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Abstract

We address the inverse problem of multivariate polynomial root-finding:
given a finite set Z of points in Cn, find the minimal set of multivariate poly-
nomials that vanish on Z. Two SVD-based algorithms are presented: one
algorithm works only for affine roots and as a result almost always returns
an overdetermined set of polynomials. This issue is resolved in the second
algorithm by introducing projective points and hence adding roots at infin-
ity. In addition, we show how the use of multiplicity structures is required
to describe roots with multiplicities. We also derive a suitable tolerance that
needs to be used when the roots are not known with infinite precision. A
measure of how well the resulting polynomials vanish approximately on Z is
shown to be the smallest singular value of a particular matrix. Both affine
and projective implementations of our algorithm are applied to the problem
of computing continuous-time polynomial dynamical systems from a given
set of fixed points, demonstrating the effectiveness and robustness of our
proposed methods.
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1. Introduction

By now it has been well established that for the case of zero-dimensional
varieties the problem of finding all roots of a set of multivariate polynomials
is a problem in linear algebra. Indeed, for the univariate case we have that
a root z ∈ C of a degree d polynomial p(x) =

∑d
i=0 ai x

i (ad 6= 0) can be
retrieved from the eigenvalue problem

1
z
z2

...
zd−1

 z =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0
ad
−a1
ad
−a2
ad
· · · −ad−1

ad




1
z
z2

...
zd−1

 ,

where the matrix on the right-hand side is called the companion matrix of the
polynomial p(x). If none of the roots have multiplicities, then the companion
matrix is diagonalized by the Vandermonde matrix corresponding with the
roots z1, . . . , zd. In their seminal paper [1], Auzinger and Stetter generalized
this idea to the multivariate case. For this we need to consider a set of
multivariate polynomials f1(x), . . . , fs(x), with x ≡ (x1, . . . , xn) ∈ Cn, for
which a root z ≡ (z1, . . . , zn) ∈ Cn is a point such that f1(z) = · · · =
fs(z) = 0. Then, given a monomial basis B = {b1, . . . , bl} for the quotient
ring Cn/〈f1, . . . , fn〉, where Cn denotes the ring of n-variate polynomials and
〈f1, . . . , fs〉 is the polynomial ideal generated by f1, . . . , fs, we retrieve the
ith component of z from the eigenvalue problem

b1
b2
b3
...
bl

 zi = Ai


b1
b2
b3
...
bl

 .

The Ai (i = 1, . . . , n) matrices express how the products of the monomials
B with xi modulo f1, . . . , fs are themselves representable in terms of the
monomial basis B [2, 3]. The B monomials are typically found by explicitly
computing a Gröbner basis for the polynomial ideal 〈f1, . . . , fn〉. An alterna-
tive way is by considering the linearly dependent leading monomials in the
row space of the Macaulay matrix [4].
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It is much less known that the inverse root-finding problem of finding a
minimal set of polynomials that vanish on a given finite set of roots is also
a problem in linear algebra. The univariate case is trivially solved. Given a
set of m roots Z = {z1, . . . , zm}, then the polynomial p(x) =

∏m
i=1(x − zi)

is the unique polynomial of minimal degree that vanishes on Z. In terms of
linear algebra, one needs to find a single vector, unique up to a scaling factor,
that lies in the left null space of the (m + 1) × m confluent Vandermonde
matrix V on the roots z1, . . . , zm. The extension of this problem to the
multivariate case is a bit more involved. Essentially, a reduced Gröbner basis
for the polynomial ideal that vanishes on the given set of roots needs to be
computed. This reduced Gröbner basis is unique and contains the minimal
number of polynomials of minimal degrees for a given monomial ordering.
It turns out that the polynomials of this reduced Gröbner basis also lie in
the left null space of a confluent Vandermonde matrix, generalized to the
multivariate case.

Möller and Buchberger were the first to solve this problem with their
symbolic Buchberger-Möller algorithm [5]. Their algorithm however only
works for the affine case and none of the roots can have multiplicities. In
addition, since it is a symbolic algorithm, the roots can only be integers or
rational numbers. An implementation can be found in the COCOA com-
puter algebra system [6]. An extension of the symbolic Buchberger-Möller
algorithm to the projective case together with the derivation of a suitable
stopping criterion appeared in [7]. Again, no multiplicities of the roots
are supported for this symbolic projective algorithm. This is also newly
addressed in this article by the introduction of multiplicity structures. A
numerical-symbolic hybrid method that generates exact polynomials using
inexact intermediate numerical results obtained from homotopy methods is
described in [8]. A numerical implementation of the affine Buchberger-Möller
algorithm is described in [9]. Just as in this article, their implementation
uses the singular value decomposition (SVD), which can be computed in a
numerically backward stable way [10]. After the computation of the SVD, an
additional Gaussian Elimination (GE) step is required. Their method conse-
quently needs two tolerances ε, τ for the SVD and GE steps respectively. A
set of reduced Gröbner basis polynomials g1, . . . , gt are computed such that
|gi(Z) | ≤ δ = ε

√
t + τt(t + µ)

√
m (i = 1, . . . , t). This bound only applies

when the roots lie in the interval [−1, 1]n. Also, the numbers t and µ are
not known beforehand and depend on the tolerances ε, τ in an unpredictable
manner, making it very impractical to choose the tolerances in function of
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the required δ. Our algorithm does not require the GE step. Furthermore,
we derive a suitable tolerance to be used with the SVD when the roots are
not known with infinite precision. This uniquely determines the number of
computed Gröbner basis polynomials and provides a measure on how well
they vanish approximately on the given finite set of roots. For the application
that we describe in Section 5, it will be necessary to obtain a “square” system
of polynomials. This means that there are an equal amount of polynomials
as there are variables. The affine Buchberger-Möller will however almost
never compute a square system. We will explain how by adding multiplcities
or roots at infinities a square system of polynomials can be obtained. To
summarize, the contributions of this article are

• two new numerical affine and projective Buchberger-Möller algorithms
are derived,

• we describe how by adding multiplicities and/or roots at infinity a
square polynomial system can be obtained,

• multiple roots are supported,

• no extra GE step is required,

• no scaling of the roots is required,

• we derive a tolerance for the SVD that depends on the absolute uncer-
tainty on the given roots.

The case of positive-dimensional solution sets, i.e. infinite solutions, is not
supported. The outline of this article is as follows. In Section 2 we will
define some notations and introduce some necessary concepts from algebraic
geometry. In addition, we will define the confluent multivariate Vander-
monde matrix and demonstrate that it is possible to retrieve the required
reduced Gröbner basis from it. In Section 3, we derive our SVD-based affine
Buchberger-Möller algorithm by means of a running example. We also show
a suitable tolerance can be chosen for the case when the roots are not known
with infinite precision. In addition, we discuss the computational complex-
ity of the method and explain how it also provides a measure on how well
the resulting polynomials vanish on the given set of fixed points. In Sec-
tion 4 the affine algorithm is extended to the projective case. This allows
us to add roots at infinity, which is in most cases a necessary requirement

4



in order to obtain a system of n polynomials. In Section 5, the application
of both algorithms is illustrated on a particular modeling problem: given
a set of fixed points, find a corresponding minimal polynomial dynamical
system. We also present the case where the roots are known to be per-
turbed and compare the results with the unperturbed case. All algorithms
are implemented in MATLAB [11]/Octave[12] and are freely available at
https://github.com/kbatseli/PNLA_MATLAB_OCTAVE.

Another application of the algorithms described in this article are data-
mining applications of finding polynomial relations in measured data from
both the oil and steel industry [9]. There the argument is made that measure-
ments in industrial applications invariably contain errors. Hence, numerical
algorithms that compute approximate results from approximate data are pre-
ferred over symbolic methods that compute exact results from exact data.
Finally, another application is found in the realization of multi-dimensional
linear state space systems as described in [13].

2. Notation and facts

Before deriving our algorithm, we first introduce the notation and provide
some basic facts on polynomials and Gröbner bases. The main goal of this
section is to show where this confluent multivariate Vandermonde matrix,
which is central to our algorithm, comes from. Good reference works on this
subject matter are [14, 15, 16, 17, 3].

2.1. Vector space of polynomials and projective coordinates

We introduce the shorter notation Cn for the ring of multivariate polyno-
mials in n variables with complex coefficients. The subset Cnd of Cn, which
contains all n-variate polynomials of degree at most d is a vector space.
Also, a monomial basis will be used to describe Cnd and since there are

(
d+n
n

)
n-variate monomials of degree at most d, we set q ≡ dim Cnd =

(
d+n
n

)
.

Roots at infinity are described in the projective setting with homogeneous
polynomials. A polynomial of degree d is homogeneous when every term is
of degree d. The set of all homogeneous polynomials in n + 1 variables is
denoted Pn. Unlike the non-homogeneous case, limiting Pn to all homoge-
neous polynomials of degrees 0 up to d does not result in a vector space. The
set Pnd of all homogeneous polynomials of degree d however forms a vector
space. A non-homogeneous polynomial can easily be made homogeneous by
introducing an extra variable x0 [15, p. 373].

5



Definition 2.1. Let f ∈ Cnd , then its homogenization fh ∈ Pnd is the polyno-
mial obtained by multiplying each term of f with a power of x0 such that its
degree becomes d.

In order to describe solution sets of systems of homogeneous polynomials,
projective space needs to be introduced. First, an equivalence relation ∼ on
the nonzero points of Cn+1 is defined as (x′0, . . . , x

′
n) ∼ (x0, . . . , xn) if there is

a nonzero λ ∈ C such that (x′0, . . . , x
′
n) = λ (x0, . . . , xn). Projective space is

then defined as the set of resulting equivalence classes in the following way.

Definition 2.2. ([15, p. 368]) n-dimensional projective space Pn is the set
of equivalence classes of ∼ on Cn+1 − {0}. Each nonzero (n + 1)-tuple
(x0, . . . , xn) defines a point p in Pn , and we say that (x0, . . . , xn) are ho-
mogeneous coordinates of p.

Note that the origin (0, . . . , 0) ∈ Cn+1 is not a point in projective space.
Because of the equivalence relation ∼, an infinite number of projective points
(x0, . . . , xn) can be associated with 1 affine point (x1, . . . , xn). Affine space
Cn can be retrieved as a ‘slice’ of projective space Cn = {(x0, x1, . . . , xn) ∈
Pn : x0 = 1}. This means that given a projective point p = (x0, . . . , xn)
with x0 6= 0, its affine counterpart is (1, x1

x0
, . . . , xn

x0
). The projective points

for which x0 = 0 are called points at infinity.

2.2. Polynomial ideals and Gröbner bases

The left null space of the Vandermonde matrix turns out to be related to
polynomial ideals and their generators. Here we give a quick introduction to
polynomial ideals and Gröbner bases.

Definition 2.3. ([15, p. 30]) Let f1, . . . , fs ∈ Cn. Then we set

(1) 〈f1, . . . , fs〉 =

{ s∑
i=1

hifi : h1, . . . , hs ∈ Cn
}

and call it the ideal generated by f1, . . . , fs.

The ideal hence contains all polynomial combinations
∑s

i=1 hifi without
any constraints on the degrees of h1, . . . , hs. For this reason, the polyno-
mials f1, . . . , fs are also called the generators of the polynomial ideal. We
will denote all polynomials of the ideal 〈f1, . . . , fs〉 with a degree of at most
d by 〈f1, . . . , fs〉d. Observe that this implies that 〈f1, . . . , fs〉d ⊂ Cnd and
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〈f1, . . . , fs〉d is therefore also a vector space. Likewise, for the homogeneous
ideal 〈fh1 , . . . , fhs 〉 we can consider the vector space 〈fh1 , . . . , fhs 〉d of all homo-
geneous polynomials of degree d. The set of generators is not unique for a
given polynomial ideal. An important set of generators for a given polyno-
mial ideal 〈f1, . . . , fs〉 is a Gröbner basis. Their most useful property is also
their defining property.

Definition 2.4. ([15, p. 77]) Given a set of multivariate polynomials f1, . . . , fs
and a monomial ordering, then a finite set of polynomials G = {g1, . . . , gt} ∈
〈f1, . . . , fs〉 is a Gröbner basis of 〈f1, . . . , fs〉 if

∀ p ∈ 〈f1, . . . , fs〉,∃ g ∈ G such that LM(g) divides LM(p),

where LM(g), LM(p) denote the leading monomials of g and p respectively,
according to the given monomial ordering. In addition, a Gröbner basis is
called reduced if no monomial in any element of the basis is divisible by the
leading monomials of the other elements of the basis.

Note from the definition that a Gröbner basis depends on the monomial
ordering. For a formal definition of monomial orderings together with a
detailed description of some relevant orderings in computational algebraic
geometry see [15, p. 54]. The monomial ordering used in this article is the
graded xel ordering [18, p.3], which is sometimes also called the degree neg-
ative lexicographic monomial ordering. This ordering is graded because it
first compares the degrees of the two monomials and applies the xel ordering
when there is a tie. The defining property of a Gröbner basis is hence that
the leading monomial of every polynomial in 〈f1, . . . , fs〉 is divisible by at
least one of the leading monomials of the Gröbner basis.

Another important concept is the quotient ring of a polynomial ideal. A
monomial basis for the quotient ring will turn out to be the building blocks
of a reduced Gröbner basis.

Definition 2.5. ([3, p. 29] for a given polynomial I = 〈f1, . . . , fs〉, the set
[p]I = {r ∈ Cn : p− r ∈ I} is called the residue class of p mod I. The set
of all such residue classes is called the quotient ring of I and denoted Cn/I.

Observe that the elements r of [p]I are remainders of polynomials p mod-
ulo the ideal I. The quotient ring is therefore the ring of all remainders for any
polynomial p. It is a classical result that for a polynomial system f1, . . . , fs
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with a finite number of m affine roots that its quotient ring Cn/I is a finite-
dimensional vector space [3, p. 31]. Furthermore, the dimension of Cn/I is the
number of affine roots, including multiplicities. Another way of expressing
this result is that there are m linearly independent monomials that form a ba-
sis for Cn/I. These basis monomials are also called the standard monomials.
Since standard monomials form remainders, it is important to observe that
their set B is described by B = {bi (i = 1, . . . ,m) : bi /∈ 〈LM(I)〉}. If we
denote the set of leading monomials of a Gröbner basis by A = {a1, . . . , at},
then a reduced Gröbner basis are polynomials of the form

(2) gi = ai +
m∑
j=1

βj bj (βj ∈ C, bj ∈ B).

Polynomials of the form (2) will be computed numerically by the algorithms
in this article. Hence, it is necessary to determine the monomials a ∈ A
and b ∈ B. This will be done by inspection of the rows of the confluent
Vandermonde matrix, described in the next subsection.

2.3. Dual vector space

We are now ready to describe the confluent multivariate Vandermonde
matrix, which plays a central role in our algorithm, as a basis for a particular
dual vector space of 〈f1, . . . , fs〉d. The dual of a vector space V over a field
k is a vector space V ′ of linear functionals l : V → k that map each vector
of V to an element of the field k. In our case, the field k will always be C.
Consequently, the dual vector space of Cnd is Cn′d . The most interesting and
useful dual vector space in this article is the annihilator.

Definition 2.6. ([19, p. 26]) The annihilator Vo of a vector space V is the
set of linear functionals l ∈ V ′ such that l(v) = 0 for all v ∈ V.

We are interested in the annihilator 〈f1, . . . , fs〉od of 〈f1, . . . , fs〉d , since a
basis for it is given by the confluent multivariate Vandermonde matrix. We
now need to show that from a certain degree d the annihilator 〈f1, . . . , fs〉od
is isomorphic to Cn/I. This isomorphism then implies that we can determine
the standard monomials B and consequently a reduced Gröbner basis from
the Vandermonde matrix. The dimension of an annihilator is given by the
following theorem.
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Theorem 2.1. ([19, p. 26]) If M is an r-dimensional subspace of an n-
dimensional vector space V, then Mo is an (n− r)-dimensional subspace of
V ′.

Theorem 2.1 implies that if dim 〈f1, . . . , fs〉d = r, then dim 〈f1, . . . , fs〉od =
q − r. In addition, we also have that

dim 〈f1, . . . , fs〉od = q − r,

= dim Cnd − dim 〈f1, . . . , fs〉d,

= dim Cnd /〈f1, . . . , fs〉d = HF(d).(3)

The function HF(d) that expresses dim 〈f1, . . . , fs〉od as a function of the de-
gree d is known in the literature as the Hilbert Function [15, p. 457]. For the
homogeneous case the Hilbert Function HF(d) is defined as the dimension of
the vector space Pnd /〈fh1 , . . . , fhs 〉d. There is a degree d? such that HF(d) is a
polynomial for all d ≥ d?. This polynomial is consequently called the Hilbert
Polynomial HP(d) and d? is called the degree of regularity [15, p. 459]. More
importantly is the fact that the degree of this polynomial is the dimension
of the solution set.

Theorem 2.2. ([15, p. 461]) Let 〈f1, . . . , fs〉 be a polynomial ideal and V be
its solution set, then dimV = deg HP(d).

A similar theorem applies to the projective case [15, p. 464]. Since we start
from a given finite set of roots, we always have that dimV = 0. Theorem 2.2
then implies that for all d ≥ d? dim〈f1, . . . , fs〉od = dimCn/I or in other words
Cn/I ∼= 〈f1, . . . , fs〉od, ∀d ≥ d?. This has the important implication that we
can use 〈f1, . . . , fs〉od to determine the standard monomials, which we will
need to determine a reduced Gröbner basis. Constructing a basis for the
annihilator is very straightforward. Since all functionals of 〈f1, . . . , fs〉od map
all polynomials in 〈f1, . . . , fs〉d to zero, a basis for the dual vector space is
then described by linear functionals that evaluate polynomials in their roots.
This leads us to the following definition.

Definition 2.7. ([3, p 8]) Let j ∈ Nn
0 and z ∈ Cn, then the differential

functional ∂j|z ∈ Cn
′

d is defined by

∂j|z ,
1

j1! . . . jn!

∂j1+...+jn

∂xj11 . . . ∂x
jn
n

|z

where |z stands for evaluation in z = (x1, . . . , xn).
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When j1 = j2 = · · · = jn = 0, then the functional evaluates all polynomi-
als in the point z. If any of the ji is nonzero, then the partial derivative with
respect to xi of the polynomials is evaluated in z. We will need these higher
order derivatives to define multiple roots. Being elements of the dual vector
space, these differential functionals ∂j|z can be represented as vectors. Stack-
ing all these vectors together in a matrix results in the confluent multivariate
Vandermonde matrix, which we illustrate in the following example.

Example 1. In C2′3 the functionals ∂00|z, ∂10|z, ∂01|z, ∂20|z, ∂11|z and ∂02|z have
the following coefficient vectors

(4) K =



∂00|z ∂10|z ∂01|z ∂20|z ∂11|z ∂02|z
1 0 0 0 0 0
x1 1 0 0 0 0
x2 0 1 0 0 0
x21 2x1 0 1 0 0
x1x2 x2 x1 0 1 0
x22 0 2x2 0 0 1
x31 3x21 0 3x1 0 0
x21x2 2x1x2 x21 x2 2x1 0
x1x

2
2 x22 2x1x2 0 0 x1

x32 0 3x22 0 0 3x2


,

with z = (x1, x2) ∈ C2.

Observe that we had to specify the degree d of Cn′d in order to be able to
write down K. We will make no further distinction between the differential
functionals ∂j|z and their coefficient vectors. As mentioned earlier, the higher
order derivatives are necessary to define multiplicities of roots.

Definition 2.8. ([3, p. 328]) For a polynomial ideal 〈f1, . . . , fs〉 with a finite
number of roots, consider a root z ∈ Cn. The multiplicity m of z is then
defined as the number of linearly independent functionals cµ ,

∑
j βµj ∂j|z

that form a closed vector space Dz , span(cµ, µ = 1, . . . ,m). The functionals
cµ are then said to define the multiplicity structure of z.

The problem of finding the multiplicity structure numerically for the mul-
tiple roots of a given polynomial system f1, . . . , fs is solved in [20, 21, 22].
A numerical-symbolic method that approaches the notion of multiplicity in
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a different but related way can be found in [23]. Observe also that the rep-
resentation of the multiplicity structure of a root is not unique. Indeed, if
we denote the matrix of coefficient vectors of cµ by K, then for any nonsin-
gular m×m matrix T we have that K and K T share the same the column
space. As Definition 2.8 already points out, it is not sufficient to take m
functionals for a given root z and assume it specifies a polynomial ideal with
a root z of multiplicity m. The additional requirement of closedness of the
corresponding vector space is also necessary.

Definition 2.9. ([3, p. 44]) A vector space D of functionals on Cn is closed
if and only if ∀q ∈ Cn

l(p) = 0, ∀l ∈ D ⇒ l(qp) = 0, ∀l ∈ D.

An easy way that allows us to check whether a given basis of functionals
∂j|z spans a closed vector spaceD is by applying anti-differentiation operators
sσ to these functionals.

Definition 2.10. ([3, p. 330]) The anti-differentiation operators sσ, σ =
1, . . . , n are defined by

sσ ∂j|z ,

{
∂j−eσ |z if jσ > 0,

0-functional if jσ = 0,

where eσ is the σ-th unit vector and

sσ (
∑
j

βj ∂j|z) ,
∑
j

βj sσ ∂j|z.

Once the anti-differential operators are defined, then checking whether a
set of m differential functionals cµ define a closed subspace can be done by
using the following theorem.

Theorem 2.3. ([3, p. 330]) In Cn, consider the linear space Dz spanned
by m differential functionals cµ =

∑
j βµj ∂j|z, (µ = 1, . . . ,m). Then Dz is

closed if and only if c ∈ Dz ⇒ sσ c ∈ Dz, σ = 1, . . . , n.

Example 2. Consider the following basis K for D(1,2,3)

K =
(
∂000|(1,2,3) ∂100|(1,2,3) ∂010|(1,2,3) ∂110|(1,2,3) − 2∂020|(1,2,3)

)
.

Table 1 lists the application of all anti-differentiation operators s1, s2, s3 to
the basis functionals in K. It is clear that all entries of the table are elements
of D(1,2,3), which proves its closedness.
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Table 1: Application of anti-differentiation operators to the functionals.

∂000|(1,2,3) ∂100|(1,2,3) ∂010|(1,2,3) ∂110|(1,2,3) − 2∂020|(1,2,3)
s1∂j|z 0 ∂000|(1,2,3) 0 ∂010|(1,2,3)
s2 ∂j|z 0 0 ∂000|(1,2,3) ∂100|(1,2,3) − 2∂010|(1,2,3)
s3 ∂j|z 0 0 0 0

We end this section with the formal definition of the affine confluent
multivariate Vandermonde matrix.

Definition 2.11. For a given set of affine roots Z = {z1, . . . , zm} ∈ Cn

each with a certain multiplicity structure and given degree d, the confluent
multivariate Vandermonde matrix K is the matrix of differential functionals
cµ ∈ Cn

′

d for each of the roots in Z, such that their multiplicity structures
form closed subspaces.

In Section 4 we will extend this notion of the affine confluent Vander-
monde matrix to the projective case.

3. Numerical affine Buchberger-Möller algorithm

3.1. Derivation of the algorithm

In the previous section we discussed all necessary ingredients to numer-
ically determine a reduced Gröbner basis f1, . . . , fs using a basis of the an-
nihilator 〈f1, . . . , fs〉od. We will illustrate the derivation of the algorithm by
means of a small running example.

Example 3. Suppose that Z = {(0, 0), (3, 5)} with multiplicity structures
∂00, ∂10, ∂20 and ∂00, ∂01, respectively. The closedness of the dual vector space
is easily verified using Theorem 2.3. Since there are in total 5 differential
functionals, this means that dim Cn/I = 5. We set d = 3 and construct the
Vandermonde matrix K with respect to the graded xel ordering
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K =



∂00|(0,0) ∂10|(0,0) ∂20|(0,0) ∂00|(3,5) ∂01|(3,5)
1 1 0 0 1 0
x1 0 1 0 3 0
x2 0 0 0 5 1
x21 0 0 1 9 0
x1x2 0 0 0 15 3
x22 0 0 0 25 10
x31 0 0 0 27 0
x21x2 0 0 0 45 9
x1x

2
2 0 0 0 75 30

x32 0 0 0 125 75


where both the rows and columns are labeled accordingly.

Observe that we can associate a monomial with each row of K. These
are simply the entries of ∂00 according to the graded xel ordering. The rank
of K in Example 3 is 5. This implies that 5 linearly independent monomials,
corresponding with particular rows of K, can be found. If these are found by
checking the rows of K for linear independence starting from top to bottom,
then it can be proved that the obtained linearly independent monomials are
of lowest total degree [18]. These monomials will in fact be a basis for Cn/I.
Algorithm 1 presents an algorithm in pseudo-code that finds a maximal set of
linearly independent row indices B and linearly dependent row indices A for
a given Vandermonde matrix, starting from the top row r1 where ri denotes
the index of the ith row. Consequently, if the algorithm returns m linearly
independent monomials, where m is the total number of fixed points includ-
ing multiplicities, then a basis for Cn/I is found. Because of the bijection
between the row indices of K and monomials, a ∈ A and b ∈ B will denote
both the row indices as their corresponding monomials. It should be clear
from the context which interpretation is used.

Algorithm 1. Find a maximal set of linearly independent rows
Input: confluent multivariate Vandermonde matrix K
Output: linearly independent monomials B and linearly dependent monomials A

A,B ← ∅
if r1 6= 0 then
B ← [B , r1]

end if

13



for i from 2 up to
(
d+n
n

)
do

if K(ri, :) linearly independent with respect to {r1, . . . , ri−1} then
B ← [B , ri]

else
A← [A , ri]

end if
end for

We will now revisit Example 3 to demonstrate how the pseudo-code of
Algorithm 1 can be made more explicit and how it can be adjusted such that
it also returns the desired polynomials g1, . . . , gt.

Example 4. Running Algorithm 1 on K from Example 3 results in

B = {1, x1, x2, x21, x22},
A = {x1x2, x31, x21x2, x1x22, x32}.

The rank of K being 5 implies that the set B contains the five standard
monomials. Interpreting B as a set of row indices of K, this can also be
written using MATLAB notation as rank (K(B, :)) = 5. The first element of
A is a1 = x1x2 and from (2) it then follows that the first polynomial g1 of
the desired reduced Gröbner basis has the following form

g1 = c11 x1x2 + c20 x
2
1 + c01 x2 + c10 x1 + c00,

with unknown coefficients c00, . . . , c11. These coefficients can be uniquely de-
termined by solving the following linear system

(5)
(
K(B, :)T K(a1, :)

T
)

c00
c10
c01
c20
c11

 = 0,

which is guaranteed to have a solution since (5) expresses the linear de-
pendence of the row K(a1, :) with respect to K(B, :). The matrix on the
left-hand side of (5) can be written compactly using MATLAB notation as
K([B, a1], :)

T . We will use this notation when discussing the numerical im-
plementation of our algorithm.
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The linear system (5) can be solved for each element of A. This results
in a polynomial system of q − m = 10 − 5 = 5 polynomials. This number
of polynomials however can be reduced by using the defining property of a
Gröbner basis. Indeed, since the leading monomials of Gröbner basis polyno-
mials divide all leading monomials in the ideal 〈g1, . . . , gt〉, it is sufficient to
retain only those monomials of A that are not divisible by any other element
of A. Or equivalently in Algorithm 1, as soon as an element of A is found,
none of its monomial multiples need to be checked anymore for linear depen-
dence. We now apply this reduction step to the monomials of our running
example.

Example 5. The set of linearly dependent monomials A was

A = {x1x2, x31, x21x2, x1x22, x32}.

By removing the monomials that are divisible by other elements of A we
obtain the following reduced set A? = {x1x2, x31, x32}. Solving the linear
systems (5) results in the following polynomials

(6) G =


g1 = 0.9487x2 − 0.3162x1 x2,

g2 = 0.9908x2 − 0.0991x22 − 0.0917x31,

g3 = 0.9278x2 − 0.3711x22 + 0.0371x32.

The only thing that remains is a stop condition that tells us when d is
large enough. This is easily derived, again using the defining property of
Gröbner bases.

Lemma 3.1. Let A,B be the monomial sets obtained from running Algorithm
1 on the Vandermonde matrix K for a degree d. Furthermore, let A? be the
subset of reduced linearly dependent monomials and T nd+1 be the set of all(
d+n
n−1

)
n-variate monomials of total degree d + 1. If the cardinality of B

equals dim Cn/I and all monomials in T nd+1 are divisible by elements of A?,
then d is sufficiently large.

Proof. Since the cardinality of B equals dim Cn/I, all standard monomials
are found. If all elements of T nd+1 are divisible by elements of A?, then all
elements of T nd+k for k ≥ 2 are also divisible by elements of A?. This implies
that no new linearly dependent monomials can be found anymore for any
degree larger than d.
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We conclude our running example with the application of Lemma 3.1 to
determine whether d = 3 is large enough.

Example 6. The cardinality of B is dim Cn/I = 5 and

A? = {x1x2, x31, x32}, T 4
2 = {x41, x31x2, x21x22, x1x32, x42}.

Every monomial of T 4
2 is divisible by an element of A? since

x41 = x1 (x31), x
3
1x2 = x2 (x31), x

2
1x

2
2 = x1x2 (x1x2), x1x

3
2 = x1 (x32), x

4
2 = x2 (x32).

Lemma 3.1 is satisfied and G = {g1, g2, g3} is a reduced Gröbner basis.

Observe that the Gröbner basis G in (6) consists of 3 polynomials, while
n = 2. The application described in Section 5 requires that the number of
polynomials equals the number of variables n. This issue is addressed in
Section 4 by extending the affine algorithm to the projective case.

3.2. Numerical algorithm and implementation

Our SVD-based numerical implementation of the affine Buchberger-Möller
algorithm is presented in Algorithm 2. The MATLAB/Octave implementa-
tion in the freely downloadable PNLA package is abma.m. Since the first row
of the Vandermonde matrix K is always linearly independent, the monomial
1 will always be an element of B. The algorithm then recursively checks
monomials of increasing total degree for linear independence until the stop
condition of Lemma 3.1 is satisfied. A graded monomial ordering is therefore
assumed. The defining property of a Gröbner basis is taken into account each
recursion by removing monomial multiples of the elements of A?. Checking
whether a monomial is linearly independent and solving the linear system (5)
for the unknown coefficients is achieved by one SVD. When not all m stan-
dard monomials have been found, a criterion is needed to decide whether the
current monomial under investigation a is linearly independent with respect
to all other elements of B. This is done by inspection of the singular values
of K([B, a], :)T , obtained from computing its SVD

K([B, a], :)T = U Σ V T = U

σ . . .

σ

 V T ,
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where U, V are orthogonal matrices and Σ is a diagonal matrix containing the
singular values σ ≥ . . . ≥ σ. When the smallest singular value σ is smaller
than a chosen tolerance τ , then a is determined to be linearly dependent. If
the numerical values of the roots are known with infinite precision then the
tolerance τ is set to mσ e, where m is the number of columns of K([B, a], :),
σ is the largest singular value and e is the machine precision. For double
precision we have that e ≈ 10−16. If the roots are only known up to a
certain accuracy, then the tolerance τ needs to take this into account. We
discuss how to choose the tolerance in this case in the next subsection. For
each iteration in the for-loop, the tolerance τ is recomputed. When the
monomial a is found to be linearly dependent, then the right singular vector
v corresponding with the smallest singular value is the vector of coefficients
that solves (5). The smallest singular value σ then also serves as a measure of
how well the retrieved polynomial vanishes on the given fixed points. Indeed,
writing K([B, a], :) as the product of a row selection matrix S and K we have
that

||vT K([B, a], :)||2 = ||vT S K||2 = ||ṽT K||2 = σ.

The ṽT ≡ vT S in the last equation is the desired coefficient vector of the
reduced Gröbner basis polynomial.

Removing the monomial multiples of A? limits the total number of SVDs
to m + nA? , where nA? is the cardinality of A?. Since the left singular vec-
tors U do not need to be computed, the computational complexity of each
SVD is upper bounded by 4m(m + 1)2 + 8(m + 1)3 flops [10, p. 254]. In
fact, once the m standard monomials are known during the algorithm, no
decision on the linear dependence of the remaining monomials needs to be
made anymore. The only remaining task is therefore the computation of the
single null vector of K([B, a], :)T . We have not taken this optimization into
account in Algorithm 2.

Algorithm 2. Numerical affine Buchberger-Möller algorithm (abma.m)
Input: set of affine roots Z with corresponding multiplicity structures, mono-
mial ordering <
Output: A?, B and reduced Gröbner basis G

A?, G← ∅
B ← {1}
K ← first row of Vandermonde matrix corresponding with monomial 1
d← 1
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X ← T dn
while X 6= ∅ do

append K with rows corresponding with monomials of X
for all monomials in X do
a← smallest monomial in X according to monomial ordering <
[U, S, V ]← SVD(K([B, a], :)T )
τ ← mσ e or (9)
if σ < τ then

append a to A? and remove it from X
append ṽT to G

else
append a to B and remove it from X

end if
end for
d← d+ 1
X ← T nd
remove all monomial multiples of A? from X

end while

The matrix K is a generalization of a confluent Vandermonde matrix to
the multivariate case. Vandermonde matrices appear in polynomial interpo-
lation problems and can be very ill-conditioned. This ill-conditioning is due
to the fact that a monomial basis was chosen to represent polynomials. We
then have in the univariate case that the degree of the monomials in the Van-
dermonde matrix grows linearly with the number of points. This is however
not the case when n > 1 and is due to the curse of dimensionality, which
states that there are

(
d+n
n

)
number of n-variate monomials of degrees 0 up

to d. Indeed, supposing for the sake of argument that the first m monomials
are the standard monomials, then the degree d̂ that satisfies(

d̂− 1 + n

n

)
≤ m <

(
d̂+ n

n

)
will be much smaller than m. If we take for example m = 100 and n = 8,
then d̂ = 3, since

(
2+8
8

)
= 45 ≤ 100 <

(
3+8
8

)
= 165. The K([B, a], :) matrix

will therefore contain only monomials up to degree 3 while for the univariate
case this would have been 100.

Example 7. In this example we demonstrate the run times in seconds of
Algorithm 2 for an increasing number of roots and number of variables. All
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computations were done in Matlab on a 64-bit 4-core 3.3 GHz desktop com-
puter with 16 GB RAM. Figure 1 shows how the total run time increases as
the number of roots m and number of variables n increases. The total run
time is determined by the total number of Gröbner basis polynomials that
need to be computed. Figure 1 shows that up until 20 roots a doubling of the
number of variables results in a 10-fold increase in run time. Finding the
reduced Gröbner basis for 41 roots and 20 variables takes about 15 minutes
and computes 210 polynomials.

Figure 1: Run times of the abma.m algorithm as a function of the number of roots m.

3.3. Choosing a suitable tolerance τ

When the numerical values of the roots are not known with infinite pre-
cision, then the tolerance τ cannot be set to mσ e. Knowledge on the error
should be take into account instead. We will assume that each of the com-
ponents zi are perturbed by ei and that an upper bound ε on the absolute
error ei is known such that

ẑi = zi + ei, and |ẑi − zi| ≤ ε ∀i = 1, . . . , n.
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Consequently, the matrix K([B, a], :) is then also perturbed as

K̂([B, a], :) = K([B, a], :) + E.

If σ and σ̂i denote any singular value of ([B, a], :) and K̂([B, a], :) respectively,
then Weyl’s Theorem [24] states that

|σ̂i − σi| ≤ ||E||2.

Finding an approximation for ||E||2 is therefore key to choosing a good tol-
erance. If Ei denotes the i-th column of E, then

(7) ||E||2 ≤
√
mmaxi ||Ei||2.

Each row of K contains the evaluation of a monomial xα in one of the roots.
Interpreting a monomial as a multivariate function f(z1, . . . , zn), the linear
approximation of f(z1 + ε, . . . , zn + ε) is then given by

f(z1 + ε, . . . , zn + ε) ≈ f(z1, . . . , zn) +∇f(z1, . . . , zn) ε,

where ∇ denotes the vector differential operator. Each row ri of the matrix
E contains the entries ∇f(z1, . . . , zn) ε, where f(z1, . . . , zn) is the monomial
that corresponds with ri. The column of E with the maximal 2-norm will
correspond with the fixed point that has maximal 2-norm. Hence, if we
denote z = argmax

zi∈Z
||zi||2, then

(8) maxi ||Ei||2 = ε

√∑
B,a

(∇f(z))2,

where the summation goes over all standard monomials in B and the mono-
mial a that is being checked for linear independence. Combining (7) and (8)
we set the tolerance τ to

(9) τ = ε

√
m
∑
B,a

(∇f(z))2.

Example 8. Suppose m = 9, ε = 10−5, B = {1, x1, x21}, a = x1 x
2
2 and z =

maxi zi = (−5, 3). Application of (8) results in

maxi ||Ei||2 = 10−5
√

12 + (2 · −5)2 + (9 + 2 · −5 · 3)2 = 2.3281× 10−4.

The tolerance is then set to τ =
√

9 · 2.3281× 10−4 = 6.9843× 10−4.

Further application of this tolerance is demonstrated in Section 5.
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4. Numerical projective Buchberger-Möller algorithm

In this section we will address the issue that for a given set of affine roots,
Algorithm 2 will almost always determine a reduced Gröbner basis g1, . . . , gt
with t > n. This can be problematic, as indicated by the application in Sec-
tion 5 where only square polynomial systems are desired for which t = n. The
solution in obtaining square polynomial systems lies in using homogeneous
polynomials and projective coordinates and is stated in Bézout’s theorem.

Theorem 4.1. ([14, p. 91]) Let fh1 , . . . , f
h
n be a polynomial system of n ho-

mogeneous polynomials of degrees d1, . . . , dn with a finite number of roots over
Pn. Then the total number of roots of fh1 , . . . , f

h
n , counted with multiplicities,

is
∏n

i=1 di.

Hence, the solution to obtain n polynomials is rather straightforward.
One needs to make sure the total number of projective roots is

∏n
i=1 di and

by Bézout’s Theorem it is then guaranteed that a homogeneous polynomial
system of n polynomials exists. There is however, as we will demonstrate, a
sensitivity to the chosen multiplicity structure in the sense that only certain
multiplicity structures will result in n polynomials. Observe that these n
homogeneous polynomials will be in n+1 variables, but this is easily resolved
by considering the corresponding affine polynomials by setting x0 = 1.

There are two ways to obtain d1 · · · dn projective roots: either extend the
given roots with additional multiplicities, or add multiple roots at infinity.
Note that roots with multiplicities are special because they are the result
of a careful configuration of parameters. A small perturbation of the coeffi-
cients of the polynomials f1, . . . , fn are guaranteed to destroy the multiplicity
structure.

Only minimal adjustments of Algorithm 2 are required to make it work
in the projective case. Again, we will revisit the running example of Section
3 and discuss it now in the projective setting.

Example 9. We take the roots Z = {(0, 0), (3, 5)} of Example 3 and trans-
form them into projective coordinates Zh = {(1, 0, 0), (1, 3, 5)}. Suppose we
are looking for 2 polynomials g1, g2 with degrees d1 = d2 = 2, which sets the
total number of projective roots to d1 d2 = 4. Suppose we do not wish to in-
crease the multiplicity of the affine roots. Adding 2 additional projective roots
at infinity is then required. Hence Zh = {(1, 0, 0), (1, 3, 5), (0, 1, 0), (0, 0, 1)}
and since each of the projective roots has no multiplicities, the dual vector
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space is closed. Again we set d = 3 and construct the now homogeneous
multivariate Vandermonde matrix K of differential functionals that evaluate
homogeneous polynomials of degree 3

K =



∂000|(1,0,0) ∂000|(1,3,5) ∂000|(0,1,0) ∂000|(0,0,1)
x30 1 1 0 0
x20x1 0 3 0 0
x20x2 0 5 0 0
x0x

2
1 0 9 0 0

x0x1x2 0 15 0 0
x0x

2
2 0 25 0 0

x31 0 27 1 0
x21x2 0 45 0 0
x1x

2
2 0 75 0 0

x32 0 125 0 1


.

A first important observation is that the projective Vandermonde matrix
K in Example 9 has the same number of rows as in the affine case. This
is because the number of n + 1-variate homogeneous monomials of degree d
is also given by

(
d+n
n

)
. Indeed, going from the projective case to the affine

case or vice-versa is simply a relabeling of the monomials. Another important
observation is that roots at infinity give rise to linearly independent rows that
are located at the bottom of K. In Example 9 these linearly independent
rows correspond with the monomials x31 and x32. Note that these standard
monomials corresponding with roots at infinity will be the monomials that
will have a degree d after setting x0 = 1.

Our projective Buchberger-Möller algorithm will also recursively check
monomials for linear independence for increasing total degrees. There is
however a subtle difference due to the difference between the affine and pro-
jective definitions of the Hilbert Function. This difference implies that in
the projective case the linearly independent monomials in B need to be re-
computed for each degree d. The stopping condition of Lemma 3.1 therefore
does not apply to the projective case. In order to formulate the new stopping
condition we need to introduce the concept of connected monomials.

Definition 4.1. ([7, p. 348]) Let B ⊂ T n+1
d . Two monomials b, b′ are con-

nected in B if there is a sequence of monomials b0, b1, . . . , br ∈ B with b0 = b
and br = b′ such that for each i = 1, . . . , r there exists α, β ∈ {0, . . . , n}
satisfying bi = bi−1 · xα/xβ.
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Or in other words, two monomials in B are connected if one can pass
from one bi to the next by replacing one variable by another. We then call
the connected component of a monomial b ∈ B the set of all monomials in
B that are connected with b. The projective stopping condition can now be
formulated completely in terms of the connectivity of monomials in the set
of linearly independent monomials.

Lemma 4.1. ([7, p. 349]) Let B be the monomial set of linearly independent
monomials obtained from running Algorithm 1 on the homogeneous K for
degree d. Then d is large enough if

1. the cardinality of B is m, the total number of projective roots including
multiplicities and

2. for all i, every monomial in the connected components of xdi in B is
divisible by xi.

Another stopping condition is formulated in terms of computing Hilbert
Series and can be found in [17, p. 401]. The whole SVD-based projective
Buchberger-Möller algorithm is presented in Algorithm 3 and implemented
in the PNLA package as pbma.m. The same remarks as made for Algorithm
2 on the tolerance, accuracy and computational complexity apply here as
well. The total number of SVD’s is larger compared to the affine algorithm
due to the fact that the standard monomials B are recomputed for each de-
gree.

Algorithm 3. Numerical projective Buchberger-Möller algorithm (pbma.m)
Input: set of projective fixed points Z with corresponding multiplicity struc-
tures, monomial ordering <
Output: A?, B and reduced Gröbner basis G

A?, G← ∅
d← 0
while Lemma 4.1 not satisfied do
d← d+ 1
B = ∅
X ← T n+1

d

remove all monomial multiples of A? from X
construct K with rows corresponding with monomials of X
for all monomials in X do
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a← smallest monomial in X according to monomial ordering >
[U, S, V ]← SVD(K([B, a], :)T )
τ ← mσ e or (9)
if σ < τ then

append a to A? and remove it from X
append ṽT to G

else
append a to B and remove it from X

end if
end for

end while

We revisit our running example and apply Algorithm 3.

Example 10. At d = 2, 2 homogeneous polynomials are found and Algorithm
3 stops at d = 3, where a third polynomial is computed. The resulting reduced
Gröbner basis is

G =


g1 = −0.8575x0 x1 + 0.5145x0 x2,

g2 = −0.9806x0 x1 + 0.1961x1 x2,

g3 = −0.9487x20 x1 + 0.3162x0 x
2
1.

The obtained reduced Gröbner basis consists of 3 polynomials while only
2 were expected. This set of generators however is not minimal. In order for
a set of generators g1, . . . , gt of degrees d1 ≤ d2 ≤ . . . ≤ dt to be minimal,
the condition that gi /∈ 〈g1, . . . , gi−1〉 for all i = 1, . . . , t needs to be satisfied.
Checking whether gi /∈ 〈g1, . . . , gi−1〉 is in essence also a rank test. Indeed,
let M be the matrix with row space 〈g1, . . . , gi−1〉di , then if

(10) rank

(
M
gi

)
= rank (M)

we also have that gi ∈ 〈g1, . . . , gi−1〉. One way to check whether (10) applies
would be to bring the matrix

(
MT gTi

)
into reduced row echelon form using

Gaussian elimination. If the column gi is reduced to zero then the rank
of M does not increase and the equality applies. The SVD however is a
more robust method to determine the numerical rank and therefore it is our
method of choice. The tolerance for this rank test needs to be chosen the
same as the tolerance in Algorithm 2 or 3. More details on how to construct
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the (Macaulay) matrix M and check whether gi /∈ 〈g1, . . . , gi−1〉 applies can
be found in [4]. We now apply this SVD-based test to g3 of our running
example to check whether indeed the obtained Gröbner basis is not minimal.

Example 11. Since d1 = d2 = 2, the rows of the 6 × 20 matrix M are
the coefficient vectors of xi g1, xi g2 (i = 0, . . . , 2), with a smallest singular
value σ = 0.2254. Appending the coefficient vector of g3 and recomputing the
singular values results in σ = 2.11 × 10−17, which indicates that g3 lies in
〈g1, g2〉. We can therefore delete g3 from G. Setting x0 = 1 results in the
final polynomial system

(11) G =

{
g1 = −0.8575x1 + 0.5145x2,

g2 = −0.9806x1 + 0.1961x1 x2.

Observe that d1 = 1 after setting x0 = 1, while originally we choose the
roots at infinity so that d1 = d2 = 2 would apply. This does not however
pose any problem since we know that any pair of polynomials g′1, g

′
2 that are

linear combinations of g1, g2 lie in the ideal 〈g1, g2〉. We will further discuss
this in the next section.

5. Application

In this section we will discuss the application of our proposed algorithms
to the problem of computing a square polynomial dynamical system for
a given set of fixed points. Polynomial dynamical systems are ubiquitous
throughout all fields of science and engineering. Examples of such systems
can be found in gene-regulatory networks [25, 26], ecology [27], economics
[28], neural physiology [29, 30], chemistry [31], atmospheric science [32] and
many others. These systems are described by n state variables xi ∈ C and
each of their dynamics are described by a multivariate polynomial fi(x) ∈ Cn.
The state dynamics can then be written as

(12)


ẋ1 = f1(x),
...

...
ẋn = fn(x).

Observe that at the roots we have that ẋ1 = ẋ2 = · · · = ẋn = 0. For this
reason the roots of the polynomial system are called the fixed points of the
dynamical system. In electrical engineering, these points are also commonly
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known as DC operating points. We will now use Algorithms 2 and 3 to
numerically compute for a given set of fixed points Z, the smallest set of n
polynomials that vanish on Z. Or in other words, to check whether a square
polynomial dynamical system in the form of (12) exists for a given set of
fixed points Z. All experiments were run in Matlab on a dual-core 1.66 GHz
laptop with 2 GB RAM and took less than 0.1 seconds to run.

5.1. Lotka-Volterra systems
Suppose we want to determine a dynamical system with 2 affine fixed

points Z = {(0, 0), (3, 5)} and described by 2 polynomials of degree 2. What
is the most general form of such a dynamical system that satisfies these
conditions? As demonstrated in Section 4, 2 fixed points at infinity need
to be added to Z to make this possible. The whole set of second degree
polynomials that have these fixed points is described by
(13){

g′1 = a11 (−0.8575x1 + 0.5145x2) + a12 (−0.9806x1 + 0.1961x1 x2),

g′2 = a21 (−0.8575x1 + 0.5145x2) + a22 (−0.9806x1 + 0.1961x1 x2).

An additional constraint on the coefficients aij is required such that the
matrix A = (aij) is regular and that a12 6= 0, a22 6= 0. Indeed, the regularity
of A is required in order for g′1, g

′
2 to still be a set of generators for the

polynomial ideal and the condition a12 6= 0, a22 6= 0 ensures that both g′1 and
g′2 are of degree 2.

Also observe that the choice of the aij coefficients completely determines
the stability of the affine fixed points. For example, the stability of (0, 0) is
determined by the eigenvalues of the following Jacobian J

J =

(
−a11 0.8575− a12 0.9806 a11 0.5145

−a21 0.8575− a22 0.9806 a21 0.5145

)
.

If ∆ and γ denote the determinant and trace respectively of J , then all
dynamical systems where (0, 0) is a saddle point are described by the set of
coefficients aij such that ∆ < 0 is satisfied. Likewise, all dynamical systems
with a stable fixed point (0, 0) are described by the set of coefficients aij
such that both ∆ > 0 and γ < 0 are satisfied. One particular choice of
a11 = 0, a12 = −10.12, a21 = −5.831, a22 = 5.099 leads to the following
dynamical system {

ẋ1 = 10x1 − 2x1 x2,

ẋ2 = −3x2 + x1 x2,

26



which is the well-known Lotka-Volterra system. Observe from (13) that
only the monomials x1, x2, x1 x2 can appear in any of the dynamical sys-
tems. The given set of fixed points with their multiplicity structures hence
strongly dictate what monomials are allowed to be present in the state
equations. This is easily demonstrated by applying Algorithm 3 to Z =
{(1, 0, 0), (1, 3, 5), (0, 1, 0)} with multiplicity structures

∂000|(1,0,0), ∂000|(1,3,5), ∂000|(0,1,0), ∂100|(0,1,0).

The minimal set of polynomials is then
g1 = −0.9487x0 x1 + 0.3162x1 x2,

g2 = −0.9806x0 x2 + 0.1961x22,

g3 = −0.8575x20 x1 + 0.5145x20 x2.

Since the number of generators is 3, this multiplicity structure does not
allow a polynomial dynamical system realization. Also note that the x1 x2
monomial is replaced by x22. Changing the multiplicity structure of (0, 1, 0) to
∂000, ∂001 does lead to 2 polynomials in the monomials x1, x2, x

2
2 after setting

x0 = 1. Similarly, adding (0, 0, 1) with multiplicity structure ∂000, ∂100 results
in minimal 3 generators where the x1 x2 monomial is now replaced by x21 and
changing the multiplicity structure of the fixed point at infinity to ∂000, ∂010
results in 2 polynomials in the monomials x1, x2, x

2
1 after setting x0 = 1.

5.2. Van der Pol oscillator

Next we demonstrate the use of multiplicities in order to obtain a polyno-
mial system of specific degrees. For this particular example we set n = 2 and
d1 = 1, d2 = 3 and aim at modeling an oscillator. A simple oscillatory system
has one affine fixed point at the origin that undergoes a Hopf bifurcation when
a particular parameter is changed, resulting in periodic solutions. Modeling
such a system therefore means that we are interested in a polynomial dy-
namical system with one affine fixed point Z = {(0, 0)}. In order to obtain a
polynomial of degree three we add the fixed point at infinity (0, 1, 0) to Z with
a multiplicity of 2 and multiplicity structure ∂000, ∂100. Running Algorithm 3
results in the very simple reduced Gröbner basis g1 = x2, g2 = x20x1. The only
allowable first-degree polynomial is a g1 while the remaining polynomial of
degree 3 is described by (c0 x

2
0+c1 x0x1+c2 x0x2+c3 x

2
1+c4 x1x2+c5 x

2
2)g1+b g2.
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Choosing a = 1, b = −1, c0 = µ, c3 = −µ and setting the remaining coeffi-
cients to zero together with x0 = 1 results in the system{

ẋ1 = x2,

ẋ2 = µ (1− x21)x2 − x1,

which is the well-known Van der Pol oscillator.

5.3. FitzHugh-Nagumo systems

The projective algorithm is not always necessary. For the set of fixed
points Z = {(0,−1), (

√
2,−
√

2− 1), (−
√

2,
√

2− 1)} it is possible to retrieve
a set of 2 polynomials g1, g2 of degrees 1, 3, respectively. Algorithm 2 returns{

g1 = 0.5774− 0.5774x1 − 0.5774x2,

g2 = −0.8944x1 + 0.4474x31.

The whole set of polynomials that vanish on Z is given by{
g′1 = a1 g1,

g′2 = (a11 + a12 x1 + a13 x2) g1 + a14 g3,

where a1 6= 0 and a14 6= 0. Choosing a1 = −1/0.5774, a11 = 1.7321, a14 =
−2.2361 results in the FitzHugh-Nagumo system [29, 30]{

ẋ1 = x1 − x31 − x2 + 1,

ẋ2 = x1 − 1 + x2,

with unity external current. Note that for a set of 3 randomly chosen fixed
points it would never be possible to obtain a set of 2 polynomials of degrees
1 and 3. Indeed, the 3× 3 Vandermonde matrix K for d = 1 would be of full
rank and hence no linear polynomial can be determined. It is only because
there exists a linear relation between the x1 and x2 components of 2 of the
fixed points in Z that K is rank-deficient for d = 1 and g1 can be determined.

Suppose now that we perturb Z with normal distributed noise over the
interval [−10−5, 10−5]. The exact linear relationship between x1 and x2 is
then only approximate. The absolute errors are upper bounded by ε =
2 × 10−6 for this particular example. At d = 1 during the execution of
Algorithm 2 and when B = {1, x1}, a = x2 we have that τ = 4.000×10−6 and
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σ = 4.722×10−7. The algorithm therefore correctly detects the approximate
linear dependency of x2 with respect to 1, x1. The algorithm stops at d = 3
and returns the following reduced Gröbner basis{

ĝ1 = 0.5774− 0.5773x1 − 0.5774x2,

ĝ2 = −2.8244× 10−7 − 0.8944x1 + 4.1284× 10−7 x21 + 0.4472x31.

The noise has introduced some extra terms to ĝ2. Since these extra terms
have coefficients that are smaller than τ = 7.746×10−6 at d = 3, they can be
considered to be numerically zero. We have that ||g1 − ĝ1||2 = 6.034× 10−7

and ||g1 − ĝ1||2 = 4.142× 10−7.

6. Conclusions

In this article, the inverse problem of polynomial root-finding was solved
for the case of a finite number of roots. Two SVD-based algorithms were
presented that produce a minimal set of polynomials that vanish on a given
set of roots. It was shown how by adding additional roots at infinity it is
possible to determine a square system of n polynomials in n variables. The
tolerance that needs to be used when the given roots are only known with a
finite accuracy was derived. It was also shown how the smallest singular value
is a measure of how well the resulting polynomials vanish on the given roots.
The application of both algorithms on the problem of realizing a polynomial
dynamical system from a set of given fixed points was illustrated by means
of examples.
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