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ABSTRACT  18 

 19 

Design spectrum (DS) models in major codes of practice for structural design of buildings typically 20 

stipulate empirical site factors for each of the five, or six, site classes. Although the phenomenon of 21 

resonant like amplification behaviour of the structure caused by multiple wave reflections is well known, 22 

the potentials for such periodic amplification behaviour are not explicitly considered in code models. This 23 

is partly because of expert opinion that such effects are very “localised” in the frequency domain and can 24 

be suppressed readily by damping. However, investigations into the risk of collapse of non-ductile, and 25 

irregular structural systems, common in regions of low-to-moderate seismicity, revealed the extensive 26 

influence of periodic base excitations on flexible soil sites (with initial small-strain natural period Ti > 0.5 27 

s). In this paper, an alternative DS model which addresses the important phenomenon of soil resonance 28 

without the need of computational site response analysis of the subsurface model of the site is introduced.  29 

 30 
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1.  Introduction  1 

 2 

Seismic action models in major codes of practice for structural design of buildings typically stipulate 3 

empirical site factors for each of the five, or six, site classes. The value of the empirically derived site 4 

factor is expressed simply as a function of the site class each of which is identified with a range of shear 5 

wave velocity (SWV) values. These site factors are applied uniformly over the flat (constant acceleration) 6 

and the hyperbolic (constant velocity and constant displacement) sections of the spectrum. As different 7 

site factors are applied to the two sections, the corner periods in the DS model can vary a great deal 8 

between site classes. The International Building Code (IBC) of the United States [1] also stipulates 9 

different sets of site factors for different intensities of ground shaking in order that different levels of 10 

seismicity are covered in one model. 11 

 12 

This simple format for modelling site effects is widely accepted albeit that in reality the modification of 13 

seismic waves through soil sediments is well known to be highly frequency selective and under the 14 

influence of many factors. The concept of “frame analogy” [2] can be used to explain the phenomena that 15 

certain wave components in a range of frequencies are amplified. It has also been shown that the extent of 16 

the amplification can be very dependent on the energy absorption behaviour of both the soil sediments and 17 

the superstructure. Thus, the amount of shear strains (i.e. non-linearity) imposed on the soil material and 18 

(for cohesive soils) the plasticity index are amongst the controlling parameters.   19 

 20 

Resonant-like amplification behaviour of the structure found on the soil surface can occur as a result of 21 

superposition of reflected waves. Thus, factors such as seismic impedance ratio at the soil-bedrock 22 

interface and thickness of the soil layers can also have important influences on the behaviour of ground 23 

motions on the soil surface, given that these factors control the reflections of shear waves within the soil 24 

medium.  25 

 26 

The wave modification mechanisms as described are well known and can be simulated by simple one-27 

dimensional equivalent-linear dynamic analysis of the soil sediments [3]. However, periodic amplification 28 

behaviours as described have not been well represented in code provisions for the modelling of site 29 

effects, given that factors such as soil depth and impedance contrast at the interface between soil and 30 

bedrock are usually not parameterised. The decision adopted by codes of practice not to model the effects 31 

of resonance is partly because of a preference for simplicity and partly because of expert opinion that such 32 

effects are only “localised” in the frequency domain and can be suppressed readily by energy dissipation 33 

in the form of damping of the soil layers and ductile behaviour of the structure.  34 

 35 

It is noted that non-ductile, and irregular, structural systems are common in regions of low-to-moderate 36 

seismicity. The priority in design, and retrofitting, in such built environments is to safeguard these 37 

structural systems from total, or partial, collapse in a rare event for avoiding loss of lives and for 38 
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minimizing casualties. Until recently, the post-elastic behaviour of these systems in ultimate conditions 1 

featuring significant strength degradation and P-delta effects could only be modelled by rigorous non-2 

linear time-history analyses. Reliable predictions can now be made using simple hand calculation 3 

techniques which employ displacement-based principles [4]. Importantly, investigations into the risk of 4 

collapse (overturning) of this type of structure employing a kinematic-based calculation technique 5 

revealed significant influence by the peak displacement demand of the ground motions irrespective of the 6 

exact dominant frequency of the ground excitations [5]. Although the effects of resonance on elastically 7 

responding systems are very localised, the effects on structures approaching the state of collapse, or 8 

overturning, can be widespread. This peak displacement demand has been shown to be amplified to a very 9 

high value by periodic excitations on a flexible soil site. Central to the calculation technique is the use of 10 

response spectrum in the displacement (RSD) format or acceleration-displacement response spectrum 11 

(ADRS) format which shows more clearly the amplified displacement demand behaviour of the ground 12 

motion than a response spectrum in the conventional acceleration format.  13 

 14 

Fig. 1(a–e) presents the results of a case study of a flexible soil site (Ti ~ 1.0 s) experiencing resonant-like 15 

amplification behaviour. Clearly, the frequency contents of ground motions have been dramatically 16 

modified by the flexible soil sediments as revealed by the displacement response spectrum (Fig. 1(d)) and 17 

ADRS diagram (Fig. 1(e)). In contrast, the phenomenon is not as clearly shown on response spectra 18 

presented in the conventional acceleration (RSA) format (e.g. Fig. 1(a)). Furthermore, it should be noted 19 

that the resonant phenomenon as illustrated in Fig. 1 can be easily masked by averaging response spectra 20 

from a suite of accelerogram records (except when all the recordings are from one soil site or from soil 21 

sites with very similar site natural period properties which is usually not the case). Resonant-like soil 22 

amplification behaviour is therefore not well represented in empirically developed codified models which 23 

were usually derived by statistical analyses of averaged response spectral values from accelerograms 24 

recorded on a diversity of soil sites. 25 

 26 

A DS model in the displacement format which takes into account the described amplification phenomenon 27 

as depicted in Fig. 1(d) for flexible soil sites (Ti > 0.5 s) is introduced in this paper. Relationships for 28 

estimating the site factor and the site natural period (with considerations for a shift in the site natural 29 

period value) are presented in the form of algebraic expressions and design charts in order that a 30 

representative DS model can be constructed readily which can mimic results from computational dynamic 31 

analyses. The important effects of site natural period have been parameterised whereas the effects of 32 

damping in the soil and impedance ratio at the soil-bedrock interface have also been taken into account.  33 

 34 

2.  Appraisal of Existing Codified DS Models 35 

 36 

DS models in five codes of practice as listed in below (in alphabetical order of the abbreviated names 37 

shown in bold fonts) have been included in the review to be presented in this section:  38 
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1. Australian Standard (AS 1170.4–2007) [6] 1 

2. Eurocode 8 (EC) (EN 1998-1:2004) [7]: a. Type 1, b. Type 2  2 

3. Chinese Code for Seismic Design of Buildings (GB 50011–2010) [8] 3 

4. International Building Code (IBC–2012) [1] 4 

5. New Zealand Standard (NZS 1170.5:2004) [9] 5 

 6 

The inconsistencies between various codes of practice are illustrated in Fig. 2 using the DS of a flexible 7 

soil site in Hong Kong constructed in accordance with various code models. The uniform hazard spectrum 8 

(UHS) with a return period of 2,500 years for rock sites in Hong Kong [10,11] is also shown on the same 9 

figure for comparison. It is noted that all the acceleration spectra (in Fig. 2(a)) have been normalised with 10 

respect to the maximum response spectral acceleration (RSAmax) value on rock. The effects of site 11 

amplification are reflected in the differences between the DS stipulated for the soil site and the UHS for a 12 

rock site.  13 

 14 

It is observed that the soil DS derived from different codes of practice vary substantially across the entire 15 

range of natural periods. To facilitate a systematic comparison between the code models, the implied 16 

spectral amplification ratios (i.e. Soil DS/Rock UHS) at natural periods of 0.2 s, 0.5 s, 1.0 s and 2.0 s are 17 

listed in Table 1. The values of the two corner periods, T1 and T2, of each DS are also listed for 18 

comparison. It is noted that EC has recommended two types of DS: one for the higher seismicity areas 19 

(Type 1, annotated as EC1) and the other for the less active areas (Type 2, annotated as EC2). 20 

 21 

Amongst the six codified DS, only the GB model does not show any spectral amplification at the constant 22 

acceleration “plateau” (up to T = 0.5 s), whereas an amplification ratio of up to 1.8 is stipulated by the 23 

EC2 model in that part of the response spectrum. The amount of spectral amplification stipulated by the 24 

GB model is also consistently lower at the low-to-intermediate period range, as a result of an un-amplified 25 

constant acceleration “plateau” and a low first corner period (T1) value. However, the amplification factor 26 

becomes much higher in the period range exceeding 2.5 s (5T1), because of the abnormal shape of this part 27 

of the DS model of GB. This leads to disproportionately high displacement demand in the high period 28 

range.  29 

 30 

In the DS models of AS, EC1 and NZS, the spectral amplification ratios in the intermediate-to-high period 31 

range are relatively large as a result of the high first corner period (T1) values. The amplification ratio of 32 

the AS model becomes smaller at high natural period beyond 2.0 s, because of the smaller second corner 33 

period (T2) value of 1.5 s. The function of 1/T0.75 between T1 and 1.5 s adopted in NZS contributes further 34 

to the exceptionally high displacement demand. As EC1 and NZS are applied to regions of moderate-to-35 

high seismicity, with design peak ground acceleration (PGA) ≥ 0.13 g for return period of 500 years [9], 36 

the resulted higher displacement demand is deemed appropriate.  37 

 38 
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In view of the high level of inconsistencies (i.e. several hundred per cent differences) between the soil DS 1 

models stipulated by various codes of practice, and their deficiencies in capturing site-specific 2 

characteristics, an alternative DS model is proposed in this paper to provide more realistic predictions for 3 

soil sites.  4 

 5 

It is well known that the shape of an earthquake response spectrum is typically controlled by the 6 

fundamental natural period of the soil layers, and particularly so in situations where there is a distinct soil-7 

rock interface [Luzi et al., 2011; Héloïse et al., 2012; Casterllaro and Mulargia, 2014]. The amplification 8 

ratio usually has a maximum value at the large-strain natural period of the soil layer (TS), which has 9 

however not been explicitly taken into account by any existing codes of practice. The proposed site-10 

specific DS model is in a format that can be used conveniently in a hand calculation procedure, as for most 11 

contemporary codified DS models. The DS model proposed herein has been demonstrated to produce soil 12 

DS which match reasonably well with those generated from site response analyses. The proposed S-Factor 13 

in the order of 4 is reflected in the proposed model. Similarly, the phenomenon of shift in the site natural 14 

period resulting from reduction of the shear modulus of the soil is also modelled. 15 

 16 

3.  Proposed Soil DS Model 17 

 18 

3.1.  General 19 

 20 

Significant amplification of ground shaking on flexible soil sites is evident in many past earthquakes. The 21 

effects of such amplification behaviour are particularly significant in regions of low-to-moderate 22 

seismicity, given the very limited mitigating effects of damping that are associated with the non-linear 23 

response behaviours of both the soil layers and the structure which is found on the soil surface. In 24 

situations where there is a distinct soil-rock interface, the resonant phenomena that are associated with 25 

multiple reflections of seismic waves may occur, and this could result in much higher amplification of the 26 

structural responses.  27 

 28 

This period selective amplification phenomenon, which is highly dependent on the total thickness of the 29 

soil layers, has not been factored into any contemporary code models and can only be captured by 30 

dynamic analysis of a soil column model involving the use of accelerograms recorded, or simulated, on 31 

rock outcrops (or bedrock). The analysis requires expert knowledge and experience, given that the 32 

generated results could be sensitive to the choice of input parameter values and the nature of the input 33 

excitations. From the perspective of a practicing engineer, it is preferable to have a simple and convenient 34 

hand calculation model, which can save efforts for undertaking dynamic analyses.  35 

 36 

The key feature of the proposed site-specific DS model, as shown in Fig. 3, has been developed mainly for 37 

estimating the value of response spectral displacement (RSD) at the natural period of the site (TS) (which is 38 
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the peak displacement demand, RSDmax). The emphasis on the prediction of the value of RSD is to align 1 

the modelling of site effects with displacement-based seismic design methodology. As illustrated in Fig. 3, 2 

the proposed model involves estimating (i) the large-strain natural period of the site, TS, and (ii) the site 3 

amplification S-Factor which is defined as the ratio between the maximum spectral displacement of the 4 

soil spectrum and the spectral displacement of the rock spectrum at TS. Both variables are functions of the 5 

dynamic properties of the soil materials and the impedance contrast between the soil layers and the 6 

underlying bedrock. 7 

 8 

A theoretical model involving a large number of input parameters was initially developed by the authors 9 

[12,13] to model the aforementioned site-specific amplification behaviour for idealised soil column 10 

models of homogenous materials. The model was developed based on the fundamental principles of wave 11 

propagation and designed to yield more conservative estimates than results from a higher-tier, and more 12 

rigorous, approach of computational site response analysis. It is noted that the model proposed herein does 13 

not intend to account for the complexity of the SWV profile in relation to the change in the SWV values 14 

with depth which could have significant influence on site amplification behaviour [Régnier et al. 2014].  15 

 16 

The rest of this section presents the adaptation of the original theoretical model to the analysis of realistic 17 

soil column models (showing changes in the SWV values with depth) along with newly developed, more 18 

simplified, expressions. Importantly, the modified model has been verified by comparison with results of 19 

dynamic analyses of a number of soil column models derived from real borehole records in order that the 20 

model has become amenable to practical applications (Section 4).  21 

 22 

3.2.  Characterisation of Soil Sites 23 

 24 

In the proposed calculation procedure, a soil site shall be characterised by the weighted average initial 25 

SWV (VS,i) and the initial natural period (Ti) of all the soil layers down to the depth of very stiff 26 

sedimentary materials or bedrock.  27 

 28 

The value of Ti can be estimated based on geophysical, or geotechnical, measurements with the use of Eq. 29 

(1). It can be computed based on four times the shear-wave travel-time through materials from the surface 30 

to underlying stiff sediments or bedrock, if the thickness (di) and initial SWV (Vi) of the individual soil 31 

layers are known. 32 

 33 

iS

S
n

i i

i
i V

H
V
dT

,1

44 =×=∑
=

          (1) 34 

 35 

Alternatively, this can be expressed in terms of the total thickness of the soil layers (HS) and the weighted 36 

average initial SWV (VS,i).  37 
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 1 

For a site with 15.0≤iT s, where the soil layers are relatively thin and/or stiff, the site could be classified 2 

as a rock site, as the soil amplification would mainly concern structures with a natural period lower than 3 

0.2 s. It is noteworthy that the corresponding peak displacement demand for such low period structures is 4 

very small in regions of low-to-moderate seismicity. Most structures which are not brittle would be 5 

capable of sustaining this very minor peak displacement demand without being subjected to any 6 

significant risks of collapse, or overturning.  7 

 8 

The values of initial SWV of soil layers (Vi) (in m/s) can also be calculated from the SPT-N values, as 9 

recorded in borehole logs. There are various available correlating relationships between SPT-N values and 10 

Vi, as comprehensively reviewed in the recent PEER Report 2012/08 [Wair, DeJong and Shantz (2012)]. It 11 

was shown that significant variabilities exist amongst those relationships. The popularly-used conversion 12 

formula of Eq. (2) [14] is selected for demonstration purpose, because it was developed from analyses of 13 

the largest dataset, and it gives median predictions by all the models that have been reviewed in the PEER 14 

Report. 15 

 16 
314.097 NVi ×=                                           (2) 17 

 18 

There is typically an upper limit for the number of blows per foot (or 300 mm) in practice. If the limit is 19 

100, equivalent N values greater than 100 can be calculated pro rata when the penetration depth is less 20 

than a foot (or 300 mm) (e.g. 100 blows per 250 mm is equivalent to 120 blows per 300 mm, i.e. 21 

equivalent N value of 120). It is noted that data showing SPT-N values of around 400 can be found in the 22 

original publication by Imai and Tonouchi [14]. Also, it is recommended that sedimentary layers with 23 

SPT-N values greater than 250 be omitted in the calculation of the site natural period.  24 

 25 

In analysing the seismic response behaviour of the soil layers, the value of the shear modulus (and hence 26 

SWV) of the soil materials would decrease with increasing intensity of ground shaking due to material 27 

non-linearity. The ratio between the shifted (large-strain) site natural period (TS) and the initial (small-28 

strain) site natural period (Ti) has to be estimated as per the intensity of shaking. The modelling of this 29 

phenomenon will be addressed in the next section. 30 

 31 

3.3.  Shifted (Large-Strain) Site Natural Period (TS) 32 

 33 

The values of TS and the reduced weighted average SWV of soil layers have to be estimated according to 34 

the intensity of shaking, which can be represented by the value of RSD or response spectral velocity (RSV) 35 

at iT , i.e. TiRSD  or TiRSV , of the rock DS.  36 

 37 
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The shifted site natural period TS can be estimated using Eq. (3), which has been simplified from the 1 

original expressions developed in [13]. The term in the original expression representing the effects of 2 

plasticity has been removed in view of recent research findings that showed less dependency of dynamic 3 

soil properties on the value of the plasticity index than previously believed [15–17].  4 

 5 

S

Ti

i

S

H
RSD

T
T

4
1 π
+=                                                                      (3) 6 

 7 

Given Eq. (1) and 
π2
i

TiTi
TRSVRSD = , the period-shift ratio can be expressed in terms of TiRSV  and VS,i  as 8 

shown by the following alternative relationship: 9 

 10 

iS

Ti

i

S

V
RSV

T
T

,2
1+=                                                                          (4)   11 

                                     12 

In the equations shown above, TiRSD  is in units of mm, TiRSV  in mm/s, iSV ,  in m/s and SH  in m. 13 

 14 

The initial natural period Ti of soil sites typically ranges from 0.3 s to 1.2 s, whilst TiRSV  on rock sites for 15 

this period range may be taken as constant (i.e. constant-velocity range). In view of this, a specific value 16 

of TiRSV  can be identified for each location depending on the design hazard level, in order that the period-17 

shift ratio can be estimated conveniently as function of only one variable, iSV , . The correlating 18 

relationships are presented in Fig. 4 for four levels of earthquake ground shaking intensities: i.e. RSVTi = 19 

50, 100, 200 and 400 mm/s. The period-shift ratios corresponding to the intensity levels can be identified 20 

using the design chart of Fig. 4 (in lieu of using Eq. (3) or (4)). The selected values of RSVTi cover the 21 

whole range of shaking levels in regions of low-to-moderate seismicity. 22 

 23 

3.4.  Non-linear Site Amplification Factor (S) 24 

 25 

An estimate for the S-Factor can also be obtained through the use of the design charts of Fig. 5. It was 26 

revealed from a sensitivity study that the non-linear site amplification S-Factor is most sensitive to the 27 

SWV of both soil and bedrock materials [Tsang et al., 2006a]. Hence, design curves as functions of initial 28 

soil SWV (VS,i) have been created for four bedrock SWV (VR), namely, 760, 1100, 1800, 3000 m/s, as 29 

shown in Fig. 5(a). In developing the design charts, a typical value of 1.3 is assumed for the rock-to-soil 30 

density ratio Rρ / Sρ  and a moderate shaking level characterised by TiRSV = 200 mm/s is used. The 31 

proposed model is consistent with the notion recommended by McVerry [20] that the site factor be 32 

expressed as a continuous function of one or two soil parameters that can readily be measured.  33 

 34 
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The value of VR = 760 m/s was selected as it has been used as a time-averaged SWV in the top 30 m (VS30) 1 

in defining the reference site condition (i.e. B/C boundary) for developing the site coefficients included in 2 

the National Earthquake Hazards Reduction Program (NEHRP) provisions (Building Seismic Safety 3 

Council, 2015). A consistent NEHRP B/C crustal profile has recently been developed (Boore, 2016) 4 

which is regarded as the new generic rock profile as an update of the well-known generic rock profile 5 

(Boore and Joyner, 1997). VS30 = 1100 m/s (or 1130 m/s) is the most common value for defining the 6 

reference rock condition in the NGA-West models (Abrahamson et al., 2008) and the updated NGA-7 

West2 models (Gregor et al., 2014). SWV value of 3000 m/s was recently recommended for defining the 8 

reference (hard) rock site condition in Central and Eastern North America (CENA) and also adopted in the 9 

NGA-East models [Hashash et al., 2014]. An intermediate value of 1800 m/s between the two extremes 10 

has also been selected as the bedrock SWV ( RV ) for regions of massive granitic rock, such as the region 11 

near Anza in Southern California (Silva et al., 1999) and Hong Kong and surrounding region in Southern 12 

China [18,19]. 13 

 14 

The S-factor curves for various shaking levels based on the reference rock site condition in CENA (i.e. VR 15 

= 3000 m/s) are shown in Fig. 5(b) as an illustration. It is observed that the S-factor for stiffer soil (VS,i > 16 

400 m/s) does not vary significantly with the level of ground shaking when the value of RSVTi is greater 17 

than 100 mm/s. In fact, changes in the value of S with the level of ground shaking becomes smaller for 18 

softer (and more prevailing) bedrock conditions. It is noted that the non-linear (shaking level dependent) 19 

behaviour of site response is the combined effects of period-shift (due to shear modulus reduction of soils 20 

as evidenced in Figure 4), soil damping and impedance contrast. When the shaking level is high, the 21 

spectral contents of the ground motions are shifted to a higher period (lower frequency). Thus, there are 22 

lower amplification at a lower period and higher amplification at a higher period, which is consistent with 23 

field observations as reflected in the NEHRP site coefficients. 24 

 25 

3.5.  Design Spectrum (DS) Model for Soil Sites 26 

 27 

The DS model for soil sites can be constructed using Eq. (5), as expressed in terms of three parameters, 28 

maxRSD , T1 and T2, which can be computed using Eqs. (7)-(9).  29 

 30 

1TT ≤ :  







=

21

2

max TT
TRSDRSDT    31 

21 TTT ≤≤ : 







=

2
max T

TRSDRSDT         (5) 32 

52 ≤≤ TT : maxRSDRSDT =  33 

 34 
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The DS model in the acceleration format can be conveniently obtained by direct transformation from the 1 

displacement format using Eq. (6).  2 

 3 
22






=

T
RSDRSA TT

π                             (6) 4 

 5 

The proposed DS model is similar in form to those adopted in various codes of practice worldwide. T1 is 6 

the first corner period at the upper limit of the constant spectral acceleration region of the DS model, 7 

whilst T2 is the second corner period at the beginning (lower limit) of the constant spectral displacement 8 

region of the DS model. The three parameters, maxRSD , T1 and T2, shall be computed using Eqs. (7)-(9). 9 

 10 

SRSDRSD Ts ×=max             (7)  11 

where TsRSD  is the RSD on rock at T = TS.  12 

 
13 

iTkT ×=1                          (8) 14 

STT =2                           (9) 15 

where k is recommended to be 1.2, as RSV of a soil spectrum typically peaks between iT×2.1  and TS, with 16 

respect to the level of ground shakings in regions of moderate seismicity. A different value of k can be 17 

derived based on the seismicity of the region. 18 

 19 

4.  Applications of the Proposed Model  20 

 21 

The site-specific DS model proposed in this paper was essentially further developed, and simplified, from 22 

the theoretical model that was first presented in [12,13]. The original theoretical model was based on 23 

considering the propagation, and reflection, of shear waves in idealised soil profiles. Thus, an important 24 

objective of this paper is to demonstrate that site specific response spectra calculated from the dynamic 25 

analysis of subsoil profiles of real flexible soil sites (as described in authentic borehole records) are 26 

reasonably, and conservatively, represented by the (further developed) DS model presented in this paper. 27 

 28 

Five flexible soil sites (Ti > 0.5 s) with different characteristics and distinctive site natural periods have 29 

been employed to evaluate the accuracy of the proposed model. Details of the borehole records for the five 30 

soil sites are provided in Appendix A. The key parameters that are involved in the process of calculating 31 

the response spectral parameters as per the proposed procedure have also been summarised in Table 2.  32 

 33 

The DS as derived from the proposed procedure for the five sites are shown in Fig. 6–10 along with the 34 

DS stipulated by various major codes of practice in both the RSD and ADRS formats. The response 35 
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spectrum (STRATA RS) for each site was obtained by multiplying the rock UHS by the response spectral 1 

ratio curves computed by computational site response analysis using program STRATA [21] (which has a 2 

computational algorithm similar to program SHAKE [3]). Three sets of input bedrock ground motions, 3 

with a probability of exceedance of 2% in 50 years (or a return period of 2,500 years), each of them 4 

representing near-field (NF), medium-field (MF) and far-field (FF) earthquake scenarios, have been 5 

simulated using program GENQKE [22,23]. It was found that the three sets of simulations give very 6 

consistent response spectral ratio curves.  7 

 8 

Very good consistencies can also be seen between the DS derived from the proposed procedure and the 9 

response spectra obtained from dynamic analysis of the soil profiles using program STRATA. In contrast, 10 

displacement demand in the high natural period range (exceeding the respective site natural period) is 11 

grossly exceeded by all the code models (except EC2) (and to different extents depending on the value of 12 

T2 that has been stipulated). Such over-conservatism with the code models would hinder the use of the 13 

displacement-based seismic design principle in regions of low-to-moderate seismicity.  14 

 15 

In summary, the proposed DS model provides much better predictions of the displacement demand than 16 

code models in the intermediate and long period range (but spectral values at certain period range may 17 

exceed estimates from program STRATA because of the simple idealised shape of the DS). The proposed 18 

DS model is particularly suitable to be used for predicting displacement demand on structural systems that 19 

are found on the surface of flexible soil sites for assessing the risk of collapse and overturning.  20 

 21 

5.  Summary and Closing Remarks  22 

 23 

A heuristic site-specific design spectrum (DS) model for flexible soil sites (Ti > 0.5 s) which takes into 24 

account resonant-like amplification behaviour of soil sediments is presented in this paper. The 25 

construction of the soil DS involves estimations of the large-strain site natural period (TS) and site factor 26 

(S). The model has been well validated by comparison with results obtained from dynamic analyses of soil 27 

column models derived from real borehole records, as well as strong motion data recorded in the 1994 28 

Northridge earthquake [12,13].  29 

 30 

In the proposed hand calculation procedure, the initial small-strain site natural period (Ti) is first calculated 31 

from information of the shear wave velocity (SWV) values (inferred from SPT-N values) and thicknesses 32 

of the individual soil layers. The effects of period-shift resulting from shear straining (non-linearity) of the 33 

soil materials are then taken into account in the estimation of the (shifted/final) large-strain site natural 34 

period (TS). The process of finding the values of TS and S can be simplified further in a codified procedure 35 

through the introduction of design charts. 36 

 37 
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Finally, values of response spectral displacement maxRSD  and corner periods T1 and T2 are to be identified 1 

for construction of the soil DS in different formats. In this paper, the accuracies of DS derived from the 2 

proposed procedure have been verified by comparative analyses involving program STRATA for 3 

benchmarking purposes and five soil profiles as per information derived from authentic borehole logs. The 4 

proposed DS model provides much better predictions of the response spectral demand than code models 5 

and particularly so in the intermediate and long period range. 6 

 7 

In closing, it is acknowledged that the complex influences of the SWV profile of the site in relation to the 8 

change in the velocity values with depth could not be taken into account in the proposed procedure. In 9 

spite of this limitation, it is desirable and preferred by most practicing engineers to have a simple and 10 

convenient means of providing realistic predictions of site response behaviour and to ensure safe design, 11 

without the need to undertake dynamic (time-history) analyses of the sub-surface model of the site. In 12 

situations where dynamic analyses are employed, results generated by the analyses could be compared 13 

against estimates provided by the proposed simplified model as sanity check (thereby avoiding the 14 

dynamic analyses to become open ended).  15 

 16 
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 1 

Appendix A  2 

 3 

Table A.1  4 

Summary of the borehole records of Site 1.  5 

Type Thickness di (m) SPT-N Vi (m/s) = 314.097 N×  4di / Vi 

Alluvium (Sand) 6.0 9 193 0.124 

Alluvium (Silt) 9.0 13 216 0.167 

Residual Soil (Clay) 6.0 16 232 0.103 

Karst Deposit (Clay) 9.4 19 245 0.153 

 SH = 30.4 m  iSV , = 222 m/s Ti = 0.55 s 

  6 

Table A.2  7 

Summary of the borehole records of Site 2.  8 

Type Thickness di (m) SPT-N Vi (m/s) = 314.097 N×  4di / Vi 

Fill (Gravel, Cobble) 2.0 10 200 0.040 

Fill (Cobble, Sand) 6.5 11 206 0.126 

Fill (Gravel, Sand) 4.0 27 273 0.059 

Fill (Sand) 2.7 23 260 0.042 

Fill (Cobble, Silt) 2.8 13 217 0.052 

Marine Deposit (Clay) 2.5 16 232 0.043 

Marine Deposit (Clay) 2.5 20 248 0.040 

Marine Deposit (Clay) 2.5 19 245 0.041 

Marine Deposit (Clay) 2.5 25 267 0.038 

Marine Deposit (Sand) 2.5 33 291 0.034 

Marine Deposit (Sand) 2.7 35 296 0.036 

Alluvium (Gravel) 2.5 38 304 0.033 

 SH = 35.7 m  iSV , = 245 m/s Ti = 0.58 s 

  9 

Table A.3  10 

Summary of the borehole records of Site 3.  11 

Type Thickness di (m) SPT-N Vi (m/s) = 314.097 N×  4di / Vi 

Fill (Sand, Gravel) 4.0 6 170 0.094 

Fill (Sand, Gravel) 5.0 18 240 0.083 

Fill (Sand) 2.0 11 206 0.039 

Marine Deposit (Clay) 2.0 2 121 0.066 
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Marine Deposit (Clay) 2.0 8 186 0.043 

Alluvium (Sand) 2.0 18 240 0.033 

Alluvium (Sand) 2.0 16 232 0.035 

Granite (Silt) 2.0 16 232 0.035 

Granite (Silt) 2.0 26 270 0.030 

Granite (Sand) 2.0 45 321 0.025 

Granite (Sand) 2.0 50 331 0.024 

Granite (Sand) 2.0 51 333 0.024 

Granite (Sand) 2.0 63 356 0.022 

Granite (Sand) 2.0 90 398 0.020 

Granite (Sand) 2.0 121 437 0.018 

Granite (Sand) 2.0 207 518 0.015 

Granite (Sand) 2.0 93 403 0.020 

Granite (Sand) 2.0 193 506 0.016 

 SH = 41.0 m  iSV , = 255 m/s Ti = 0.64 s 

  1 

Table A.4  2 

Summary of the borehole records of Site 4.  3 

Type Thickness di (m) SPT-N Vi (m/s) = 314.097 N×  4di / Vi 

Fill (Sand) 11.1 36 299 0.148 

Marine Deposit (Clay) 24.6 21 254 0.387 

Alluvium (Silt/Clay) 5.9 15 225 0.105 

Tuff (Silt) 5.2 21 252 0.083 

 SH = 46.8 m  iSV , = 259 m/s Ti = 0.72 s 

  4 

Table A.5  5 

Summary of the borehole records of Site 5.  6 

Type Thickness di (m) SPT-N Vi (m/s) = 314.097 N×  4di / Vi 

Fill (Sand) 7.5 16 232 0.128 

Marine Deposit (Clay) 6.0 0.4 73 0.329 

Alluvium (Sand) 4.0 9 193 0.083 

Alluvium (Dense 

Sand) 

8.0 18 242 
0.132 

Granite (Sand) 24.0 52 335 0.287 

Granite (Sand) 8.0 105 418 0.077 

 SH = 57.5 m  iSV , = 222 m/s Ti = 1.04 s 
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 1 

 2 

 3 

 4 

 5 

Table 1 6 

Implied spectral amplification ratios (i.e. Soil DS/Rock UHS) at 0.2 s, 0.5 s, 1.0 s and 2.0 s of the DS 7 

constructed based on various codes of practice, and the corner periods T1 and T2.  8 

Code Abbreviation AS EC1 EC2 GB IBC NZS 

Principal Applicable 

Region  

Australia Europe (higher 

seismicity) 

Europe (lower 

seismicity) 

China USA New Zealand 

Ratio at 0.2 s 1.25 1.35 1.80 1.00 1.60 1.28 

Ratio at 0.5 s 2.76 2.98 2.39 2.21 3.27 2.82 

Ratio at 1.0 s 4.84 4.99 2.49 2.48 3.41 5.90 

Ratio at 2.0 s 4.66 6.40 1.92 3.40 4.38 8.37 

T1 0.8 0.8 0.3 0.5 0.46 1.0 

T2 1.5 2.0 1.2 - - 3.0 

 9 

 10 

 11 

 12 

 13 

Table 2  14 

Summary of input parameters, period-shift ratio TS / Ti, site amplification factor (S-Factor), and peak 15 

response spectral displacement ( maxRSD ) for the five example soil sites.  16 

Site H (m) VS,i (m/s) Ti (s) TiRSD (mm) TS / Ti TS (s) TsRSD (mm) S maxRSD (mm) 

1 30.4 222 0.55 17.5 1.45 0.80 25.4 4.03 102 

2 35.7 245 0.58 18.7 1.41 0.82 26.3 3.86 102 

3 41.0 255 0.64 20.5 1.39 0.89 29.0 3.78 110 

4 46.8 259 0.72 23.1 1.39 1.00 32.0 3.76 120 

5 57.5 222 1.04 32.5 1.45 1.50 39.0 4.03 157 

 17 

 18 

 19 

 20 

21 
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(d) Displacement Response Spectrum (e) Acceleration-Displacement Response Spectrum  12 
Fig. 1. Response spectra showing the effects of resonant-like soil-amplification behaviour. 13 
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 6 

 7 
Fig. 2. DS for a flexible soil site in Hong Kong constructed based on various codes of practice. (a) RSA 8 
format, normalised to the peak of the UHS (i.e. RSAmax) for rock sites in Hong Kong. (b) RSD format.  9 
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 17 
Fig. 3. Schematic diagram of the proposed site-specific DS model (in RSD format). 18 
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 14 
Fig. 4. Design chart for the period-shift ratio TS / Ti as functions of shaking level (in terms of RSVTi) and 15 

initial soil SWV (VS,i). 16 
 17 
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(a) 9 
 10 
 11 

 12 
 13 

(b) 14 

 15 

Fig. 5. Design chart for the site amplification factor (S-Factor) at TS as functions of (a) bedrock SWV (VR) 16 
and initial soil SWV (VS,i) (with fixed TiRSV = 200 mm/s), and (b) shaking level (in terms of RSVTi) and 17 

initial soil SWV (VS,i) (with fixed VR = 3000 m/s). 18 
 19 
 20 
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 1 
(a)                                                                               (b) 2 

Fig. 6. Site 1: Comparison of the proposed DS model with those constructed based on major codes of 3 
practice, and superimposed with the results from STRATA. (a) RSD format. (b) ADRS format. 4 

 5 

 6 
(a)                                                                               (b) 7 

Fig. 7. Site 2: Comparison of the proposed DS model with those constructed based on major codes of 8 
practice, and superimposed with the results from STRATA. (a) RSD format. (b) ADRS format. 9 

 10 

 11 
(a)                                                                               (b) 12 

Fig. 8. Site 3: Comparison of the proposed DS model with those constructed based on major codes of 13 
practice, and superimposed with the results from STRATA. (a) RSD format. (b) ADRS format. 14 

 15 
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 1 
(a)                                                                               (b) 2 

Fig. 9. Site 4: Comparison of the proposed DS model with those constructed based on major codes of 3 
practice, and superimposed with the results from STRATA. (a) RSD format. (b) ADRS format. 4 

 5 

 6 
(a)                                                                              (b) 7 

Fig. 10. Site 5: Comparison of the proposed DS model with those constructed based on major codes of 8 
practice, and superimposed with the results from STRATA. (a) RSD format. (b) ADRS format. 9 
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