The value of rotation angle due to ice accretion at span centre has 

been obtained from simulation of atmospheric ice accretion conducted by Fu [8]. 

According to the results of the MATLAB code, the amplitude of aeolian vibration for the 

BERSIMIS cable with a thickness of 2.5 cm accreted ice in a wind of 4 m/s velocity is 58.1 

mm. EPRI [5] reported that the amplitude of aeolian vibration in field measurements varied 

in the range of 0.01 and 1 cable diameter. Considering the ice load on the cable, the 

corresponding interval occurs between 0.85 mm and 85 mm in the specific example of this 

study, so that the value of vibration amplitude calculated by MATLAB code falls in that 

range. 

The cable displacement in the middle of the span in vertical direction is shown in Fig. 3. A 

full cycle of aeolian vibration lasts 0.12 s. The results of wind load and stress calculations are 



presented in Figs. 4 and 5. Fig. 4 shows the variation of the distributed wind force in vertical 

direction during a full cycle of vibration, whereas Fig. 5 shows the stresses due to additional 

dynamic tension in the cable and atmospheric ice.  

The data presented in Table 1 and the results of the calculations discussed in Sections 2.1 

and 2.2 were applied as inputs for the stress analysis on a 10-cm piece of the cable-ice 

composite in the middle of the span. The results of the calculated Von Mises stresses in 

several elements during a 0.3-second interval of aeolian vibration in various positions are 

shown in Figs. 6 and 7. The positions of these elements in the middle of the 10-cm piece of 

the ice cover are illustrated in Fig. 8. Figs. 6 and 7 show that the Von Mises stresses reach 

their maximum values when the mid-point of the cable is at the highest and lowest positions 

of its trajectory. Numerically, these maximum values are 6210 Pa for the elements in the 

external layer, and 4056 Pa for the elements in the internal layer.  

The bending strength of atmospheric ice was measured in a parallel research whose results 

were published in [7]. Those observations ascertained that the bending strength of 

atmospheric ice at -10 oC varied with strain rate. According to the guidelines recommended 

by the IAHR (International Association of Hydraulic Engineering and Research) working 

group on test methods [12], experiments with loading times to failure on the order of 1 

second yield satisfactory results for bending strength of ice. In [7] this load rate corresponds 

to the strain rate of 2 x10
-3 

s
-1

 yielding a value of approximately 2.73 MPa for bending 

strength of atmospheric ice, which gives a reasonable value for tensile strength and can be 

used here as failure limit of atmospheric ice.  

Figs. 9 and 10 show normal stresses in vertical direction (perpendicular to the cable axis) 

in the same elements as in Figs. 6 and 7, respectively. When the cable approaches its highest 



position, the elements on the top of the cable (elements No. 435 and 433) are under tension, 

whereas the bottom elements (No. 8 and 200) are under compression. The stress direction 

changes when the cable approaches its lowest position. The elements close to the neutral axis 

(elements No. 904, 280, 88 and 448) endure less stress because the strains are smaller in that 

area.  

Figs. 11 and 12 show the distribution of Von Mises stresses along the horizontal and 

vertical diameters of the iced cable in the middle of the 10-cm piece at 0.17s. As expected 

and observed in the case of galloping [9], the stresses in the internal layers of the ice (and 

cable) are less than in the external layers. Comparing the stress level in atmospheric ice 

during aeolian vibration and the bending strength of atmospheric ice, it was observed that 

under the conditions of this study, the stresses developing during aeolian vibration were not 

great enough to cause ice failure. The simulation results in [9] showed that ice failed during 

galloping for a minimum wind speed of 4.5 – 5.2 m/s, which caused vibration with amplitude 

between 1.65 m and 2.45m. Since the vibration amplitude, and consequently, the stress in the 

ice are at least one order of magnitude lower than during galloping, ice failure during aeolian 

vibration may occur due to fatigue rather than due to stress peaks exceeding the bending 

strength. However, the results of low-cycle fatigue tests of atmospheric ice [9] show that no 

ice failure occurs due to cyclic load and fatigue during low-amplitude vibration. 

 

5. Conclusion  

This paper presents a finite element model which estimates the stresses developed in the 

ice cover of an overhead cable during aeolian vibration. In order to achieve this goal, first the 

aeolian vibration of an iced cable was simulated. The equations of cable motion during 

aeolian vibration were obtained from the basic equations of motion of a suspended cable and 



a MATLAB code was developed to calculate the time histories of the cable motion, 

aerodynamic forces, additional horizontal tension acting in the cable during vibration, and 

torque due to springback. In the example considered in this study, a 10-cm-long piece of iced 

cable at mid-span was under examination, and the input data were determined at the two end 

points of that piece. A finite element model was constructed using the ABAQUS commercial 

software to calculate the stresses in the atmospheric ice accreted on the cable. The model 

showed that the highest stress along the vertical diameter of the ice occurred when the mid-

point of the cable reached its highest and lowest positions. The maximum Von Mises stresses 

are 6210 Pa for the elements in the external layer, and 4056 Pa for the elements in the 

internal layer. These values are significantly less than the bending strength of atmospheric 

ice. According to this model, no ice failure occurs due to low-cycle fatigue and cyclic loads 

under the selected conditions of the atmospheric ice and cable during aeolian vibration. 

Using the method and the model developed in this study, the stress levels in atmospheric ice 

may be estimated for any other loading condition.  
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Figure and table captions 

Fig. 1. Cable displacement in horizontal, U, vertical, V, and transverse, W, directions. 
Fig. 2. Loads and movement of a piece of cable on corresponding curves. 
Fig. 3. The cable displacement in the middle of the span in vertical direction. 
Fig. 4. Variation of distributed wind force in vertical direction. 
Fig. 5. Variations of stresses due to additional dynamic tension in cable. 
Fig. 6. Von Mises stresses in 4 elements in the external layer of atmospheric ice during 

aeolian vibration.  
Fig. 7. Von Mises stresses in 4 elements in the internal layer of atmospheric ice during 

aeolian vibration.  
Fig. 8. Position of the elements that are the subjects of Figs. 6, 7, 9 and 10. 
Fig. 9. Normal stresses in 4 elements in the external layer of atmospheric ice. 
Fig. 10. Normal stresses in 4 elements in the internal layer of atmospheric ice. 
Fig. 11. Stress distribution along the horizontal diameter of cable-ice composition at 0.17s 

in aeolian vibration. 
Fig. 12. Stress distribution along the vertical diameter of cable-ice composite at 0.17s in 

aeolian vibration. 
 
Table 1. Characteristics of the span, cable and ice 
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Fig.  2.  
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Fig.  3.  
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Fig.  4.  
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Fig. 5.  
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Fig.  6.    
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Fig.  7.  
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Fig.  9.  
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Fig. 10.  

 



 
 

 

 

 

 

 

 

 

 

 

 

0.4

0

0.8

2

1.2

0.02 0.04 0.06 0.08

V
o

n
 M

is
e

s
S

tr
e
s
s

 (
K

P
a
)

1.6
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Tables 

 
 

 
 

Parameter Value Unit 

Cable type 
BERSIMIS 

ACSR 42/7 
--- 

Cable diameter 35.1 mm 

Young’s modulus of cable 62 GPa 

Mass per unit length of cable 2.185 kg/m 

Cable torsional rigidity 351 N.m/Rad 

Cable cross-section area 725.2 mm2 

Span length 300 m 

Cable sag 8.04 m 

Ice type 
Hard rime 

and glaze 
--- 

Ice thickness on cable 25 mm 

Density of ice 900 Kg/m3 

Young’s modulus of ice 9 GPa 

Wind velocity 4 m/s 

Rotation angle due to ice 

accretion at span centre 
405 Degree 

Table 1 


