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Abstract 

A generalized hyperbolic perturbation method for heteroclinic solutions is presented for strongly 

nonlinear self-excited oscillators in the more general form of ( ) ( , , )x g x f x xε µ+ =  . The advantage of 

this work is that heteroclinic solutions for more complicated and strong nonlinearities can be 

analytically derived, and the previous hyperbolic perturbation solutions (Chen and Chen, 2009) for 

Duffing type oscillator can be just regarded as a special case of the present method. The applications to 

cases with quadratic-cubic nonlinearities and with quintic-septic nonlinearities are presented. 

Comparisons with other methods are performed to assess the effectiveness of the present method. 
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1. Introduction 

Homoclinic and heteroclinic orbits have been widely studied in nonlinear dynamics problems 

such as global bifurcation, chaotic prediction, and soliton control problems, et al (Nayfeh and 

Balachandran, 1995; Guckenheimer and Holmes, 2002; Nayfeh and Pai, 2004). For example, the 

threshold for the onset of chaos in asymmetric non-conservative nonlinear dynamic systems can be 

considered by an occurrence of homoclinic or heteroclinic bifurcation (Feng et al., 2012). Some optical 



soliton pulse control analysis call for analytically constructing the homoclinic or heteroclinic solution 

shapes of self-excited oscillators (Uzunov, 2010; Uzunov and Arabadzhiev, 2011). Particularly, in 

many cases of self-excited systems, heteroclinic connections can be regarded as the breaks or 

generations of limit cycles, and a heteroclinic orbit can be regarded as the maximum vibration 

amplitude boundary of a corresponding limit cycle motion under parameter control. Such a typical 

phenomenon can be illustrated more clearly by an example in the Appendix. 

Although homoclinic and heteroclinic connections become more complicated as a conservative 

system is perturbed into a non-conservative system, Melnikov (Melnikov, 1963) has presented a 

classical global analysis method, which has been widely applied to derive conditions on existence of 

homoclinic or heteroclinic connections (Nayfeh and Balachandran, 1995; Guckenheimer and Holmes, 

2002). A heteroclinic connection, namely, a heteroclinic bifurcation, is said to have occurred if a 

heteroclinic orbit is created or destroyed as a control parameter is varied. The Melnikov criterion can 

help in an analytical way to ascertain the values of different parameters for which heteroclinic 

bifurcations occur. As a typical category of non-conservative systems, the self-excited oscillator can be 

expressed by the equation as below,  

( ) ( , , )x g x f x xε µ+ =  ,                              (1) 

where the restoration force term g(x), and the self-excited force and damping term f(µ, x, �̇�) are 

arbitrary polynomial nonlinear functions of their arguments. Here µ is considered as the bifurcation 

control parameter. Many systems in the form of Eq. (1) have been investigated by the Melnikov 

method in classical works (Nayfeh and Balachandran, 1995; Guckenheimer and Holmes, 2002). The 

basic mechanism of the Melnikov method to determine a heteroclinic connection of a self-excited 

system, can be typically illustrated in Fig.1, in which two saddle points, labeled by P1 and P2, possess 

their stable manifolds labeled by Г11, Г13, Г22, and Г24, and their unstable manifolds labeled by Г12, Г13, 

Г21, and Г23. The Melnikov method gives an analytical measurement of the distance between such 

stable and unstable manifolds, by setting a local cross-section ∑ to cut the manifolds at an arbitrary 

time position, with the intersection points at ζs and ζu in the local coordinate. To yield the heteroclinic 

orbit, namely, to obtain the complete intersections of the stable and unstable manifolds at the whole 

time domain, the so-called Melnikov criterion, can be derived to control the distance of intersection 

points in ∑ become zero, i.e. ζu-ζs=0. After the classical development history of the Melnikov method, 



improved or novel techniques in higher efficiency were still being studied to investigate the 

occurrences of homoclinic or heteroclinic orbits (Belhaq and Lakrad, 2000; Belhaq et al., 2000; Lenci 

and Rega, 2003; Cao et al., 2006; Rega and Lenci, 2008; Zhang et al., 2008). 

 

Figure 1. Distance measurement of typical stable and unstable manifolds by Melnikov method 

Furthermore, in the past twenty years, many researchers presented their novel works not only for 

determining homoclinic or heteroclinic bifurcations, but also for constructing solutions of homoclinic 

or heteroclinic orbits of strongly nonlinear self-excited oscillators. These works can be briefly 

summarized but are not limited to: the derivation of exact solutions for the some special systems (Hale 

et al., 2000), the perturbation methods based on trigonometric functions and nonlinear time 

transformation (Li et al., 2013), the perturbation-incremental methods based on trigonometric functions 

and nonlinear time transformation (Xu et al., 1996; Chan et al., 1997; Cao et al.,  2011), and the 

perturbation methods based on hyperbolic functions with Lindstedt–Poincaré procedure (Chen et al., 

2009; Chen et al., 2010) or nonlinear time transformations (Chen and Chen, 2009; Chen et al., 2012), et 

al. On the other hand, the methods for constructing homoclinic and heteroclinic orbits of both 

autonomous and non-autonomous systems, have also been developed based on Padé and quasi-Padé 

approximants (Mikhlin and Manucharyan, 2003; Manucharyan and Mikhlin, 2005). 

Nevertheless, to the best of the authors’ knowledge, there still remains desirable development in 

this research area, as disadvantages can be found as followed. Firstly, many analytical methods 

(Mikhlin and Manucharyan, 2003; Manucharyan and Mikhlin, 2005; Chen and Chen, 2009; Chen et al., 

2009; Chen et al., 2010) for strongly autonomous systems are only focused on the simplest nonlinear 

systems: the Duffing type oscillator (single cubic nonlinearity) or the Helmholtz type oscillator (single 

quadratic nonlinearity), as for more complicated nonlinearities an analytical homoclinic or heteroclinic 



solution will often become more difficult to be achieved. Secondly, many efficient methods (Xu et al., 

1996; Chan et al., 1997; Chen and Chen, 2009; Cao et al., 2011; Li et al., 2013) for strongly nonlinear 

oscillators can only solved the homoclinic or heteroclinic solutions under their defined nonlinear time 

scales. That means, the solutions are yet implicit in respect to the original time t, and thus they are 

abstract and cumbersome to be handled in practical applications. For example, to investigate a 

theoretical model of a soliton shape propagating in an optical fiber, demands such an explicit 

homoclinic or heteroclinic solution of a corresponding oscillatory system (Uzunov, 2010; Uzunov and 

Arabadzhiev, 2011). 

In this paper, a generalized hyperbolic perturbation procedure for heteroclinic solutions will be 

proposed for strongly nonlinear self-excited oscillators in the more general form of Eq. (1). By the 

method, heteroclinic solutions for more complicated and polynomial strong nonlinearities can be 

analytically derived, and the author’s previous method (Chen and Chen, 2009) can be grouped into a 

special case of the present method. Improved procedures to seek new explicit perturbation solutions are 

also included. The applications to cases with quadratic-cubic nonlinearities and with quintic-septic 

nonlinearities will also be presented, in which the comparisons with other the typical methods are also 

given. 

 

2. Generating heteroclinic solutions by generalized hyperbolic functions 

Consider the conservative generating system of Eq. (1), i.e. 

( ) 0x g x+ = .                                 (2) 

The time integral of the equation is 

21 ( )
2

x V x E+ = ,                               (3) 

in which 

 
0

( ) ( )d
x

V x g u u= ∫ .                               (4) 

Here, �̇�2/2 and V(x) can be regarded as the kinetic and the potential energies of the oscillatory system, 

respectively, and E is the integration constant which can be interpreted as the total mechanical energy. 

Typical potential energy curve and phase portrait for a heteroclinic solution of Eq. (2) can be shown in 

Fig.2, in which a pair of so-called heteroclinic half-orbits, Λ1 and Λ2, is formed under the following 

conditions: 



(i) On the potential energy curve, there exists two maximal points A(-a0+b, V(-a0+b)) and 

B(a0+b, V(a0+b)) corresponding to the saddle points on the phase portrait, i.e., 

 g(-a0+b) = g(a0+b) = 0,  g′(-a0+b) ≤ 0,  g′(a0+b) ≤ 0,           (5a,b,c) 

(ii) On the potential energy curve, all points between A and B are at lower altitude than A or B, i.e. 

V(-a0+b) = V(a0+b)   and   V(x) < V(a0+b)  for  x∈ (-a0+b, a0+b).       (6a,b) 

 

Figure 2. Typical (a) potential energy curve and (b) phase portrait of a generating heteroclinic solution 

According to classical qualitative theory, here the heteroclinic solutions satisfies the so-called 

heteroclinic condition described as follow: As time t→+∞, a phase point (x0, �̇�0) on Λ1 approaches 

saddle point B, and a phase point (x0, �̇�0) on Λ2 approaches saddle point A, respectively. While as time 

t→ -∞, a phase point (x0, �̇�0) on Λ1 approaches saddle point A and a phase point (x0, �̇�0) on Λ2 

approaches saddle point B, respectively. 

To construct the heteroclinic solution of Eq. (2), one can firstly recall the typical case of g(x) = 

c1x+c3x3 (Chen and Chen, 2009), for which the heteroclinic solution can be expressed as 

0 0 0tanhx a tω=                                 (7) 

where a0 and ω0 are constant. To facilitate the subsequent formulation, Eq. (7) can be rewritten as 

0 0 tanhx a τ= ,                                 (8) 

and 

0
d
dt
τ ω= ,                                  (9) 

in which ω0 is a constant. As 



sech( ) tanh(0) 0±∞ = = , sech(0) 1= , tanh( ) 1±∞ = ± ,          (10a,b,c) 

it is trivial that solution governed by Eq. (8) satisfies the heteroclinic condition with (-a0, 0) and (a0, 0) 

being the heteroclinic points.  

For those more general cases in which g(x) ≠ c1x+c3x3 and the heteroclinic points are not limited to 

(-a0, 0) and (a0, 0), one can assume the heteroclinic solution in a similar but more general form, i.e. 

0 0 tanhx a bτ= + .                              (11) 

Here the constants a0 and b, which control the position of heteroclinic points (-a0+b, 0) and (a0+b, 0), 

can be determined by Eqs. (5) and (6). Furthermore, noting that Eq. (9) can be regarded as a linear time 

transformation from t toτ, one can also introduce a more general time transformation from t toτ for 

solution governed by Eq. (11), i.e. 

0 ( )d
dt
τ ω τ= ,                                (12) 

where ω0(τ) is not limited to a constant, but can be a bounded function for all τ. Then 

2
0 0 0 ( )sechx a ω τ τ= .                            (13) 

As the total mechanical energy of the heteroclinic motion is 

E0 = V(-a0+b) = V(a0+b),                           (14) 

one has  

2 2
0 0 0 0

1 ( ) ( )
2

x V x V a bω ′ + = +                           (15) 

in which 𝑥0′  denotes the first derivative of x0 with respect to τ. From Eq. (15), ω0(τ) can be determined 

by 

0 0 0
0

1( ) 2[ ( ) ( )]V a b V x
x

ω τ = + −
′

.                       (16) 

Therefore, the solution for heteroclinic orbits of Eq. (2) can be expressed by Eqs. (11), (13) and 

(16), in which the functions sechτ(t) and tanhτ(t) will be employed as the basic functions in the 

following perturbation procedures and can be regarded as the generalized hyperbolic functions for 

heteroclinic orbits. 

 

3. Generalized hyperbolic perturbation method for heteroclinic solutions 

If the self-excited force and damping term εf(µ, x, �̇� ) in Eq. (1) becomes nonzero, the 

conservative phase portrait structure will be destroyed, however, the saddle points (-a0+b, 0) and (a0+b, 



0) remain the saddles during the parameter control of the self-excited system (Nayfeh and 

Balachandran, 1995; Guckenheimer and Holmes, 2002) (see Appendix as an illustration). Therefore, 

based on the generated heteroclinic solutions governed by Eq. (11), one can start the generalized 

perturbation procedure by expanding the heteroclinic solution of Eq. (1) in a series form as 

  0 1
n

nx x x xε ε= + + + +  , (n=0, 1, …),                   (17) 

where for n≥1, 

tanh sechn nx a τ τ= ,                            (18) 

and  

2sech (2sech 1)n nx a τ τ′ = − .                         (19) 

The higher order solutions in the form of Eqs. (18) and (19) can ensure the heteroclinic solution 

expressed by Eq. (17) satisfy the heteroclinic condition with the saddle points at (-a0+b, 0) and (a0+b, 

0). Furthermore, the time transformation from t toτ is also expanded in respect to the perturbation 

parameter ε by the equation 

 0 1( ) ( ) ( ) ( )n
n

d
dt
τ ω τ ω τ εω τ ε ω τ= = + + + +  ,                 (20) 

in which ωn(τ) are assumed as bounded nonlinear time functions to be determined by subsequent 

procedures and for n≥1, 

(0) 0nω = .                                  (21) 

Substituting Eqs. (17) and (20) into Eq. (1) and equating coefficients of like powers of ε yields the 

following equations: 

0
0 0 0 0: ( ) ( ) 0d x g x

d
ε ω ω

τ
′ + = ,                                                (22) 

1
0 1 0 1 0 0 0 0 1 0 1: ( ) ( ) ( ) , ( )x

d d dx x x g x x
d d d

ε ω ω ω ω ω ω
τ τ τ

′ ′ ′+ + + 0 0 0( , , )f x xµ ω ′= ,           (23) 

2
0 2 0 2 0 0 0 0 2 1 0 1 0 1 1: ( ) ( ) ( ) ( ) ( )d d d d dx x x x x

d d d d d
ε ω ω ω ω ω ω ω ω ω ω

τ τ τ τ τ
′ ′ ′ ′ ′+ + + +   

           2
1 1 0 0 2 0 1

1( ) , ( ) , ( )
2x xx

d x g x x g x x
d

ω ω
τ

′+ + +   

0 0 0 1 0 0 0 0 1 1 0, ( , , ) , ( , , )( )x xf x x x f x x x xµ ω µ ω ω ω′ ′ ′ ′= + + ,                          (24) 

         



where , /xg g x= ∂ ∂ , 2 2, /xxg g x= ∂ ∂ , etc. Thus one can solve the above linear equations one by one, 

and determine each order for solutions x0, x1, x2…. 

It can be seen that Eq. (22) is obtained from Eq. (2) via the transformation by Eq. (12). Hence, the 

heteroclinic solution of Eq. (22) can be expressed by Eq. (8). By multiplying both sides of Eq. (23) by 

𝑥0′  and integrating it from τ0 toτ, one obtains 

00 00

2 2
0 1 0 0 0 0 0 0 0 1 1 0( , , ) ( )x x f x x d x x x g x

ττ τ τ
ττ ττ

ω ω µ ω τ ω′ ′ ′ ′ ′= − −∫ ,               (25) 

or 

00 0

2 2
0 1 0 0 0 0 1 1 0( ) ( ) ( )x I I x x x g x

τ τ τ
ττ τ

ω ω τ τ ω′ ′ ′= − − − ,                   (26) 

where 

0 0 0 0 0 0 0 00 0
( ) ( , , ) ( , , 2[ ( ) ( )])I x f x x d x f x V a b V x d

τ τ
τ µ ω τ µ τ′ ′ ′= = + −∫ ∫ .          (27) 

Recalling Eq. (10), one has 

0 (0)x b= , 0 0(0)x a′ = , 0 0( )x a b±∞ = ± + , (0)n nx a′ = ± ,         (28a,b,c,d) 

0 ( ) (0) ( ) ( ) 0n n nx x x x′ ′±∞ = = ±∞ = ±∞ =                       (28e) 

Therefore, letting τ0 = – ∞, τ = + ∞ and τ0 = 0 in turn, and noting the conditions governed by Eqs. (5), 

(21) and (28), one derives three equations as follows: 

( ) ( ) 0I I+∞ − −∞ = ,                              (29) 

1 2
0 0

(+ )
(0)

Ia
aω

∞
= − ,                                (30) 

2 2
1 0 0 1 0 0 1 1 02

0 0

1 [ ( ) (0) ( )]I x x a a x g x
x

ω τ ω ω
ω

′ ′= − + −
′

.                  (31) 

It can be seen that Eqs. (27) and (29), by which the heteroclinic bifurcation value, µ =µc can be 

determined, agree with the Melnikov criterion (Nayfeh and Balachandran, 1995; Guckenheimer and 

Holmes, 2002). Similar equivalent formulas can also be derived in some works (Chan et al., 1997; 

Zhang et al., 2008; Cao et al., 2011; Chen et al., 2010). 

Then, one can determine a1, ω1 from Eqs. (30) and (31), and obtain the heteroclinic solution as 

2
0 tanh ( )x a b Oτ ε= + + ,                            (32) 

2 2
0 0 1[ ( )]sech ( )x a Oω εω τ τ ε= + + .                        (33) 



The next order solution can be determined by a similar procedure. However, the perturbation procedure 

will be increasingly cumbersome as the order goes up. More importantly, the computational results will 

show that the solution up to the order εx1 is fairly accurate even for the moderately large parameter ε. 

It is worth pointing out that the solution, governed by Eqs. (20), (32), and (33), is expressed at the 

nonlinear time scale τ. In other words, they are yet implicit solutions in respect to the original time t.  

Although such implicit solutions can give quite accurate orbits in phase portraits for theoretical studies, 

they are usually much less practical for application compared to those explicit solutions in respect to 

the original time t. Unfortunately, it is also much more difficult to derive the explicit solutions that, 

many perturbation methods (Xu et al., 1996; Chan et al., 1997; Chen and Chen, 2009; Cao et al., 2011; 

Li et al., 2013) for strongly nonlinear oscillators, cannot give their solutions explicitly in respect to the 

original time t, but only presented their solutions in their nonlinear time scales.  

Nevertheless, it can be found that for some important systems such as the mix-parity 

Helmholtz-Duffing oscillators, which will be studied in detail in Section 4, ω0 can be derived as 

constants by Equation (16), i.e. 

0tτ ω= .                                  (34) 

For this kind of systems, Eq. (34) means the time transformation for the perturbation order of ε0, is 

linear and explicit. Thus, one can introduce an approximation for Eq. (20) by substituting Eq. (34) into 

Eq. (20), and thus obtain an new time integration as 

2
0 1 00

( ) ( )
t

t t dt Oτ ω ε ω ω ε= + +∫ .                         (35) 

Therefore, the explicit solution of heteroclinic solution can be finally expressed by Eqs. (32), (33) and 

(35). 

It can be seen that while g(x) = c1x+c3x3, the present procedures can be easily reduced to those 

procedures (Chen and Chen, 2009) for heteroclinic solutions of simple Duffing type oscillator. 

Therefore, the method can be regarded as a special case of the present method in this paper. 

 

4. Application to strongly quadratic-cubic nonlinearities  

4.1 The perturbation procedure 

As an application of the present method, the following system is studied: 

 2 3
1 2 3 1( )x c x c x c x x xε µ µ+ + + = +  .                       (36) 



In other words, 

 2 3
0 1 0 2 0 3 0( )g x c x c x c x= + + ,                          (37) 

2 3 4
0 1 0 2 0 3 0

1 1 1( )
2 3 4

V x c x c x c x= + + ,                       (38) 

0 0 0 0 0 1 0( , , ) ( )f x x x xµ ω ω µ µ′ ′= + ,                       (39) 

in which µ1 is constant. By substituting Eqs. (37) and (38) into Eqs. (5) and (6), respectively, one has 

2 3
1 2 3 0c b c b c b+ + = , 2

1 2 32 3 0c c b c b+ + ≤ ,                 (40a,b) 

2 3 4 2 3 4
1 0 2 0 3 0 1 0 2 0 3 0

1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )
2 3 4 2 3 4

c a b c a b c a b c a b c a b c a b− + + − + + − + = + + + + + , (40c) 

by which a0 and b can be determined. Eq. (27) can be rewritten as 

0 0 0 00
( ) ( , , 2[ ( ) ( )])I x f x V a b V x d

τ
τ µ τ′= + −∫  

2
0 1 0 0 00

2 sech [ ( tanh )] [ ( ) ( tanh )]a a b V a b V a b d
τ

τ µ µ τ τ τ= + + + − +∫           (41) 

Thus substituting Eqs. (38) and (41) into Eqs. (29), (30) and (31), one can complete the calculation of 

the perturbation solution governed by Eqs. (32), (33) and (35). 

4.2 Examples 

Three examples are presented in this section for assessment of the present method. Cao’s 

perturbation method (Cao et al., 2011) and Chen’s hyperbolic Lindstedt–Poincaré method (Chen et al., 

2010) are also applied for the examples. As Chen’s method is only available for Duffing-type oscillator, 

it is fail to be performed in Examples 2 and 3. Comparisons for different methods are shown in the 

Figures in each example. 

It should also be mentioned here that, a significant advantage of the incremental-perturbation 

method (Xu et al., 1996; Chan et al., 1997; Cao et al., 2011) is that it can be combined with the 

incremental harmonic balance method to get semi-numerical and semi-analytical solutions, by which 

strongly nonlinear system even with arbitrary large ε can be solved. However, in these results by 

incremental techniques, the bifurcation value of the control parameter, as well as important coefficients 

in solutions, are yet derived numerically. In this paper as the study is focused on purely analytical 

methods, the incremental part of Cao’s method will be ignored. Furthermore, as Cao’s method can only 

give implicit solution in respect to time t, it is fail to directly derive all the time history diagrams in the 

following examples by the method. 



Example 1. Consider the following oscillator: 

3 2 42 ( )x x x x x xε µ+ − = − +  ,                          (42) 

which is a case of Eq. (36) with c1 = 2, c2 = 0, c3 = -1, µ1 = 0, µ2 = -1, µ4 = 1. From Eq. (40), a0 = ±√2  

and b = 0. From Eq. (16), ω0 = 1. By incorporating Eqs. (38) and (41), one can complete the integral 

calculation and get 

2 4 2 2 4 2 4 4 6
0 0 4 0 1 0 4 0 1 0 4 0

1 1 1 8 1 1( ) tanh [( )(2 sech ) ( )sech sech ]
35 15 3 35 5 7

I a a a a a aτ ω τ µ µ µ τ µ µ τ µ τ−
= − + + + + −  

4 60.52 tan 143sh [( 0.0 ech190+0.33 sec33 ) 0.5 ]h714τ µ τ τ= − +− .                  (43) 

Substituting Eq. (56) into Eq. (29) yields the heteroclinic bifurcation value 

4 2
c 4 0 1 0

3 1 2 =0.0571
35 5 35

a aµ µ µ= + = .                      (44) 

By substituting Eqs. (56) and (57) into Eq. (30), one obtains 

1 0a = .                                  (45) 

By substituting Eqs. (56), (57) and (58) into Eq. (31), one obtains 

2 2 2 2
1 0 4 0 1

1 tanh [ (8 5sech ) 7 ] ( 0.5143 0.5714sech ) tanh
35

a aω τ µ τ µ τ τ= − + = − + .    (46) 

Thus from Eqs. (32), (33), and (35), the heteroclinic solution can be derived as below, 

1.414 t ha2 nx τ= ± ,                             (47) 

2 21.4142[1+ ( 0.5143 0.5714sech ) tanh ]sechx ε τ τ τ= ± − + ,              (48) 

where 

2= [0.2857 0.5143ln(sech ) 0.2857sech ]t t tτ ε+ + − .               (49) 

To assess the efficiency of the present method, here we also solve the heteroclinic solutions of Eq. 

(42), by using Cao’s method and Chen’s method, respectively. The solution by Cao’s method is derived 

as below, 

1.4142cosx ϕ= ,                              (50) 

1.4142sindx
d

ϕ
ϕ
= − .                             (51) 

20.05si 14 cos (10cos 1)n [ 1 ]εϕ ϕ ϕ ϕ± + −= .                    (52) 

The solution by Chen’s method is derived as below, 

2 21.4142 h 0.0808 [9ln(cosh ) 5sechtan ]sechx t t t tε= ± − + ,             (53) 



2 21.4142 0.6546 1.30sech { [ ln(cosh92 1.45) se46 ta] hnch }x t t t tε+ −= ± ++ .        (54) 

With ε = 1.2, the phase portrait and time history diagrams of the solutions by different analytical 

methods and the Runge-kutta method are shown in Figs. 3-5 for comparison.  

 

Figure 3. Heteroclinic orbits in phase portrait of Eq. (42). ○○○ denotes the result by the present method; ●●● 

denotes the result by Chen’s method; + + + denotes the result by Cao’s method;  denotes the 

numerical orbits at µc predicted by the Runge-Kutta method. 

 

Figure 4. Amplitude history of heteroclinic solutions of Eq. (42). ○○○ denotes the result by the present method; 

●●● denotes the result by Chen’s method;  denotes the numerical result at µc by the Runge-Kutta 

method. 



  



 

Figure 5. Velocity history of heteroclinic solutions of Eq. (42). ○○○ denotes the result by the present method; 

●●● denotes the result by Chen’s method;  denotes the numerical result at µc by the Runge-Kutta 

method. 

It can be seen from Figs 3-5 that, Cao’s method and the present method show better accuracy than 

those by Chen’s hyperbolic Lindstedt–Poincaré method. That means the solutions constructed by 

nonlinear time transformation should be better techniques for high accuracy requirement.  

It can also be seen from Eqs. (50)-(52) and Figs. 4 and 5 that, by Cao’s method it is too 

cumbersome to solve the solution in explicit form in respect to time t. The reason is that with this 

method, the original infinite time domain (-∞ → +∞) is transferred into a half period (π→0) nonlinear 

time domain, where the nonlinear time scale φ is difficult to expressed by the original time t, explicitly.  

In this paper, the procedure of using numerical Runge-Kutta method to determine the value of 

parameter µ of the heteroclinic orbit follows that of Merkin and Needham (Merkin and Needham, 

1986). Numerical integration is conducted for a given value of ε starting from a value of µ with which 

there is a limit cycle. To obtain such a numerical limit cycle, the initial value is convenient to choose as 

any point located in its attraction basin (see Figs. 15-18 in the Appendix) will approach to the limit 

cycle as t→+∞ or t→-∞. Then it is repeated for increasing or reducing µ until a value of µ is reached 

such that the limit cycle breaks, namely the heteroclinic bifurcation occurs. Then, by successfully 

reducing the interval of µ within which a limit cycle is destroyed, a critical value µc can be identified 

such that a limit cycle can be found at µ = µc but not at µ = µc ± ∆ where ∆ is a small preset tolerance. 



Here, ∆ is taken to be 10-9. Using this trial and error approach, µc = 0.052765730 = 0.0528 when ε = 1.2 

in Eq.(42). The value is very closed to that obtained by the present method. Particularly, it is worth 

noting that the limit cycle at µc, which is extremely near the heteroclinic connection, can fit the shape 

of the exact heteroclinic orbit excellently with the ignorable errors ∆=10-9 of µc. Thus as a numerical 

tool for assessing the shapes of out analytical orbits, such procedures are given to made comparison 

with our analytical approximate solutions in all the examples of the paper. 

Example 2. Consider the following oscillator: 

2 33 2 ( 2 )x x x x x xε µ− + − = −  ,                        (55) 

which is a case of Eq. (36) with c1 = -1, c2 = 3, c3 = -2, µ1 = -2. From Eq. (40), a0 = ± 0.5 and b = 0.5. 

From Eq. (16), ω0 = 0.5. By incorporating Eqs. (38) and (41), one can complete the integral calculation 

and get 

2 4 2
0 0 1 0 1

1( ) [3 (1 sech ) 4( )(2 sech ) tanh ]
12

I a a bτ ω µ τ µ µ τ τ= − + + + .                  

4 20.0313(sech 1) 0.0417( 1)(2 sech ) tanhτ µ τ τ= − + − + .                     (56) 

Substituting Eq. (56) into Eq. (29) yields the heteroclinic bifurcation value 

c 1 1bµ µ= − = .                               (57) 

By substituting Eqs. (56) and (57) into Eq. (30), one obtains 

2
1 0

1
0

0.25
4

a
a

µ
ω

= − = .                             (58) 

By substituting Eqs. (56), (57) and (58) into Eq. (31), one obtains 

{ 2 2
1 1 0 1 0 2 02

0

sinh0.25 sech (2sech sech 1) [ ( tanh ) ( tanh )a c a b c a bτω µ τ τ τ τ τ
ω

= − − + + + +  

}3
3 0( tanh ) ]c a bτ+ + 0.25sech (sech 1)τ τ= − .                                 (59) 

Thus from Eqs. (32), (33), and (35), the heteroclinic solution can be derived as below, 

tan 20.25 h ( sech ) 0.5x τ ε τ+ +±= ,                        (60) 

20.0625sech [2+ sech (sech 1)][ 2sech + (2sech 1)]x τ ε τ τ τ ε τ= − ± − ,            (61) 

where 

0.7071 +0.2121[arctan(sinh(0.7071 )) tanh(0.7071 )]t t tτ = − .             (62) 

The solution by Cao’s method can be derived as below, 



1.4142cosx ϕ= ,                              (63) 

1.4142sindx
d

ϕ
ϕ
= − .                             (64) 

20.05si 14 cos (10cos 1)n [ 1 ]εϕ ϕ ϕ ϕ± + −= .                    (65) 

With ε = 0.4, the phase portraits and time history diagrams of the solutions by different methods 

are shown in Figs. 6-8. The Runge-Kutta numerical solution at µc is also shown for comparison. Here, 

the critical value µc = 1.0000 is obtained, which is in agreement with that obtained by the present 

method. 

 

Figure 6. Heteroclinic orbits in phase portrait of Eq. (55). ○○○ denotes the result by the present method; + + + 

denotes the result by Cao’s method;  denotes the numerical orbits at µc predicted by the 

Runge-Kutta method.  



 

Figure 7. Amplitude history of heteroclinic solutions of Eq. (55). ○○○ denotes the result by the present method; 

 denotes the numerical result at µc by the Runge-Kutta method. 

 

Figure 8. Velocity history of heteroclinic solutions of Eq. (55). ○○○ denotes the result by the present method; 

 denotes the numerical result at µc by the Runge-Kutta method. 

Example 3. Consider the following oscillator: 

2 32 3 ( 0.5 )x x x x x xε µ− − − = +  ,                      (66) 



which is a case of Eq. (36) with c1 = -2, c2 = -3, c3 = -1 and µ1 = 0.5. From Eq. (40), a0 = ± 1 and b = 

-1. From Eq. (16), ω0 = 0.7071. By incorporating Eqs. (38) and (41), one can complete the integral 

calculation and get 

2 4 2
0 0 1 0 1

1( ) [3 (1 sech ) 4( )(2 sech ) tanh ]
12

I a a bτ ω µ τ µ µ τ τ= − + + +  

4 20.0884(sech 1) 0.1179(2 1)(2 sech ) tanhτ µ τ τ= − + − + .              (67) 

Substituting Eq. (56) into Eq. (29) yields the heteroclinic bifurcation value 

c 1 0.5bµ µ= − = .                                (68) 

By substituting Eqs. (56) and (57) into Eq. (30), one obtains 

2
1 0

1
0

0.1768
4

a
a

µ
ω

= − = − .                              (69) 

By substituting Eqs. (56), (57) and (58) into Eq. (31), one obtains 

{ 2 2
1 1 0 1 0 2 02

0

sinh0.25 sech (2sech sech 1) [ ( tanh ) ( tanh )a c a b c a bτω µ τ τ τ τ τ
ω

= − − + + + +  

}3
3 0( tanh ) ]c a bτ+ + 0.125sech (1 sech )τ τ= − .                                (70) 

Thus from Eqs. (32), (33), and (35), the heteroclinic solution can be derived as below, 

tan 1 0.1768h ( sech ) 1x τ ε τ± −= − ,                        (71) 

2sech [0.7071 0.125 sech (1 sech )][ sech 0.1768 (2sech 1)]x τ ε τ τ τ ε τ= + − ± − − ,      (72) 

where 

0.7071 +0.2121arctan[sinh(0.7071 )] 0.2121tanh(0.7071 )t t tτ = − .            (73) 

The solution by Cao’s method can be derived as below, 

1 cosx ϕ= − + ,                              (74) 

sindx
d

ϕ
ϕ
= − .                               (75) 

( 0.7071+0.125 )sind
dt
ϕ ε ϕ= ± .                        (76) 

With ε = 1.2, the phase portraits and time history diagrams of the solutions by different methods 

are shown in Figs. 9-11. The Runge-Kutta numerical solution at µc is also shown for comparison. Here, 

the critical value µc = 0.5000 is obtained, which is in agreement with that obtained by the present 

method. 



 
Figure 9. Heteroclinic orbits in phase portrait of Eq. (66). ○○○ denotes the result by the present method; + + + 

denotes the result by Cao’s method;  denotes the numerical orbits at µc predicted by the 

Runge-Kutta method. 

 
Figure 10. Amplitude history of heteroclinic solutions of Eq. (66). ○○○ denotes the result by the present 

method;  denotes the numerical result at µc by the Runge-Kutta method. 

  



 
Figure 11. Velocity history of heteroclinic solutions of Eq. (66). ○○○ denotes the result by the present method; 

 denotes the numerical result at µc by the Runge-Kutta method. 

 

5. Application to strongly quintic-septic nonlinearities 

5.1 The perturbation procedure 

As an application of the present method, the following system is studied: 

 5 7 2
1 5 7 2( )x c x c x c x x xε µ µ+ + + = +  .                      (77) 

In other words, 

 5 7
0 1 0 5 0 7 0( )g x c x c x c x= + + ,                           (78) 

2 6 8
0 1 0 5 0 7 0

1 1 1( )
2 6 8

V x c x c x c x= + + ,                          (79) 

2
0 0 0 0 0 2 0( , , ) ( )f x x x xµ ω ω µ µ′ ′= + ,                          (80) 

in which µ2 is constant. By substituting Eqs. (78) and (79) into Eqs. (5) and (6), respectively, one has 

5 7
1 5 7 0c b c b c b+ + = , 4 6

1 5 75 7 0c c b c b+ + ≤ ,                  (81a,b) 

2 6 8 2 6 8
1 0 5 0 7 0 1 0 5 0 7 0

1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )
2 6 8 2 6 8

c a b c a b c a b c a b c a b c a b− + + − + + − + = + + + + + , (81c) 

by which a0 and b can be determined. Eq. (27) can be rewritten as 

0 0 0 00
( ) ( , , 2[ ( ) ( )])I x f x V a b V x d

τ
τ µ τ′= + −∫  

2 2
0 2 0 0 00

2 sech [ ( tanh ) ] [ ( ) ( tanh )]a a b V a b V a b d
τ

τ µ µ τ τ τ= + + + − +∫ .       (82) 



Thus by substituting Eqs. (79) and (82) into Eqs (29), (30) and (31), one can complete the calculation 

of the perturbation solution governed by Eqs. (32) and (33). 

5.2 Examples 

Two examples are presented in this section, for which Cao’s method (Cao et al., 2011) are also 

applied. As Chen’s method (Chen et al., 2010) is only available for Duffing-type oscillator, it is ignored 

in this section. According to the discussion for Eqs. (34) and (35) in Section 3, as ω0 will not be derived 

as constants in the following examples, the present method, as well as Cao’s method, are all implicit 

method in respect to t, and thus are fail to figure out the time history diagrams of the solutions. 

Example 4. Consider the following oscillator: 

5 7 22 ( )x x x x x xε µ+ − − = +  ,                        (83) 

which is a case of Eq. (36) with c1 = 2, c5 = -1, c7 = -1 and µ2 = 1. From Eq. (40), a0 = ± 1 and b = 0. 

From Eq. (16), 

2 4 4 2
0

5 4 1( ) sech sec 0.2887 3h 0sech sech
2 3

16
4

3ω τ τ τ τ τ= − + = − + .      (84) 

It should be noted that 

sech( ) cos(am(1, ))τ τ= , am(1, ) sech( )d
d

τ τ
τ

= ,             (85a,b) 

where am(1,τ) is the Jacobi amplitude function with the modulus 1, and the approximate Fourier 

series expansion 

4 2
0 2 4cos(2am30sech 16sech 3 ,( )) cos(4am(1 ,1))P P Pτ τ τ τ+− + = + ,        (86) 

in which 

0 0.4537P = , 2 0.4199P = , 4 0.0330P = − .             (87a,b,c) 

One can rewrite Eq. (82) as  

00 2
2

2 00
( ) 2 cos(am( ,1))[ 0.5 (1 cos(2am( ,1)))] cos(2am( , )[ 1 )I a a P P

τ
τ τ µ µ τ τ= − ++∫  

2 4 6
0 1 24 4 6

2,1 am( ,1) tanh ( sechcos(4am( ) sech sech )
105

)]P d a A A A Aτ τ τ τ τ τ= + + ++ ,  (88) 

where 

2
1 0 2 4 2 0 0 2 4(105 35 7 ) (35 7 13 )A P P P a P P Pµ µ= + − + − − ,                (89) 

2
2 2 4 2 0 0 2 414 (5 4 ) (35 49 59 )A P P a P P Pµ µ= − − − + ,                  (90) 



2
3 4 2 0 4 2168 6 (32 7 )A P a P Pµ µ= + − ,                       (91) 

2
4 2 0 4120A a Pµ= .                               (92) 

Then, substituting Eq. (88) into Eq. (29) gives 

1 0A = ,                                  (93) 

from which one derives 

       
2

2 0 0 2 4
c

0 2 4

( 35 7 13 )
0.2137

(105 35 7 )
a P P P

P P P
µ

µ
− + +

= = −
+ −

.                    (94) 

Substituting Eqs. (88) and (93) into Eq. (29) yields 

1 0a = .                                 (95) 

Substituting Eqs. (88), (93) and (95) into Eq. (29) yields 

22
1 4 62 24 2

0 0

( ) 2 6 tanh ( sech )
105 sechsech30 sech16 3

AI A A
x
τ τω τ

ω ττ τ−
+ +

+
= =

′
.    (96) 

Thus the heteroclinic solution of Eq. (83) is solved as 

a ht nx τ= ± ,                                (97) 

 
2

0 1sech ( )x τ ω εω= ± + ,                            (98) 

where ω0 and ω1 are given in Eqs. (84) and (96). 

The solution by Cao’s method can be derived as below, 

cosx ϕ= ,                                  (99) 

sindx
d

ϕ
ϕ
= − .                                (100) 

0 1( ) ( )d
dt
ϕ ϕ ε ϕ= Φ + Φ                             (101)

 

0 ( ) 0.1667sin (8.2876+1.1746cos2 +0.0264cos4 )ϕ ϕ ϕ ϕΦ = ± .             (102) 

1 (0.0343cos 0.0502cos3 0.0150cos5 0.0008c s 7( o)ϕ ϕ ϕ ϕ ϕ− + +Φ = +  

) (1.3813+0.1958cos2 +0.00440.0000 cos4 )sin 3cos9ϕ ϕ ϕ ϕ .           (103) 

The heteroclinic orbits with ε = 2 are shown in Fig. 12. Similarly, the numerical phase portrait at 

µc by the Runge-Kutta method is also shown for comparison. Here, the critical values µc = -0.2138, 

which is very close to that obtained by the present method. 



 

Figure 12. Heteroclinic orbits in phase portrait of Eq. (83). ○○○ denotes the result by the present method; + + + 

denotes the result by Cao’s method;  denotes the numerical orbits at µc predicted by the 

Runge-Kutta method. 

Example 5. Consider the following oscillator: 

5 7 2( )x x x x x xε µ+ + − = −  ,                        (104) 

which is a case of Eq. (36) with c1 = 1, c5 = 1, c7 = -1 and µ2 = -1. From Eq. (40), a0 = ±1.211 and b = 

0. From Eq. (16),  

4 2
0 2.43( ) 0 20.7870sech sech 2.5739ω τ τ τ += − .                 (105) 

Noting Eq. (85 and using the approximate Fourier series expansion, one can have 

2 4 2sech 0.5767sech 1.7821sech 1.8862τ τ τ− +  

0 2 4cos(2am( )) cos(4,1 ,1am( ))PP P τ τ= + + ,                    (106) 

in which 

0 0.4725P = , 2 0.4074P = , 4 0.0606P = − .              (107a,b,c) 

Then, one can follow the same procedure as expressed by Eqs. (88)-(93) and substitute Eqs. (107) 

into Eq. (94) to get 

       
2

2 0 0 2 4
c

0 2 4

( 35 7 13 )
0.3299

(105 35 7 )
a P P P

P P P
µ

µ
− + +

= =
+ −

.                   (108) 



Substituting Eqs. (88) and (93) into Eq. (29) yields 

1 0a = .                                  (109) 

Substituting Eqs. (88), (93) and (109) into Eq. (29) yields 

22
1 4 62 24 2

0 0

( ) 2 6 tanh ( sech )
105 sechsech30 sech16 3

AI A A
x
τ τω τ

ω ττ τ−
+ +

+
= =

′
.      (110) 

Thus the heteroclinic solution of Eq. (83) is solved as 

a ht nx τ= ± ,                                (111) 

 
2

0 1sech ( )x τ ω εω= ± + ,                           (112) 

where ω0 and ω1 are given in Eqs. (84) and (110).  

The solution by Cao’s method can be derived as below, 

cosx ϕ= ,                                  (113) 

sindx
d

ϕ
ϕ
= − ,                                (114) 

0 1( ) ( )d
dt
ϕ ϕ ε ϕ= Φ + Φ ,                           (115) 

0 ( )= (0.5520 0.4759cos2 0.0708cos4 ) sinϕ ϕ ϕ ϕΦ ± − − ,               (116) 

1( ) 0.0454 0.0( cos cos650 0.013 c s77 o 5ϕ ϕ ϕ ϕ− +Φ = − −  

0.0019 (0.5520 0.4759cos2 0.0708coscos 7 4 )sinϕ ϕ ϕ ϕ− − .             (117) 

The heteroclinic orbits with ε = 1.5 are shown in Fig. 13. Similarly, the numerical phase portrait at 

µc by the Runge-Kutta method is also shown for comparison. Here, the critical values µc = 0.3311, 

which is very close to that obtained by the present method. 



 

Figure 13. Heteroclinic orbits in phase portrait of Eq. (104). ○○○ denotes the result by the present method; + + 

+ denotes the result by Cao’s method;  denotes the numerical orbits at µc predicted by the 

Runge-Kutta method. 

 

6. Conclusions  

(1) The generalized hyperbolic perturbation method presented is an effective method for 

determining heteroclinic solutions of certain nonlinear oscillators in the form of ( ) ( , , )x g x f x xε µ+ =  . 

The previous hyperbolic perturbation solutions for Duffing type oscillator (Chen and Chen, 2009) can 

be just regarded as a special case of the present method. 

(2) Based on the generalized hyperbolic functions and the nonlinear time transformation proposed, 

the generalized heteroclinic solutions are defined and adopted as the basic functions in the perturbation 

procedures. The critical values of the heteroclinic bifurcation parameter are also obtained in the 

procedure. The reliable accuracy of the proposed method is demonstrated by solving strongly nonlinear 

oscillators with quadratic-cubic nonlinearities and with quintic-septic nonlinearities. 

(3) The present method shows a higher accuracy and efficiency than those by Chen’s hyperbolic 

Lindstedt–Poincaré method. It is recommended to use the present method to seek explicit heteroclinic 

solutions in the infinite time domain for some typical system such as Helmholtz-Duffing 

(quadratic-cubic) oscillators, and to use Cao’s perturbation-incremental method to construct implicit 

and semi-analytical heteroclinic orbits in phase portrait for strongly nonlinear systems with arbitrary 



large ε. It is still desirable to develop new techniques to analytically construct the solutions explicitly in 

respect to original time, for systems with complex nonlinearities. 
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Appendix 

To illustrate a typical occurrence of the heteroclinic connection, and the evolution of a limit cycle 

under parameter control, a series of phase portraits for a self-excited system governed by Eq.(104) is 

shown in Figs. 14-19. In the figures, the black trajectories, signed with time direction arrows, stand for 

the stable and unstable manifolds of the saddle points. They divide the phase portrait into different 

areas.  

Fig. 14 shows a simple conservative phase portrait structure, in which a series of concentric 

periodic orbits colored in yellow are bounded in the heteroclinic orbit, while the green trajectories 

denote those unstable trajectories surrounded. 

 

Figure 14. Phase portrait of Eq.(104) with ε = 0 



Fig. 15 shows the condition at a so-called Hopf bifurcation, in which the non-transverse 

intersections of the stable and unstable manifolds disappear and, the focus at point O possesses a 

so-called attraction basin, which is bounded by the stable manifolds Г11, Г13, Г22, and Г24. It can be seen 

that the separated manifolds Г14, Г23, Г14, and Г23, divide the attraction basin into two areas, in which 

the flows are colored in blue and red, respectively.  

 

Figure 15. Phase portrait of Eq.(104) with ε =1.5, µ = 0 

Fig. 16 presents a limit cycle, with its attraction basin bounded by the stable manifolds Г11, Г13, 

Г22, and Г24, emergences slightly after the Hopf bifurcation.  

 

Figure 16. Phase portrait of Eq.(104) with ε =1.5, µ = 0.001 



Fig. 17 shows the condition under which the limit cycle is becoming larger and, the stable and 

unstable manifolds, Г13 and Г23, Г14 and Г24, are getting closer to non-transverse intersection. 

 

Figure 17. Phase portrait of Eq.(104) with ε =1.5, µ = 0.2 

Fig.18 presents the condition at the heteroclinic bifurcation, in which the limit cycle breaks, and 

the half-heteroclinic orbit Λ1 has been formed by the non-transverse intersection of manifolds Г13 and 

Г23. The other half-heteroclinic orbit Λ2 has been formed by non-transverse intersection of manifolds by 

Г14 and Г24. It can be seen clearly that the heteroclinic orbit is the boundary of the maximum vibration 

amplitude of the limit cycle evolution.  

 

Figure 18. Phase portrait of Eq.(104) with ε =1.5, µ = 0.331101 



Fig. 19 shows a condition after the heteroclinic bifurcation. 

 

Figure 19. Phase portrait of Eq.(104) with ε =1.5, µ = 0.5 
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