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Abstract 

The plane-strain problem of a moving crack at the interface of two dissimilar 

magnetoelectroelastic (MEE) materials is investigated. Assuming that the crack moves at a 

constant speed in the subsonic regime, a fracture analysis of a finite crack under concentrated 

loading imposed onto the crack face is first carried out. By applying magnetoelectric (ME) 

permeable boundary conditions at the crack face, a combined Dirichlet-Riemann problem is 

formulated and solved analytically. The expressions for the fracture parameters, including the 

relative length of the contact zone and field intensity factors (FIFs), are obtained in the analytical 

form. A crack of a semi-infinite length with a contact zone under concentrated loading is further 

presented as a specific case examined with the obtained solution. Then a moving crack of finite 

length at the interface under remote mix-mode loading is also analyzed and the corresponding 

fracture parameters are presented in an analytical form. Finally, numerical examples are provided 

for the material combination of barium titanate-cobalt ferrite composites to examine the influence 

of the speed of the moving crack, poling direction, material volume fraction, load position and 
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load ratio on the fracture parameters, from which some new and interesting conclusions related to 

the crack model in this study are drawn. 

Keywords: Moving crack; Interface crack; Stress intensity factor; Contact zone; 

Magnetoelectroelastic materials 

1. Introduction 

Magnetoelectroelastic (MEE) laminated composites made of piezoelectric and piezomagnetic 

materials have become promising candidates as the core components of multifunctional 

magnetoelectric (ME) energy conversion devices, for example, sensors, actuators, transducers, 

and surface acoustic wave (SAW) devices, owing to their unique MEE coupling effect. However, 

during the service of these MEE components, cracks or flaws usually develop at the interface of 

dissimilar materials, which will greatly reduce their performance and remaining life, especially in 

dynamic loading environments. Therefore, it is important to examine interface cracks and their 

propagation in MEE materials. More recently, interface crack problems in MEE bimaterial have 

received much attention  [1-5].  

In practical engineering, dynamic interface cracks and their propagation are more problematic 

due to external loading conditions. One of the most important topics in dynamic fracture 

mechanics is examining transient response. The transient response of anti-plane cracks at the 

interface of MEE material was first investigated by researchers who used Laplace- and Fourier-

transforms [6-10]. As for the problem of plane cracks at the interface, Zhong et al. [11] studied 

the transient response of two limited permeable collinear cracks in a homogeneous MEE body 

under impact loadings. Chen [12] established a dynamic contour integral for cracked magneto-

electro-thermo-elastic (METE) materials with the use of Helmholtz free-energy and the 
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fundamental principles of thermodynamics, and pointed out that the dynamic contour integral 

could be employed as a physically sound criterion for the dynamic fracture analysis of METE 

solids. Hu and Chen [13] considered the problem of cracks due to the pre-curving of an MEE 

strip subjected to impact loadings. They applied magnetoelectric (ME) impermeable and 

permeable boundary conditions at the crack face and obtained the hoop stress intensity factors. It 

was shown that according to the criterion of maximum hoop stress, negative and positive electric 

and/or magnetic loadings can inhibit or promote the development of an ME impermeable crack, 

respectively. Feng et al. [14] investigated the transient response of an interface crack between 

two MEE layers under Mode-I impact loading. They demonstrated that a dynamic energy release 

rate (ERR) is not oscillating, and the impacts of magnetic or electric loading have the same 

effects on the dynamic ERR as those in a static case.  

Another important issue in dynamic fracture mechanics is the problem of moving cracks, which 

can be traced back to the work by Yoffe [15] in relation to elastic material and then continued by 

Willis [16], Atkinson [17] and other pioneering researchers. The moving crack model has also 

been extended to analyze the fracture behaviors of homogeneous MEE materials [18-23] and 

MEE bimaterials [24-26]. Among the various studies, Zhong and Li [24] studied a Yoffe moving 

crack at the interface of MEE bimaterial based on the limited permeable ME crack-face boundary 

conditions. They concluded that the speed of the moving crack has no influence on the stress 

ahead of the tip of the moving crack. Instead,  it has an apparent effect on the distribution of the 

stress around the tip of the moving crack. By assuming zero electric and magnetic potentials in 

the area of the crack, Chen et al. [25] considered the propagation of a semi-infinite crack at the 

interface between piezoelectric and piezomagnetic solids. They observed that in determining the 

dynamic fracture parameters, the B-G waves play an important role in the considered material 

combinations. Using the Fourier-transform method, Hu et al. [26] investigated an ME permeable 
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Dugdale-type of moving crack at the interface of an MEE bimaterial. They stated that the 

extended stresses are no longer singular and crack sliding displacement is dependent on the 

applied load, material properties and velocity of the moving crack. However, the aforementioned 

fracture analysis of the interface is only limited to anti-plane problems. In-plane fracture analysis 

of cracks at the interface has not been reported yet owing to the complexities of the mathematics 

and physics involved.  

On the other hand, interface crack models with a contact zone have been proposed and applied to 

addressing problems of interface fracture [27-29]. It has been shown that a real contact zone 

exists and influences the fracture behavior at the crack tip. Therefore, in this study, we investigate 

the fracture characteristics of an MEE bimaterial by applying an interface crack model of a 

moving crack with a contact zone. The speed of the moving crack is assumed to be slower than 

the minimum Rayleigh wave speed of the MEE bimaterial. Three cases are considered, namely, 

cracks of finite and semi-infinite lengths under a concentrated load, and a crack of a finite length 

under a uniform mix-mode load. The expressions for determining the contact zone and FIFs are 

obtained. Numerical results are provided for the material combination of barium titanate-cobalt 

ferrite (BaTiO3-CoFe2O4) composites to investigate the effects of a number of factors, including 

speed of the crack, poling direction, material volume fraction, and load ratio and position, on the 

fracture parameters, which has not been carried out in previous research work. 

2. Basic relations of MEE bimaterial by using moving coordinate system 

According to Huang et al. [30], the dynamic constitutive equations for an MEE solid in a fixed 

coordinate system (X1, X2, X3) can be written in the form: 
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where ijσ , iD , iB  are the components of the stresses, electric displacements and magnetic 

inductions, respectively; iu , ϕ ，φ  are the mechanical displacement components, and electric 

and magnetic potentials, respectively. ijklc , ikle , iklh , ild  are the elastic, piezoelectric, 

piezomagnetic, and electromagnetic constants, respectively; ilα , liµ  are the dielectric 

permittivity and magnetic permeability, respectively, and ρ  is the material density. , , ,i j k s  

range in { }1,2,3 , the repeated indexes imply summation, and the comma stands for the 

differentiation with respect to the corresponding coordinate variables. 

It is assumed that the speed of the crack v  is less than the minimum Rayleigh wave speed for a 

bimaterial system, and herein called the critical surface wave speed crc . Therefore, the subsonic 

regime is investigated [31, 32]. In this case, the Lekhnitskii–Eshelby–Stroh formalism of 

generalized complex potentials can also be applied to the problem in this study. Here, we 

consider an in-plane fracture problem, in which all the fields are independent of the coordinate 2x , 

and the displacement 2u  decouples in the ( )1 3,x x -plane from the components { }T
1 3, , ,u u ϕ φ=U .  
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Assuming that the crack moves along the material interface, the following coordinate 

transformation 1 1x X vt= − , 2 2x X= , 3 3x X=  is performed, where v  is the speed of the crack tip. 

In the moving coordinate system, Eq. (2) can be rewritten as: 

( )T
,11 ,13 ,33 0+ + + =QU R R U TU  (3) 

where 

0 11 11 0 31 31 0 33 33

11 11 11 13 13 13 33 33 33

11 11 11 13 13 13 33 33 33

, ,d d d
d d d
α α α

µ µ µ

Τ Τ Τ

Τ Τ Τ

     
     = − − = − − = − −     
     − − − − − −     

Q e h R e h T e h
Q e R e T e

h h h
 (4a) 

( ) ( ) ( )2
0 1 1 0 1 3 0 3 3, , , ( ) , ( )jk jk jk jk ij m ijm ij m ijmjk jk jk

c v c c e hρ δ= − = = = =Q R T e h  (4b) 

and jkδ  is the Kronecker delta. 

By using the Lekhnitskii–Eshelby–Stroh formalism and applying this formalism to MEE 

materials, a general solution with Eq. (3) can be presented in the forms [1]  

( ) ( )z z= +U Af Af   (5) 

( ) ( )z z′ ′= +t Bf Bf  (6) 

where { }T
1 3, , ,u u ϕ φ=U , { }T

31 33 3 3, , ,D Bσ σ=t (the superscript ‘T’ stands for the transposed 

matrix), { }T
1 2 3 4, , ,=A A A A A ; ( ) ( ) ( ) ( ) ( ){ }T

1 1 2 2 3 3 4 4, , ,z z z z z=f f f f f  in Eqs. (5) and (6) is an 

arbitrary analytic vector function with four components; ( )1 3 1, 2,3, 4j jz x p x j= + = . For a fixed 

j , jp   and { }T

1 2 3 4, , ,j j j j ja a a a=A are respectively an eigenvalue and an eigenvector of the 

system 

( ){ }T 2 0j j jp p+ + + =Q R R T A   (7) 
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The 4 4×  matrix B can be determined by using the formula Τ= +B R A TAP  with 

{ }1 2 3 4diag , , ,p p p p=P . The prime ( )′  denotes differentiation with respect to the argument, and 

the overbar stands for the complex conjugate. 

A comparison between Eqs. (3)–(7) with the related equations in Section 2 of the paper by 

Herrmann and Loboda [33] which deal with a stationary crack shows that they are formally 

similar, which has been mentioned in many papers on subsonic crack propagation. Therefore, the 

method developed in Herrmann and Loboda [33] for a static interface crack can also be applied to 

carry out a study on a moving crack on MEE bimaterial. 

Using this approach for a moving crack at the interface of a piezoelectric bimaterial by Herrmann 

et al. [32], one arrives at the following expressions: 

( ) ( ) ( )1 1 1x x x+ −′ = −  U W W     (8) 

( ) ( ) ( )(1)
1 1 1,0x x x+ −= −GW GWt     (9) 

where ( ) ( ) ( ) ( ) ( ){ }1 3 4 5, , ,z W z W z W z W z
Τ

=W  is an introduced unknown vector function, 

which is analytic in the whole plane with a cut along the crack region ( ),c b and 

( ) ( )1 1 i0x x± = ±WW ; (1) 1−=G B D ， where (1) (1)= −D A LB , ( ) 1(2) (2) −
=L A B  and superscripts 

(1) and (2) denote the upper and lower materials, respectively; the prime denotes differentiation 

with respect to the argument. For the transversely isotropic MEE bimaterials in this study, which 

can be arbitrarily oriented with respect to the crack surface, the matrix G  has the following 

structure: 

11 13 14 15

31 33 34 35

41 43 44 45

51 53 54 55

i
i

i
i

g g g g
g g g g
g g g g
g g g g

 
 
 =
 
 
 

G    (10) 
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where all ( )1,3,4,5ii ig =  are real, and ( , 1,3, 4,5; )ijg i j i j= ≠  are complex; ij jig g= −  holds true 

and i 1= − . It is worth noting that if the bimaterial system is poled in the 3x -direction, the 

structure of matrix G  in Eq. (10) will be reduced to the one presented in the investigations by 

Herrmann et al. [27] and Feng et al. [29]. 

Using the ME permeable conditions at the crack region and the absence of load at infinity, 

4 5 0W W= =  holds true in the whole plane. Thus, the extended stresses at the interface can be 

presented as: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

(1)
13 1 11 1 1 11 1 1 13 3 1 13 3 1

(1)
33 1 31 1 1 31 1 1 33 3 1 33 3 1

(1)
3 1 41 1 1 41 1 1 43 3 1 43 3 1

(1)
3 1 51 1 1 51 1 1 53 3 1 53 3 1

,0 i i

,0 i i

,0

,0

x g W x g W x g W x g W x

x g W x g W x g W x g W x

D x g W x g W x g W x g W x

B x g W x g W x g W x g W x

σ

σ

+ − + −

+ − + −

+ − + −

+ − + −

 = + + −


= − + +


= − + −
 = − + −

 (11) 

Combining the first and second formulas of Eq. (11), one arrives at the following expressions at 

the interface: 

( ) ( ) ( ) ( ){ }(1) (1)
33 1 13 1 1 1,0 i ,0 , 1,3j jj j jx m x t x x jσ σ γ+ −+ = + =Ω Ω  (12) 

where  

( ) ( ) ( ) ( ) ( )2
13 31 13 31 33 11

1 3 1,3
11

4
i ,

2j j

g g g g g g
z W z s W z m

g
+ ± + +

= + =Ω  (13a) 

33 13 13 11
31 11 , ,j j

j j j j
j j

g g m g g m
t g g m s

t t
γ

+ −
= − = =   (13b) 

and the constants 1,3m  and 1,3s  are complex while 1,3t  and 1,3γ  are real. They have the following 

relations, 1,3 1,3s m= −  and 1 3 1γ γ = . 

Eq. (8) leads to the following expressions related to the derivatives of the displacement jumps 



9 

( ) ( ) ( ) ( )1 1 3 1 1 1i , 1,3j jju x s u x x x j+ −′ ′+ = − =    Ω Ω      (14) 

where the prime denotes differentiation with respect to the argument. In the following sections, 

the focus will be on the case of 1j =  only since it is sufficient enough to determine the 

unknowns. 

3. Moving crack of finite length at interface under concentrated load 

A bimaterial composed of two dissimilar MEE semi-infinite planes 3 0x >  and 3 0x <  with 

material properties defined by the following material constants  (1)
ijksc , (1)

ikse , (1)
iksh , (1)

isd , (1)
isα , (1)

siµ  

and (2)
ijksc , (2)

ikse , (2)
iksh , (2)

isd , (2)
isα , (2)

siµ , respectively, is considered (Fig. 1), where superscripts (1) 

and (2) denote the upper and lower materials, respectively. It is assumed that the upper material is 

poled in the 3x -direction and the lower material can be arbitrarily oriented with respect to the 

surface of the crack (angle 0β ). An ME permeable crack situated in ( )1 ,x c b∈ , 3 0x =  at the 

interface is loaded by a concentrated load { } ( )T
0 0 1, x dτ σ δ= − −Χ  at x1=d on its face, where 0τ  

and 0σ  are, respectively, the applied shear stress and normal stress. It is also assumed that the 

crack and load are extended with a speed v , less than the critical wave speed crc , in the 1x -

direction and a frictionless contact zone ( ),a b  of arbitrary length appears at the right of the 

crack tip. It has been shown that the longer contact zone develops at the right crack tip for the 

shear stress at infinity 0 0τ >  if the lower material is softer than the upper one and it develops for 

0 0τ <  in the opposite case [34, 35]. Also it is demonstrated by Dundurs and Gautesen [36] and 

Kharun and Loboda [37] that neglecting the left short contact zone, the oscillating singularity at 
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the left crack tip will not significantly influence the stress and strain fields at the right crack tip. 

Therefore, only the contact zone at the right crack tip is considered in the present study. The 

interface conditions in the moving coordinate system ( )1 3,x x  can be written as: 

( ) ( ) ( )1 1 1, , ,x x x c b= = ∉      U 0 t 0  (15) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )13 1 0 1 33 1 0 1
1

1 1 1 1

,0 , ,0 ,
,

0, 0, 0, 0,

x x d x x d
x c a

x D x x B x

σ τ δ σ σ δ

ϕ φ

 = − = − ∈
= = = =              

 (16) 

( ) ( ) ( )
( ) ( ) ( ) ( )

( )13 1 33 1 3 1
1

1 1 1 1

,0 0, 0, 0,
,

0, 0, 0, 0,

x x u x
x a b

x D x x B x

σ σ

ϕ φ

  = = =     ∈
= = = =              

 (17) 

where ( ) ( ) ( )1 1 1,0 ,0x x x+ −ϒ = ϒ − ϒ    means the jump of function ( )1xϒ  across the material 

interface; and“+” and “-” stand for the upper and lower surfaces of the crack, respectively. 

By substituting Eqs.(12) and (14) into the boundary conditions Eqs.(15)-(17),  one obtains an 

inhomogeneous combined Dirichlet-Riemann problem: 

( ) ( ) ( ) ( ) ( )1
1 1 1 1 1 0 1 0 1 1i , ,jx x t m x d x c aγ σ τ δ−+ −+ = + − ∈Ω Ω  (18) 

( ) ( )1 1 10, ,Im x x a b± = ∈Ω    (19) 

( )1 0
z

z
→∞

Ω =    (20) 

where “Im” stands for the imaginary part of the complex quantity. 

The solution of the aforementioned problem defined by Eqs. (18)-(20) can be presented as [38] 

( ) ( ) ( ) ( ) ( )
( )1 0 0Re i Im

X z Y z
z I I

d z Y d
  Ω = + −   

   (20) 

where 

( )
( )

( ) ( ) ( ) ( )
i

0 1 0
0

1

i1, ,
2 i

z me z aX z I Y z
t X d z bz c z a

ϖ σ τ
π +

+ −
= = =

−− −
 (21a) 
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( ) ( )( )
( ) ( )( )1 1 1

12 ln , ln ,
2

b a z c
z l b c

l z a a c z b
ϖ ε ε γ

π
− −

= = = −
− + − −

 (21b) 

Using the solution and Eq.(14), for  ( )1 ,x c a∈ , one obtains:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )1 11

1 1 3 1 0 0 1
1 1

1i Re i Im , ,j

X x Y x
u x s u x I I x c a

d x Y d
γ

γ
 +  ′ ′+ = + ∈         −   

 (22) 

Similarly, combining Eq. (12) with Eq. (20) leads to the following expressions for ( )1 ,x a b∈ : 

( ) ( )
( ) ( )( )

( ) ( )

( )
( ) ( )( )

( ) ( ) ( )
( )

1 0(1) 1
33 1 0 1 0 1

11 11

1 0 1 11
0 1 0 1

11 11

Re 1,0 cosh sinh
1

Im 1sinh cos
1

I
x x x

x d c ax x

I Y x
x x

Y dx d c ax x

χ γσ ϖ ϖ
γ

χ γϖ ϖ
γ

 −
= − + − +− − −  

 −
+ +− − −  

 (23) 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( )( ) ( )

0 00 1 1 1 0 1
1 1

11 1

2 Re sinh Im cosI x Y d Y x I x
u x

x d a x c Y dx

ϖ ϖ−
′ = −  

− − −
 (24) 

For 1x b> , one has 

( ) ( ) ( ) ( ) ( ) ( )
( )

1 1(1) (1)
33 1 1 13 1 1 0 0 1

1

,0 i ,0 Re i Im ,
X x Y x

x m x I I x b
d x Y d

σ σ χ
  + = + > −   

 (25) 

where 

( ) ( )( )
( )( ) ( ) ( )11 1

0 1 1 1 1
1 1

2 tan , , 1j j j

a c b x x ax Y x t
b c x a b x

ϖ ε χ γ− − − −
= = = +

− − −
 (26) 

By means of Eqs. (8) and (12), the electric displacement and magnetic induction can be written as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ){ }

( ) ( ) ( ) ( ){ }1 141 13 43 11
3 1 41 1 1 33 1 31 1 12

31 33 11

Im Im Im
,0 Re ,0 Re

Im

g g g g
D x g u x x g u x

g g g
σ

−
′ ′= + −      

−
 (27a) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ){ }

( ) ( ) ( ) ( ){ }1 151 13 53 11
3 1 51 1 1 33 1 31 1 12

31 33 11

Im Im Im
,0 Re ,0 Re

Im

g g g g
B x g u x x g u x

g g g
σ

−
′ ′= + −      

−
 (27b) 
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Introducing the following FIFs, 

( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1
1 1 33 1 2 1 13 1

0 0
2 ,0 , 2 ,0lim lim

x a x b
K x a x K x b xπ σ π σ

→ + → +
= − = −  (28a) 

( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1
1 3 1 1 3 1

0 0
2 ,0 , 2 ,0lim limD B

x a x a
K x a D x K x a B xπ π

→ + → +
= − = −  (28b) 

and using Eqs. (23) and (25), one arrives at the following expressions for 1K  and 2K  

( )( )
( ) ( ){ }1

2 ˆ ˆcos sind cK d d
a d a c

σ ϖ τ ϖ
π

∗ ∗−
= − +

− −
 (29a) 

( )
( ) ( ){ }1

2
1 1

1 1 ˆ ˆcos sin
Re 2

K d d
m b d

γ θ τ ϖ σ ϖ
πγ

∗ ∗+ −
= − −

−
 (29b) 

where 

( ) ( )0 1 0 1 0ˆ ˆIm , Rem mσ σ τ τ τ= − =    (30a) 

( ) ( )( )
( )( ) ( )( )

1*
1 1

1 1

2 ln ,
b a x c b dx

b cb c a x a c b x
ϖ ε θ

− − −
= =

−− − + − −
 (30b) 

By using Eq. (27), DK  and BK  can be defined with 1K  and 2K , and presented as: 

( ) ( ) ( )
( )

( )
( ) ( ) ( ) ( )

( )

2
31 41 13 43 1143 11 41 13 1

41 12 2
1 133 11 13 33 11 13

Re Im Im ImIm Im Im 1Re
2Im Im

D

g g g g gg g g g
K g K

g g g g g g
γ

γ χ

   −− −   = + + 
    − −      

 (31a) 

( ) ( ) ( )
( )

( )
( ) ( ) ( ) ( )

( )

2
31 51 13 53 1153 11 51 13 1

51 12 2
1 133 11 13 33 11 13

Re Im Im ImIm Im Im 1Re
2Im Im

B

g g g g gg g g g
K g K

g g g g g g
γ

γ χ

   −− −   = + + 
    − −      

 (31b) 

The obtained equations are mathematically correct for any position of the point a , however, the 

solution only becomes physically valid if the following inequalities are satisfied: 

( ) ( )
( ) ( )

(1)
33 1 1

3 1 1

,0 0, ,
,0 0, ,

x x a b
u x x c a

σ ≤ ∈
 ≥ ∈  

   (32) 
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It is shown that it is necessary and sufficient to satisfy the above inequalities and achieve a 

smooth closure of the crack contact zone if   

( )
1

1 3 1
0

,0 0lim
x a

a x u x
→ −

′− =      (33) 

holds true [31], which is equivalent to 1 0K =
 
herein. Therefore, the length of the contact zone 

can be determined by using the following single transcendental equation: 

( ) ˆ
tan

ˆ
σκ λ
τ

= −    (34) 

where 

( ) ( )
( )1

1
2 ln ,

1
b a
b c

λ θ
κ λ ε λ

θ λ θ λ

− −
= =

−− + −
   (35) 

and λ  is the relative length of the contact zone. 

It has been shown by Herrmann et al. [31] that the maximum root of Eq. (34) in the interval ( )0,1
 

should be chosen if inequalities are satisfied (32). A small value of  ( )1λ λ <<
 
 can be 

approximately written as: 

1
0

1

ˆ4 1exp tan
ˆ1

nθ σλ λ π
θ ε τ

−   ≈ = − +   −    
   (36) 

and an appropriate value of n  should be chosen for the maximum value of λ . 

Using Eq. (34), the stress intensity factor 2K  which corresponds to the real length of the contact 

zone is: 

( )
( )

( )
1

2
1 1

1 11
Re 2

K
m b d

γ θ

πγ

+ −
= − Θ

−
   (37) 
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where 2 2ˆ ˆσ τΘ = + . It should be noted that 2K  is the main fracture parameter of the crack 

model in this study. When the speed of the moving crack is zero and the poling direction of the 

lower material is along x3-direction, the theoretical results in this case will reduce to those for 

static case presented by Herrmann et al. [27] and Feng et al. [28]. 

4. Moving crack of semi-infinite length at interface under concentrated load 

The modeling of a moving crack of a finite length considered in the previous section was 

proposed by Yoffe [15] for a crack in a homogeneous material, and is suitable for examining 

local processes at the crack tip. However, together with this model, it is of interest to analyze a 

propagating crack of a semi-infinite length which was proposed by Goldshtein [39] for a case of 

two dissimilar isotropic materials. The results for this case can be obtained by using the above 

solution, in which the left of the crack tip c  tends to −∞ , i.e., c → −∞ , as shown in Fig. 1b. In 

this situation, ( )X z and  0I  in Eq. (21a) become [38]: 

( ) ( )
( )

( )
i

i
0

1

,
2i

z
d

c
e d aX z X z I e

tz a

ϖ
η ϖ

π

∞
∞− −  

→∞ ∞

−
= = = Θ

−
 (38) 

where  

( ) ( )
( )
1 01

1
0 1 0

Re
2 ln 1 , tan

Im
mz b z bz

b a b a m
τ

ϖ ε η
σ τ

−
∞

 − −
= − + + = −  − − − 

 (39) 

Function 1Ω  in Eq. (20) can be written in the form: 

( )

( ) ( ) ( )
i

1
1

sin icos
2

ze d b d ad d
t d z z b z a

ϖ

η ϖ η ϖ
π

∞

∞ ∞ ∞

 Θ − − Ω = − + + +       − − −  
 (40) 

For convenience, the crack tip b  will be tied to the origin of the moving coordinate system 

( )1 3,x x . Moreover, the length of the contact zone is denoted as r , and the distance from the 
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applied concentrated load to the crack tip as 1d . It is clear that in this coordinate system, 0b = , 

a r= − and 1d d= −  hold true. Corresponding to the analysis of Eqs. (22)-(25), the following 

equations can be obtained in this case [31] 

for 1x r< − , 

( ) ( ) ( ){ }
( ) ( ) ( )1 11 1 1

1 1 3 1 1
1 1 1 1 1

exp i1i sin i cos
2j

x d d ru x s u x t
x d x x r
ϖγ η ϑ η ϑ

γ π
 + − ′ ′+ = Θ + + +         + − − −  

 (41) 

and for ( )1 , 0x r∈ − , 

( ) ( ) ( ) ( ) ( ) ( )(1) 1 1
33 1 1 1 1 1

1 1 1 1

,0 sin sinh cos coshd d rx x x
x d x x r

σ η ϑ ϖ η ϑ ϖ
π

 −Θ  = − + + + + − +  
 (42) 

( )
( )

( ) ( )1
1 1 1

11 1 1 1

sin , , 0du x x r
xt x d

η ϑ
π γ

Θ′ = + ∈ −   −+
 (43) 

For 1 0x >  

( ) ( ) ( ) ( ){ }
( ) ( ) ( )1 2 1(1) (1) 1 1

33 1 1 13 1
1 1 1 1

1 exp i
,0 i ,0 cos i sin

2
x d r dx m x

x d x r x
γ ϖ

σ σ η ϑ η ϑ
π

Θ +  − + = − + + + + +  
(44) 

where 

( ) ( )11 1 1
1 1 1 1 2 1

1

12 ln 1 , 2 tan , 2 ln 1
i

d d r x z zx z
r r x r r

ϑ ε ϖ ε ϖ ε−   +
= − − + = = − + +      −   

 (45) 

It is worth mentioning that Eq. (27) is still valid for electric displacement and magnetic induction 

in this case. 

The FIFs in this situation can be obtained from Eq. (29) and presented as: 

( )1
1

2 cosK
d r

η ϑ
π∞

Θ
= − +

−
   (46a) 

( )
( )

( )1
2

1 1 1

1
sin

Re 2
K

m d
γ

η ϑ
π γ∞

Θ +
= − +    (46b) 
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The equation for the length of the contact zone can be simplified as: 

( )cos 0η ϑ+ =    (47) 

It is convenient to introduce the parameters α λ θ=  and 1r dα∞ =  which define the coefficients 

of the length of the contact zone and the distance from the point load to the crack tip for cracks of 

finite and semi-infinite lengths, respectively. Therefore, the exact solution of Eq. (47) can be 

written as: 

( )( )2

1

1cosh 0.5
2

nα η π
ε

−
∞

 
= + − 

 
   (48) 

and n  should be taken to be similar to that of the previous case. For a small value of α∞ , Eq. (49) 

can be approximately expressed as: 

( )( )
1

14exp 0.5 nα α η π
ε∞ ∞

 
≈ = − + − 

 
    (49) 

By using Eq. (47), the stress intensity factor 2K  for a crack of semi-infinite length at the interface 

can be expressed as: 

( )
( )

1
2

1 1 1

1
Re 2

K
m d

γ
π γ∞

Θ +
= −    (50) 

A comparison between Eqs. (37) and (50) shows that: 

( ) 01α θ λ θ∞ = −  , ( )2 2 1K K θ∞ = − .   (51) 

5. Moving crack of finite length at interface under remote mixed-mode loading 

Consider a moving crack of a finite length at the interface, as shown in Fig. 2, under remote mix-

mode loading 33 0σ σ= , 13 0σ τ= . As previously mentioned in Section 4, crack surfaces are 

traction-free for ( )1 ,x c a∈  but have frictionless contact for ( )1 ,x a b∈ . The solution of the 
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problem considered can be constructed as the sum of two parts––a state of uniform loading 

( )0 0,τ σ , and a perturbed field caused by ME permeable crack faces that tend to zero at infinity. 

Since the homogeneous field is beyond the scope of this study, we consider the perturbed state 

with continuity and boundary conditions at the interface in the following form: 

( ) ( ) ( )1 1 1, , ,x x x c b= = ∉      U 0 t 0  (52) 

( ) ( )
( ) ( ) ( ) ( )

( )13 1 0 33 1 0
1

1 1 1 1

,0 , ,0 ,
,

0, 0, 0, 0,

x x
x c a

x D x x B x

σ τ σ σ

ϕ φ

 = − = − ∈
= = = =              

 (53) 

( ) ( ) ( )
( ) ( ) ( ) ( )

( )13 1 33 1 3 1
1

1 1 1 1

,0 0, 0, 0,
,

0, 0, 0, 0,

x x u x
x a b

x D x x B x

σ σ

ϕ φ

  = = =     ∈
= = = =              

 (54) 

Moreover, as previously mentioned, ( ) ( )4 1 5 1 0W x W x= =  still holds true since there is no 

loading at infinity in the perturbed field.  

By performing an analogous derivation for Eqs. (18)-(20) and introducing a new function: 

( ) ( ) 0 0i j
j j

j

m
z z

σ τ
χ

+
Φ = Ω +  (55) 

one obtains:  

( ) ( ) ( ) ( ){ } ( )(1) (1)
33 1 13 1 1 1 0 0,0 i ,0 ij jj j j jx m x t x x mσ σ γ σ τ+ −+ = + − +Φ Φ  (56) 

( ) ( ) ( ) ( )1 1 3 1 1 1i j jju x s u x x x+ −′ ′+ = −    Φ Φ     (57) 

( ) 0 0i j
j z

j

m
z

σ τ
χ→∞

+
Φ =  (58) 

Using Eqs. (56)-(58) for 1j =  and the corresponding interface conditions, one arrives at the 

following combined Dirichlet–Riemann boundary value problem: 

( ) ( ) ( )1 1 1 1 11 0, ,x x x c aγ+ −Φ + Φ = ∈  (59) 
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( ) ( )1 1 1Im 0, ,x x a b±Φ = ∈  (60) 

( ) 0 1 0
1

1

i
z

mz σ τ
χ→∞

+
Φ =  (61) 

The exact analytical solution of Eqs. (59)-(61) was first provided by Herrmann and Loboda [33] 

and for brevity, it is omitted herein. Using Eqs. (55) and (57), one can obtain the following 

expressions at the interface 

for 1x b> , 

( ) ( ) ( ) ( ) ( )
1i ( )

1 1(1) (1) 1
33 1 1 13 1 0 1 0

1 1 1

,0 i ,0 i i
xQ x P x ex m x m

x a x b x c

ϖχσ σ σ τ
  + = + − + 

− − −  
 (62) 

for ( )1 ,x a b∈ , 

( ) ( )
( )( )
( )

( )( )

1 1(1) 1
33 1 0 1 0 1

11 1

1 1 1
0 1 0 1 0

11 1

1,0 cosh ( ) sinh ( )
1

1cosh ( ) sinh ( )
1

P x
x x x

x c b x

Q x
x x

x c x a

χ γσ ϖ ϖ
γ

χ γϖ ϖ σ
γ

 −
= + +− −  

 −
+ + − +− −  

 (63) 

( ) ( ) ( )1 1
1 1 0 1 0 1

1 1 1

2 cosh ( ) sinh ( )
P x Q x

u x x x
x c b x x a

ϖ ϖ
 

′ = +     − − −  
 (64) 

for ( )1 ,x c a∈ , 

( ) ( ) ( ) ( ) ( )*
1i

1 11
1 1 3 1

1 1 1 1

1i i
x

j

P x Q x eu x s u x
b x a x x c

ϖγ
γ

 +  ′ ′+ = −         − − −  
 (65) 

where ( )P z  and ( )Q z  can be found in the work by Herrmann and Loboda [33] with 1σ , 1τ  as 

well as 4σ , 4τ  later being defined by the formulas: 

ˆ ˆ
, , 1,3j j

j j

jσ τ
σ τ

χ χ
= = − =   (66) 
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and σ̂ , τ̂  can be found in Eq. (30). 

According to the definition of FIFs in Eq. (28), one can obtain: 

( ) ( ){ }1
1 1

1

2
ˆ ˆ ˆ ˆ1 cos sin 2 sin cos

1
l

K
π γ

λ σ β τ β ε σ β τ β
γ

= − + − −
+

 (67a) 

( ) ( ){ }2 1
1

1 ˆ ˆ ˆ ˆsin cos 2 1 cos sin
2
lK

m
π σ β τ β ε λ σ β τ β= − − + − +  (67b) 

where 1
1 1ln
1 1

λβ ε
λ

− −
=

+ −
. It should be noted that the expressions for the FIFs in Eq. (31) are still 

valid in this case. 

Similarly, inequalities in Eq. (32) should be addressed to produce a real contact zone at the right 

of the crack tip. This leads to the following transcendental equation: 

1

1

ˆ ˆ1 2tan
ˆ ˆ2 1
λσ ε τβ

ε σ λτ
− +

=
− −

 (68) 

For a small contact zone, the following asymptotic solution of Eq. (68) can be used: 

( ) ( )1 1
0

ˆ14exp tan 2 tan 0.5
ˆ

nσλ λ ε π
ε τ

− −  ≈ = − − − −    
 (69) 

where n  which defines the maximum 0λ  in the interval ( )0, 1  should be taken.  

Using Eq. (68), Eq. (67b) can be rewritten in the form of: 

( ) ( ){ }2
2 1

1

1 ˆ ˆsin cos 1 2
2
lK

m
π σ β τ β ε= − − +  (70) 

When the speed of the crack is zero and the poling direction of the lower material is along x3-

direction, the theoretical results will reduce to those for static case by Herrmann et al. [27]. 

6. Numerical results and discussion  
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This section provides the numerical results that are related to a moving crack under concentrated 

and uniform mix-mode loading at the interface, respectively. The upper and lower MEE materials 

are composites made of BaTiO3 as the inclusion material and CoFe2O4 as the matrix material. 

Their properties are shown in Table 1 [40, 41]. The following mixture rule is used to determine 

the composite material constants: 

( ) ( ) ( ) ( )c i m
f f1V VΛ = Λ + Λ −  (71) 

where superscripts c, i, and m denote the composite, inclusion and matrix materials, respectively, 

and fV  is the volume fraction of the piezoelectric inclusion. The readers can also use other rules 

to determine the magnetoelectric coefficient from the point of view of micromechanics [42-44], 

which is more rigorous. 

In the following figures, only the numerical results related to the crack of finite length at the 

interface are presented since the corresponding quantities in relation to the semi-infinite crack at 

the interface are dependent on the former case (see Eq.(51)). The relative length of the contact 

zone λ  for a finite crack is defined as ( )b a lλ = − , and l b c= − . As previously mentioned, the 

speed of a moving crack is assumed to be less than the minimum Rayleigh wave speed of a 

bimaterial system, which is the critical wave speed crv . Since an analytical expression for the 

Rayleigh wave speed of MEE materials is usually not available, the speed of a moving crack is 

normalized by using the speed of the shear wave 0v  of the BaTiO3-CoFe2O4 composite with a 

volume fraction of piezoelectric inclusion of f 0.1V =  in all of the numerical results, where 

0v µ ρ=  and 
2 2

11 15 15 15 11 11 15
44 2

11 11 11

2h e h d ec
d

α µµ
µ α

− +
= +

−
 [14, 23]. The normalized critical wave speed 

cr 0v v  related to different material volume fractions and poling directions is listed in Table 2. 
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Although the extended stresses are not oscillating at the right of the crack tip for the crack model 

in this study, the oscillating index, which is an important parameter in classical moving crack 

models, is also provided for reference herein. Only when the speed of the moving crack is less 

than crv  the oscillating index is a real number; otherwise, the oscillating index will become a 

complex number [45] and the solution procedure is entirely different from that in this work. In 

Fig. 3, the variation of the oscillating index 1ε  with respect to the speed of the moving crack for 

different poling directions and material volume fractions is presented, respectively, where f1V  and 

f2V  are the volume fraction of the piezoelectric inclusion of the upper and lower materials, 

respectively. For f1 0.99V = , the corresponding material is almost a piezoelectric material 

whereas for f2 0.01V = , almost a piezomagnetic material. The results shown in Fig. 3 show that 

the oscillating index 1ε  increases as the speed of the moving crack increases in all cases, and 

when the speed of the moving crack approaches the critical wave speed, 1ε  increases much more 

rapidly and tends to infinity, which is consistent with the observations made by Shen and 

Nishioka [32] and Shen et al. [45] in relation to anisotropic elastic and piezoelectric bimaterials, 

respectively. Additionally, the difference in the oscillating index 1ε

for different poling directions becomes obvious for cracks that move at a faster speed. There is 

only a slight difference in the oscillating index between 0 0β =  and 0β π=  for a crack that moves 

at an arbitrary speed. Moreover, Fig. 3b demonstrates that increasing the differences in the 

properties between the upper and lower materials, which can be defined as the difference between 

f1V  and f2V , leads to an increase in 1ε . This agrees with our expectations.  
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It should be noted that a contact zone does not always exist for cracks that move at an arbitrary 

rate and arbitrary poling direction since the prerequisite defined by inequality (32) should be 

satisfied. Thus only some typical numerical results are presented in this section. Figs. 4 and 5 

show the dependence of the relative length of the contact zone λ  and the normalized FIF 2 0K K  

of a finite crack on the normalized speed of a moving crack 0v v  for different poling directions 

and material volume fractions under concentrated loading, where the load ratio is 0 0k τ σ=  and 

0 0 0.5K lσ= respectively. Under pure tensile loading, i.e. 0k = , the length of the contact zone 

is very small; therefore, it is given at a logarithmic scale. In Figs. 4 and 5, it is shown that an 

increase in the speed of a moving crack always leads to monotone increases in the relative length 

of the contact zone λ  and the normalized FIF 2 0K K  for 0k =  in all cases. As the speed of 

moving approaches a critical speed, the relative length of the contact zone λ  and the normalized 

FIF 2 0K K  increases much more rapidly, and the former may be larger than 0.25 even for 0k = , 

and thus the introduction of a contact zone is very necessary for this problem. All these are 

consistent with the observations made by Herrmann et al. [31] for piezoelectric bimaterials. As 

expected, the relative length of the contact zone and the FIF increase as the difference in material 

properties between the upper and lower MEE materials increase, which can be defined by the 

differences between f1V  and f2V  in Figs. 4b and 5b. The bimaterial composed of a piezoelectric 

material ( f1 0.99V = ) and a piezomagnetic material ( f2 0.01V = ) produces the largest length of the 

contact zone. However, the relative length of the contact zone and the normalized FIF for 0 0β =  

and 0β π=  are very close. This is different from the findings in Herrmann et al. [31] for 
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piezoelectric bimaterial composed of PZT-4 and PZT-5, but consistent with the observation 

under some circumstances by Sih et al. [46] for a homogeneous MEE solid. Therefore, it can be 

attributed to the special material properties of MEE bimaterials, where the piezomagnetic phase 

is further introduced and the coupling among elastic, electric and magnetic fields is achieved.  

In the work by Herrmann et al. [31], the influence of the speed of the moving crack on the 

fracture parameters under combined tension-shear loading was not investigated. Therefore, this is 

further examined in this study with the numerical results plotted in Figs. 6 and 7. It can be seen in 

Fig. 6 that when a moderate shear load is applied, i.e. load ratio 5k = , the length of the contact 

zone still monotonically increases as the speed of the moving crack increases for all poling 

directions and material volume fractions. For a specified poling direction, the relative length of 

the contact zone for 5k =  is always much larger than that for 0k =  in Fig. 4a. Additionally, Fig. 

6a demonstrates that the relative length of the contact zone for 0β π=  is larger than that for 

0 0β = . This is opposite to the results shown in Fig. 4a. Also, the FIF for 0 0β =  is larger than that 

for 0 3β π=  in Fig. 7a whilst the former is smaller than the latter in Fig. 5a. These imply that the 

conclusions in relation to pure tensile loading may be different from those in relation to 

combined tensile-shear loading owing to the interaction of the presence of shear load and the 

variations in the poling direction and the speed of the moving crack. The results shown in Figs. 

6b and 7b show that reducing the difference between f1V  and f2V  leads to reductions in the 

relative length of the contact zone and the FIF, which is analogous to the results plotted in Figs. 

4b and 5b. 

Figs. 8 and 9 show the relationship between the fracture parameters of a finite crack and speed of 

the moving crack under different load ratios k  and load positions θ  under concentrated loading. 
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It can be observed that for a moderate shear load, the relative length of the contact zone and the 

FIF increase with increases in the normalized speed of the moving crack and load ratio k . An 

increase in load position θ  results in an increase in length of the contact zone and a decrease of 

the FIF. These conclusions fully agree with the static fracture analysis of interface cracks in MEE 

bimaterials [27, 28]. Additionally, a comparison between Figs. 7b and 9 shows that compared to 

the poling direction and material volume fraction, load position θ  and load ratio k  have a more 

significant influence on the normalized FIF 2 0K K . 

The variations in the relative length of the contact zone and the normalized FIF of a finite crack 

with respect to the normalized speed of the moving crack under uniform mixed-mode loading are 

presented in Figs. 10 and 11, respectively. The corresponding conclusions are similar to the 

previous ones. For moderate combined tension-shear loading, an increase in the difference 

between f1V  and f2V  leads to increases in the relative length of the contact zone and the 

normalized FIF. Additionally, the fracture parameters for  0 0β =  and π  are also very close. It is 

remarked that when the speed of the moving crack is zero, the extended displacement 

discontinuity boundary element method (EDDBEM) proposed by Zhao et al. [47], which is an 

efficient approach for the analysis of fracture problems, can also be used to deal with the present 

problem.  

7. Conclusions 

A moving crack with a frictionless contact zone at the interface of MEE bimaterial is taken into 

consideration. The speed of the moving crack is assumed to be less than that of the critical shear 

wave of the bimaterial system. Three cases, i.e. a finite crack and a semi-infinite crack under 

concentrated loading, and a finite crack under remote mix-mode loading, are studied, respectively. 
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By introducing a moving coordinate system and using boundary conditions, a combined 

Dirichlet-Riemann problem is formulated and solved analytically for each case. The 

transcendental equation for determining the length of the contact zone and FIF is further derived. 

Finally, numerical results are provided graphically for the material combination of BaTiO3-

CoFe2O4 composites. The effects of the speed of the moving crack, poling direction, load ratio, 

load position and material volume fraction on the length of the contact zone and FIF are 

investigated in detail. The following conclusions are drawn from the numerical results. 

(i) An increase in the speed of a moving crack causes an increase in the oscillating index.  

(ii) In the crack model in this study, increases in the speed of the moving crack and shear 

loading usually lead to increases in the relative length of the contact zone and the FIF 2K  

under both concentrated and mix-mode loadings. 

(iii) For BaTiO3-CoFe2O4 composites, an increase in the difference of the material properties 

between the upper and the lower materials, which can be defined by the difference in 

material volume fraction, usually leads to increases in the length of the contact zone and 

the FIF 2K . 

(iv) Compared with the material volume fraction and poling direction, load position and load 

ratio have more significant effects on the FIF 2K  when a concentrated load is applied 

onto the crack face.  
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 Table and Figure Captions 

Table 1 Material properties of BaTiO3 and CoFe2O4 [40, 41] 

Table 2 Normalized critical wave speed cr 0v v  for BaTiO3-CoFe2O4 composites with different 

poling directions and material volume fractions 

 

Fig. 1. Moving crack with frictionless contact zone at interface of MEE bimaterial under  

concentrated loading: (a) finite crack, and (b) semi-infinite crack 

Fig. 2. Moving crack with frictionless contact zone at interface of MEE bimaterial under  uniform 

mixed-mode loading 

Fig. 3. Variation of the oscillating index 1ε  with respect to normalized speed of the moving crack 

0v v for different (a) poling directions, and (b) material volume fractions  

Fig. 4. Relative length of contact zone λ  of finite crack with respect to normalized speed of 

moving crack 0v v for different (a) poling directions, and (b) material volume fractions 

under concentrated loading with 0k =  

Fig. 5. Normalized FIF 2 0K K  of finite crack with respect to normalized speed of moving crack 

0v v  for different (a) poling directions, and (b) material volume fractions under 

concentrated loading with 0k =  

Fig. 6. Relative length of contact zone λ  of finite crack with respect to normalized speed of 

moving crack 0v v for different (a) poling directions, and (b) material volume fractions 

under concentrated loading with 0k =  
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Fig. 7. Normalized FIF 2 0K K  of finite crack with respect to normalized speed of moving crack 

0v v  for different (a) poling directions, and (b) material volume fractions under 

concentrated loading with 0k =  

Fig. 8. Relative length of contact zone λ  of finite crack with respect to normalized speed of 

moving crack 0v v  for different load positions and load ratios under concentrated loading  

Fig. 9. Normalized FIF 2 0K K  with respect to normalized speed of moving crack 0v v  for 

different load positions and load ratios under concentrated loading 

Fig. 10. Relative length of contact zone λ  of finite crack with respect to normalized speed of 

moving crack 0v v  for different load positions and load ratios under uniform mixed-mode 

loading 

Fig. 11. Normalized FIF 2 0K K  of finite crack with respect to normalized speed of moving crack 

0v v  for different load positions and load ratios under uniform mixed-mode loading 
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Nomenclature  

 (X1, X2, X3)   fixed coordinate system 

(x1, x2, x3)   moving coordinate system 

ijklc , ikle , iklh , ild    elastic, piezoelectric, piezomagnetic, and electromagnetic constants  

ilα , liµ    dielectric permittivities and magnetic permeabilities 

ijσ , iD , iB    stresses, electric displacements and magnetic inductions 

iu , ϕ ，φ    mechanical displacements, electric potentials and magnetic potentials 

 ρ    material density  

v    speed of the crack  

crc    critical surface wave speed  

0β    poling direction of the upper material 

0τ , 0σ    applied shear stress and normal stress  

, ,c a b    x-coordinates of crack tips 

1K , 2K , DK , BK    field intensity factors 

d , 1d    distance from the load to crack tip 

λ    relative contact zone length 

l    crack length 

fV    volume fraction of the piezoelectric inclusion 

0v    shear wave speed of the BaTiO3-CoFe2O4 composite 

k    load ratio 
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Table 1 Material properties of BaTiO3 and CoFe2O4 [40, 41] 

(cij in 109 N/m2, eij in C/m2, αij in 10-10C/Vm, hij in N/Am, μij in 10-6Ns2/ C2, ρ in kg/m3) 

 c11 c12 c13 c33 c44 e31 e33 e15 

BaTiO3 166 77 78 162 43 -4.4 18.6 11.6 

CoFe2O4 286 173 170.5 269.5 45.3 0 0 0 

 h31 h33 h15 α11 α33 μ11 μ33 ρ 

BaTiO3 0 0 0 11.2 12.6 5.0 10.0 6017 

CoFe2O4 580.3 669.7 550.0 0.08 0.093 590 157 5300 

 

Table 2 Normalized critical wave speed cr 0v v  for BaTiO3-CoFe2O4 composites with different 

poling directions and material volume fractions 

BaTiO3-CoFe2O4 
Vf1=0.01 

Vf2=0.99 

Vf1=0.1 

Vf2=0.9 

Vf1=0.2 

Vf2=0.8 

Vf1=0.3 

Vf2=0.7 

Vf1=0.4 

Vf2=0.6 

0 0,β π=  0.9307 0.9345 0.9380 0.9406 0.9424 

0 12, 11 12β π π=  0.8923 0.9004 0.9087 0.9164 0.9236 

0 6, 5 6β π π=  0.8588 0.8703 0.8829 0.8952 0.9075 

0 4, 3 4β π π=  0.8962 0.9053 0.9152 0.9250 0.9347 

0 3, 2 3β π π=  0.9317 0.9372 0.9428 0.9475 0.9474 

0 5 12, 7 12β π π=  0.8857 0.8933 0.9014 0.9091 0.9165 

0 2β π=  0.8512 0.8606 0.8707 0.8806 0.8904 
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Fig. 1. Moving crack with frictionless contact zone at interface of MEE bimaterial under  

concentrated loading: (a) finite crack, and (b) semi-infinite crack 
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Fig. 2. Moving crack with frictionless contact zone at interface of MEE bimaterial under uniform 

mixed-mode loading  
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Fig. 3. Variation of the oscillating index 1ε  with respect to normalized speed of the moving crack 

0v v for different (a) poling directions, and (b) material volume fractions  

(a) 

(b) 



38 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75

 β0=0
 β0=π/6
 β0=π/3
 β0=π/2
 β0=π

−l
n(

λ)

v/v0

θ=0.5, k=0, Vf1=0.1, Vf2=0.9

0.0 0.1 0.2 0.3
59.5

60.0

60.5

61.0

61.5

62.0

B

A

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20
40
60
80

100
120
140
160
180
200
220
240
260

 Vf1=0.01, Vf2=0.99
 Vf1=0.1, Vf2=0.9
 Vf1=0.2, Vf2=0.8
 Vf1=0.3, Vf2=0.7
 Vf1=0.4, Vf2=0.6

−l
n(

λ)

v/v0

θ=0.5, k=0, β0=π/2

 

Fig. 4. Relative length of contact zone λ  of finite crack with respect to normalized speed of 

moving crack 0v v for different (a) poling directions, and (b) material volume fractions under 

concentrated loading with 0k =  
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Fig. 5. Normalized FIF 2 0K K  of finite crack with respect to normalized speed of moving crack 

0v v  for different (a) poling directions, and (b) material volume fractions under concentrated 

loading with 0k =  
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Fig. 6. Relative length of contact zone λ  of finite crack with respect to normalized speed of 

moving crack 0v v for different (a) poling directions, and (b) material volume fractions under 

concentrated loading with 5k =  

 

(a) 

(b) 



41 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2.9

3.0

3.1

3.2

3.3

16

18

20

θ=0.5, k=5, Vf1=0.1, Vf2=0.9

 β0=0
 β0=π/6
 β0=π/3
 β0=π/2
 β0=π

Κ 2/Κ
0

v/v0

0.0 0.1 0.2 0.3 0.4 0.5
2.880

2.884

2.888

2.892

2.896

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.205
10
15
20

 Vf1=0.01, Vf2=0.99
 Vf1=0.1, Vf2=0.9
 Vf1=0.2, Vf2=0.8
 Vf1=0.3, Vf2=0.7
 Vf1=0.4, Vf2=0.6

Κ 2/Κ
0

v/v0

θ=0.5, k=5, β0=π/2

 

Fig. 7. Normalized FIF 2 0K K  of finite crack with respect to normalized speed of moving crack 

0v v  for different (a) poling directions, and (b) material volume fractions under concentrated 

loading with 5k =  
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Fig. 8. Relative length of contact zone λ  of finite crack with respect to normalized speed of 

moving crack 0v v  for different load positions and load ratios under concentrated loading  
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Fig. 9. Normalized FIF 2 0K K  with respect to normalized speed of moving crack 0v v  for 

different load positions and load ratios under concentrated loading 
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Fig. 10. Relative length of contact zone λ  of finite crack with respect to normalized speed of 

moving crack 0v v  for different load positions and load ratios under uniform mixed-mode 

loading 
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Fig. 11. Normalized FIF 2 0K K  of finite crack with respect to normalized speed of moving crack 

0v v  for different load positions and load ratios under uniform mixed-mode loading 
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