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Emerging evidence suggests the therapeutic role of autophagic modulators in cancer

therapy. This study aims to identify novel traditional Chinese medicinal herbs as

potential anti-tumor agents through autophagic induction, which finally lead to autophagy

mediated-cell death in apoptosis-resistant cancer cells. Using bioactivity-guided

purification, we identified tetrandrine (Tet) from herbal plant, Radix stephaniae tetrandrae,

as an inducer of autophagy. Across a number of cancer cell lines, we found that

breast cancer cells treated with tetrandrine show an increase autophagic flux and

formation of autophagosomes. In addition, tetrandrine induces cell death in a panel

of apoptosis-resistant cell lines that are deficient for caspase 3, caspase 7, caspase

3 and 7, or Bax-Bak respectively. We also showed that tetrandrine-induced cell death

is independent of necrotic cell death. Mechanistically, tetrandrine induces autophagy

that depends on mTOR inactivation. Furthermore, tetrandrine induces autophagy in a

calcium/calmodulin-dependent protein kinase kinase-β (CaMKK-β), 5′ AMP-activated

protein kinase (AMPK) independent manner. Finally, by kinase profiling against 300 WT

kinases and computational molecular docking analysis, we showed that tetrandrine is

a novel PKC-α inhibitor, which lead to autophagic induction through PKC-α inactivation.

This study provides detailed insights into the novel cytotoxic mechanism of an anti-tumor

compound originated from the herbal plant, which may be useful in promoting autophagy

mediated- cell death in cancer cell that is resistant to apoptosis.

Keywords: autophagy, tetrandrine, apoptosis-resistant, mTOR, PKC-α

INTRODUCTION

Autophagy is an evolutionarily conserved mechanism by which cellular proteins and organelles
are eliminated by the lysosomal degradation pathway (Levine and Klionsky, 2004). This process
is constitutively active at a low basal level and is important for regulating cellular homeostasis by
removal of superfluous organelles and proteins. Under nutrient deprivation, ER stress and hypoxia,
autophagy is activated to generate free amino and fatty acids to facilitate mitochondrial production
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of ATP (Mizushima, 2007). An intact autophagic pathway
is necessary for promoting longevity (Madeo et al., 2010)
and defense against pathogens (Thurston et al., 2009),
whereas dysfunction of autophagic pathway is associated
with DNA damage (White, 2015), genomic instability (Mathew
et al., 2007b), tumor development (Liang et al., 1999), and
neurodegenerative disorders (Hara et al., 2006; Nah et al., 2015).
Therefore, pharmacological intervention of the autophagic
pathway can be a promising therapeutic strategy for a variety
of pathological conditions. For example, the well-known
mammalian target of rapamycin (mTOR) inhibitor rapamycin,
and recently identified active autophagic herbal compounds
onjisaponin B (Wu et al., 2013), neferine (Wong et al., 2015),
hederagenin and α-hederin (Wu et al., 2017), can induce the
mTOR-dependent autophagy with an accelerated clearance
of mutant huntingtin fragments in Huntington’s disease
models (Ravikumar et al., 2004). Carbamazepine, an autophagy
enhancer, was shown to ameliorate α1-antitrypsin deficiency
disorder (Hidvegi et al., 2010). Many studies have revealed
additional small molecules that can modulate autophagic
activity (Sarkar et al., 2007; Zhang et al., 2007; Fleming et al.,
2011). A group of natural alkaloid small-molecules, including
isoliensinine, liensinine, dauricine, and cepharanthine (Law
et al., 2014), were also reported for its ability in inducing cell
death of apoptosis-resistant cells through autophagy. However,
with the dual role of autophagy in cancer therapy (Mowers et al.,
2017), activation of autophagy during chemotherapy may play a
role in the development of anticancer drug resistance (Alderton,
2015), therefore, special cautions are required for regulating
autophagy during cancer therapy.

Previously, using an image-based autophagy assay coupled
with bioactivity-guided purification, we have identified alisol B
as a novel autophagic inducer (Law et al., 2010). Using a similar
strategy, here we report the identification of tetrandrine, a bis-
benzylisoquinoline alkaloid isolated from the roots of Radix
stephania tetrandrae (Schiff, 1987), as an inducer of autophagy.
We present evidence that tetrandrine increased autophagic flux
in several tumor cell lines, resulting in cell death. Moreover,
tetrandrine was also cytotoxic to a panel of apoptosis-resistant
cell lines. Furthermore, we showed that tetrandrine induces
mTOR-dependent autophagy, and it is independent of CaMKK-
β or AMPK signaling pathways. More importantly, we further
showed that tetrandrine induce autophagy via direct inhibition
of PKC-α. Together, our work provides novel insights into the
molecular mechanism of tetrandrine-induced cell death, and
identified PKC-α as a potential cellular target of tetrandrine.

MATERIALS AND METHODS

Chemicals, Plasmids, Small Interfering
RNAs, and Antibodies
All chemicals were obtained from Sigma-Aldrich (St. Louis, MO)
unless otherwise specified. Compound C, BAPTA/AM, E64D,
pepstatin A and STO-609 were purchased from Calbiochem
(San Diego, CA). Actinomycin D was obtained from Gibco R©

(Grand Island, NY). Iso-tetrandrine was purchased from Wako

Pure Chemical Industries, Ltd (Japan). Tetrandrine (Tet) was
from Sigma-Aldrich (St. Louis, MO). Fangchinoline was from
Chengdu MUST Bio-technology Co. Ltd. (China). Antibodies
against p70S6 kinase, phospho-p70S6 kinase (Thr389), AMPKα,
phospho-AMPKα (Thr172) were purchased from Cell Signaling
Technologies Inc. (Beverly, MA). p62 (SQSTM1) antibodies
were purchased from Santa Cruz Biotechnology (Santa Cruz,
CA). Anti-LC3 antibody was from Novus Biologicals (Littleton,
CO). Anti-β-actin antibody was from Sigma. pEGFP-LC3
reporter plasmid was a gift from Prof. Tamotsu Yoshimori
(Osaka University, Japan). Small interfering RNAs and non-
targeting control were obtained from Qiagen (Valencia,
CA).

Cell Culture
HeLa (ATCC R© CCL-2TM) and MCF7 (ATCC R© HTB-22TM)
were obtained from American Type Culture Collection (ATCC)
(Rockville, MD). Immortalized wild type (WT) and ATG7-
deficient mouse embryonic fibroblasts (MEF) were kindly
provided by Prof. Masaaki Komatsu (Juntendo University
School of Medicine, Japan). Immortalized wild type and
caspase 3/7-deficient MEFs were kindly provided by Prof.
Richard A. Flavell (Yale University School of Medicine, United
State). Immortalized wild type and caspase 8-deficient MEFs
were kindly provided by Prof. Kazuhiro Sakamaki (Kyoto
University, Graduate School of Biostudies, Japan). Immortalized
wild type and Bax-Bak double knockout MEFs were kindly
provided by Prof. Shigeomi Shimizu (Tokyo Medical and Dental
University, Medical Research Institute, Japan). All medium
supplemented with 10% fetal bovine serum (FBS), 50 U/ml
penicillin, and 50 µg/ml streptomycin (Invitrogen, Paisley,
Scotland, UK). All cell cultures were incubated at 37◦C in a
5% humidified CO2 incubator. Iso-tetrandrine, tetrandrine and
fangchinoline were dissolved in DMSO before adding to the
culture medium.

Quantification of GFP-LC3 Puncta
Cells were fixed with 4% paraformaldehyde (Sigma),
permeabilized with methanol, and nuclei were stained with 4′,
6-diamidino-2-phenylindole (DAPI). The localization of GFP-
LC3 was examined and captured by a Photometrics CoolSNAP
HQ2 CCD camera on the Olympus IX71-Applied Precision
DeltaVision restoration microscope (Applied Precision, Inc,
USA). To quantify autophagy, the percentage of cells with
punctate GFP-LC3 fluorescence was calculated by counting the
number of the cells showing the punctate pattern of GFP-LC3 in
GFP-positive cells. A minimum of 300 cells from three randomly
selected fields were scored per condition per experiment.

Cytotoxicity Assays and Apoptosis
Detection
In brief, all tested compounds were dissolved in DMSO at a
final concentration of 100 mmol/L. Cell viability was measured
by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) reagent (Wong et al., 2005). Firstly, cells were
seeded in 96-well plates for overnight incubation, and then
exposed to different concentrations of tetrandrine or other tested
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compounds (0–100µM) for 48 h. Ten microliter of MTT reagent
was added to each well and incubated at 37◦C for 4 h. This was
followed by the addition of 100µL of solubilization buffer (10%
SDS in 0.01mol/LHCl). Absorbance at OD570 nm was determined
from each well on the next day. The percentage of cell viability
was calculated using the following formula: Cell viability (%) =
Cells number (treated)/Cells number (DMSO control) × 100.
Apoptosis detected by annexin V staining kit (BD Biosciences)
was performed according to the manufacturer’s instructions.
Cells were then analyzed by FACSCalibur flow cytometer (BD
Biosciences) (Wu et al., 2015).

Transmission Electron Microscopy
Cells were fixed overnight with 2.5% glutaraldehyde followed by a
buffer wash. Samples were post-fixed in 1% OsO4 and embedded
in Araldite 502. Ultrathin sections were double stained with
uranyl acetate and lead citrate, and analyzed by Philips CM 100
transmission electronmicroscope at a voltage of 80 kV (Law et al.,
2010).

Real-Time PCR Analysis
Total RNA was extracted using RNeasy R© Mini Kit (Qiagen).
First strand cDNA was synthesized using the High Capacity
RNA-to-cDNA Master Mix (Applied Biosystems). To detect
mRNA expression levels, qPCR was performed using
primers p62: 5′-GGAGCAGATGAGGAAGATCG-3′ and
5′- GACGGGTCCACTTCTTTTGA-3′. The real time PCR
reactions were performed by ViiATM 7 Real-Time PCR System
(Applied Biosystems) using SYBR Green Master Mix (Applied
Biosystems). Each qPCR reaction was carried out in triplicate
with gene-specific amplification confirmed by melting-curve
analysis.

SDS-PAGE and Western Blot
Western blot were performed as described (Rouzier et al., 2005).
Total S6K and 4E-BP1 level were analyzed by separating protein
samples on a 10% acrylamide gel containing 0.1% methylene
bisacrylamide and 13.5% acrylamide gel with 0.36% methylene
bisacrylamide, respectively as described (Balgi et al., 2009).

Biochemical Kinase Profiling
(WholePanelProfiler)
According to ProQinase biochemical kinase assay protocol,
the kinase inhibition profile of tetrandrine was determined by
measuring residual activity values at two concentrations (1 and
10µM) in singlicate in 300 wild-type protein kinase assays
conducted by ProQinase1 (Freiburg, Germany). In brief, the
compoundwas dissolved as 100X stock solutions in 100%DMSO.
The final DMSO concentration in all reaction cocktails (including
high and low controls) was 1%. A radiometric protein kinase
assay (33PanQinase R© Activity Assay) was used for measuring
the kinase activity of the selected 300 protein kinases. All kinase
assays were performed in 96-well FlashPlatesTM from Perkin
Elmer (Boston, MA, USA) in a 50µl reaction volume. The
reaction cocktail was pipetted in 4 steps in the following order:

1http://www.proqinase.com

(i) 10µl of non-radioactive ATP solution (in H2O), (ii) 25µl of
assay buffer/[γ-33P]-ATPmixture, (iii) 5µl of test sample in 10%
DMSO and (iv) 10µl of enzyme/substrate mixture. The protein
kinase reaction cocktails were incubated at 30◦C for 60min and
then stopped with 50µl of 2% (v/v) H3PO4. Incorporation of
33Pi (counting of “cpm”) was determined with a microplate
scintillation counter (Microbeta, Wallac). All protein kinase
assays were performed with a BeckmanCoulter Biomek 2000/SL
robotic system. The difference between high and low control of
each enzyme was taken as 100% activity. The residual activity (in
%) for each compound well was calculated by using the following
formula: Res. Activity (%) = 100 × [(signal of compound − low
control)/(high control − low control)] (Karaman et al., 2008;
Lotz-Jenne et al., 2016).

Live-Cell Imaging
Autophagy induction was visualized in MCF-7 cells which
transiently transfected with GFP-LC3, and then placed on the
microscope stage covered with a 37◦C chamber in which a
humidified premixed gas consisting of 5% CO2 and 95% air
was infused. After the treatment with tetrandrine (10µM),
cells with GFP-LC3 fluorescence puncta were observed
using 60X Olympus PlanApoN 1.42 oil objectives at 512 nm
emission. Both Differential interference contrast (DIC) and
fluorescent images were acquired at 5-min intervals using
high magnification widefield epifluorescence microscopy.
Images were captured as serial Z-sections of 1.0µm interval
by a Photometrics CoolSNAP HQ2 CCD camera on the
Olympus IX71-Applied Precision DeltaVision restoration
microscope, and the epifluorescence images were numerically
deconvolved using DeltaVision algorithms (Applied Precision,
Inc.).

Molecular Docking Study
The 3D structure of PKC-α protein was obtained from the
Protein Data Bank (PDB ID: 4RA4), and then prepared with
the Protein Preparation Wizard. The structures of tetrandrine
and fangchinoline were downloaded from ZINC database, and
preprocessed by LigPrep under the OPLS-2005 force field
(Jorgensen et al., 1996). After the corresponding lowest-energy
conformation of each compound was obtained, tetrandrine
and fangchinoline were docked into the binding site of
PKC-α protein using the Glide module (Friesner et al.,
2006) with the standard precision (SP) scoring mode. The
docking grid box of tetrandrine/fangchinoline was defined
according to the ligand (compound 28) in the original complex
(PDB ID: 4RA4). For each system, the pose with the best
docking score was chosen for further analysis. The molecular
docking process was carried out with the Schrödinger 2015
software.

Statistical Analysis
The results were expressed as means ± SEM. as indicated.
The difference was considered statistically significant when the
P-value was less than 0.05. Student’s t-test or one-way ANOVA
analysis was used for comparison among different groups (Law
et al., 2010; Wu et al., 2013).
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FIGURE 1 | Structure of tetrandine and fangchinoline.

RESULTS

Identification of Tetrandrine as an Inducer
of Autophagy Using GFP-LC3 Screening
Assay
We have established a GFP-LC3 reporter system to screen
for novel inducers of autophagy (Law et al., 2010). This was
done by transient expression of GFP-LC3 reporter construct in
MCF-7 cells, followed by treating cells with partially purified
extracts from our natural product collection derived from
traditional medicinal herbs. Cells treated with DMSO were
used as negative control. Cell images in individual well were
captured by fluorescence microscopy and the levels of autophagy
were quantified. In the screen, among others, an ethanol-
extracted fraction obtained from the root of Stephania tetrandra
consistently increased the percentage of cells exhibiting GFP-
LC3 puncta (Figure S1A). The fraction was subjected to further
purification using flash column chromatography on silica gel
(Figure S1B). The active compound in the purified active
fraction was deduced by comparing its 1H and 13C nuclear
magnetic resonance spectroscopic data (data not shown) with
those of known S. tetrandrae components and was identified to
be tetrandrine (6,6′,7,12-tetranmethoxy-2,2′-dimethyberbaman,
C38H42O6N2, 622.7) (Figure 1).

Autophagic Activity of Tetrandrine and its
Derivatives toward Different Cancer Cell
Lines
To further confirm the role of tetrandrine in the induction
of autophagy, we examined the autophagic and cytotoxic
activity of tetrandrine, and its structural derivatives, iso-
tetrandrine (Iso-Tet) and fangchinoline respectively, using
a panel of cell lines of different origins (MCF-7, PLC-5,
SK-Hep1, HeLa, and PC3). Time lapse picture recording

(Video 1) showed that, in MCF-7 cells, formation of GFP-
LC3 puncta was observed after treatment with tetrandrine
(5 µM) for 6 h (Figure S1C). Tetrandrine, and the two
structurally-related derivatives, significantly induced GFP-LC3
puncta formation in all cell lines examined with similar potencies
(5 µM) (Figure 2A). Tetrandrine induces GFP-LC3 puncta
formation in wild-type (WT) mouse embryonic fibroblasts
(MEFs), but not in Atg7-deficient MEFs (Figure 2B), suggesting
that tetrandrine is a genuine autophagic inducer. Autophagic
activity of tetrandrine was further confirmed by transmission
electron microscopy, which revealed numerous autophagosomes
in tetrandrine-treated MCF-7 cells characterized by double
membrane structures, as well as autophagic vacuoles containing
degraded organelles (Figure 2C). Furthermore, tetrandrine
significantly increased LC3-II formation in the presence of
lysosomal protease inhibitors (Figure 2D). Together these
data suggested that tetrandrine is an autophagic inducer,
and it induces autophagy through enhanced autophagosome
formation. However, autophagic induction was associated with
an unexpected upregulation of p62 (Figure 2E), which is an
ubiquitin-binding protein that binds to LC3 and degraded
by autophagy (Ichimura et al., 2008). While an accumulation
of p62 occurs upon inhibition of autophagy (Bjorkoy et al.,
2009), our subsequent analysis revealed that tetrandrine increases
p62 mRNA level (Figure S2A). Accordingly, inhibition of gene
transcription by actinomycin D led to a marked reduction
in p62 protein level in response to tetrandrine treatment
(Figure S2B), suggesting that p62 was indeed subjected to
autophagic degradation.

Tetrandrine Induces Autophagy through
the mTOR-Dependent Pathway
Many of the signaling pathways known to regulate autophagy
merge at mTOR, but emerging data also suggested that autophagy
could also be induced via calcium (Ca2+)-associated, mTOR-
independent mechanisms (Fleming et al., 2011). Tetrandrine
has been suggested to act as L-type Ca2+ channel antagonist
(Wang et al., 2004) and an inhibitor of the endosomal
calcium channels (Sakurai et al., 2015). Other L-type Ca2+

channel antagonists, such as verapamil and loperamide (Williams
et al., 2008), induces autophagy, suggesting that tetrandrine
may induce autophagy via a calcium-dependent mechanism.
However, depletion of CACNA1C (calcium voltage-gated
channel subunit alpha1 C) of the channel in MCF-7 cells by
siRNA did not attenuate tetrandrine-induced GFP-LC3 puncta
formation (Figure 3A), suggesting an alternative mechanism is
responsible for tetrandrine-induced autophagy. On the other
hand, Ca2+ mobilizing agents are known to induce autophagy
through the CaMKK-β-AMPK-mTOR signaling cascade (Hoyer-
Hansen and Jaattela, 2007). We therefore investigated whether
CaMKK-β inhibitor (STO-609) (Tokumitsu et al., 2002),
or intracellular Ca2+ chelator (BAPTA/AM), abolishes the
activity of tetrandrine on autophagy. As revealed by the
quantified percentage of cells with induction of autophagy,
neither STO-609 (Figure 3B) nor BAPTA/AM (Figure 3C)
inhibits GFP-LC3 puncta formation induced by tetrandrine after
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FIGURE 2 | Tetrandrine (Tet) induces autophagy in multiple cell lines. (A) A panel of cancer cells lines expressing GFP-LC3 were treated with the indicated

compounds at 5 µM for 16 h. (B) Both ATG7+/+ wild-type and ATG7−/− deficient (KO) MEFs were transiently transfected with the GFP-LC3 plasmid for 24 h and

then treated with DMSO (Ctrl) or 5 µM Tet for 16 h. The cells were then fixed for fluorescence imaging and cells counting. Magnification: x63. (C) Representative

electron micrographs showing the ultrastructures of MCF-7 cells treated with Tet (5 µM) for 0–48 h. Magnification: x5600. Arrows, double-membraned

autophagosomes. Magnification: x24000. (D) MCF-7 cells were treated with Tet (5 µM) and lysosomal protease inhibitors (E64d and pepstatin A) (10 µg/mL each),

either alone or in combination, for 0–24 h. Cell lysates were analyzed by western blot for LC3 conversion. (E) Induction of p62 by Tet (5 µM) in MCF-7 cells. Cell

lysates were analyzed by western blot for p62 and β-actin respectively. The results are representative of three independent experiments.

immunocytochemistry (ICC) analysis (Figures S3A,B). Taken
together, these data suggested that tetrandrine induces autophagy
through a calcium-independent mechanism.

Autophagy acts an alternative cellular energy source
under nutrient- or growth factor-deprived state by degrading
intracellular materials to generate free amino and fatty acids
that fuel ATP production (Mizushima, 2007). Nutrient

deprivation activates autophagy through an AMPK-mTOR-
dependent pathway, where activated AMPK will lead to the
inactivation of mTOR (Mizushima, 2007). To elucidate the
role of this pathway, we first determined if cells treated with
tetrandrine resulted in the inhibition of p70S6 kinase (p70S6K)
and eukaryotic translation initiation factor 4EBP, both are
downstream effectors of mTOR. Cells treated with tetrandrine
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FIGURE 3 | Tetrandrine induces autophagy through the mTOR-dependent pathway. (A) Quantitation on the percentage of CACNA1C gene knockdown MCF-7 cells

with GFP-LC3 puncta formation after treatment with Tet (5 µM) for 16 h. (B) Bar chart showed the percentage of GFP-positive cells with GFP-LC3 puncta after 5 µM

of Iso-Tet or Tet treatment in the presence or absence of STO-609 (25µM), or (C) Bapta/AM (25µM) for 16 h. (D) MCF-7 cells were treated with 0–20 µM of Tet for

16 h and the cell lysates were analyzed for p-p70S6K and p70S6K, (E) p-4EBP and 4EBP, (F) p-AMPK and AMPK, and β-actin respectively. Cells treated with alcar (1

mM) and rapamycin (rap) (300 nM) for 8 and 16 h respectively were used as positive control. Solid lines represent chopped image from the same gel under same

exposure. (G) Percentage of GFP-positive cells with GFP-LC3 puncta formation after 5 µM of Iso-Tet or Tet treatment in the presence or absence of compound C

(10µM) for 16 h. Treated cells were fixed for fluorescence imaging and cells counting. Columns, means of three independent experiments; bars, SEM. ***p < 0.001.

showed a substantial increase in the dephosphorylation of
p70S6K (Figure 3D) and 4EBP (Figure 3E) respectively,
suggesting the inactivation of mTOR. Nevertheless, tetrandrine
treatment did not lead to the activation of AMPK (Figure 3F).

Furthermore, compound C, an AMPK inhibitor, did not
mitigate tetrandrine-induced GFP-LC3 puncta formation
(Zhou et al., 2001; Figure 3G, Figure S3C). Together these
data suggested that tetrandrine induces autophagy via an
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FIGURE 4 | Tetrandrine induces autophagy through PKC-α inhibition. (A) Kinase inhibition profile of Tet was determined by measuring the residual activity values of

300 wild-type protein kinases. Bar chart represents the identification of the kinases whose residual activity dropped below 50% when treated with 1 µM of tetrandrine.

Receptor tyrosine kinase (EpHA5), protein-tyrosine kinase (FES), fibroblast growth factor receptor 2 (FGFR2) and PKC-α with residual activity dropped below 50%

were shown. (B) The binding modes of (a) compound 28, (b) tetrandrine, or (c) fangchinoline with PKC-α, and (d) the aligned conformations of tetrandrine and

fangchinoline in complex with PKC-α. (C) HeLa and MCF-7 cells were transfected with control negative siRNA sequence or PKC-α-siRNA together with GFP-LC3

plasmid for 24 h; cells were then fixed for fluorescence microscopic analysis, and (D) western blot analysis for targeting PKC-α, p-PKC-α and LC3-II in MCF-7 cells,

respectively. Bar chart represents the percentage of cells with GFP-LC3 puncta formation. (E) MCF-7 cells transiently transfected with the GFP-LC3 plasmid for 24 h

were treated with DMSO (Ctrl) or 5µM of Tet in the presence or absence of PKC-α activator, PMA, with the indicated concentrations for 16 h. Arrows indicated cells

with GFP-LC3 puncta formation. Bar chart represents the percentage cells with GFP-LC3 puncta formation. Columns, means of three independent experiments; bars,

SEM. ***p < 0.001. (F) MCF-7 cells were treated with DMSO (Ctrl) or 5µM Tet in the presence or absence of PMA (10 ng/ml), for 16 h before subjecting to western

blot analysis.
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mTOR-dependent mechanism which does not involve AMPK
activation.

Tetrandrine Induces Autophagy via PKC-α
Inhibition
To further elucidate the mechanism of action of tetrandrine-
induced autophagy, kinase profiling assay was conducted by
screening tetrandrine against 300 recombinant kinases. The
selectivity screen revealed that tetrandrine inhibits the activity
of EpHA5, FES, FGF-R2, and PKC-α by over 50% respectively
(Figure 4A and Table S1). Tetrandrine exhibited the highest
potency on PKC-α, where there was a 89% inhibition on the
enzyme activity at 1 µM, suggesting tetrandrine as a potential
PKC-α inhibitor. Computational docking was used to predict the
binding mode of tetrandrine in PKC-α. The molecular docking
results showed that the glide score of PKC-αwith tetrandrine and
its analog (fangchinoline) was similar (−5.47 vs.−4.48 kcal/mol),
indicating their binding motif is similar, but with relatively
weaker binding affinities when compared with the reported
ligand (compound 28) (−8.08 kcal/mol) in the original complex
(PDB ID:4RA4). Molecular docking analysis of the compound
28 (Figure 4Ba), tetrandrine (Figure 4Bb) and fangchinoline
(Figure 4Bc) revealed that all of them interact with PKC-α at
similar amino acid residues, including Phe350, Val353, Met417,
Val420, Met470, Asp467, and Asn468. Further structural analyses
show that -COOH of Asp481 can form a strong salt bridge with
tetrandrine and fangchinoline. The pi-pi stacking interaction
exits between Phe350 and the phenyl group of tetrandrine or
fangchinoline, further suggests that fangchinoline may adopt the
similar conformation with tetrandrine when binding to PKC-
α. The conformation results of fangchinoline and tetrandrine
that aligned well in the complex with PKC-α (Figure 4Bd) have
further confirmed tetrandrine and fangchinoline possess similar
binding modes with PKC-α.

To substantiate the role of PKC-α in autophagy, we elucidated
the consequence of PKC-α depletion in GFP-LC3 puncta
formation. Cells expressing PKC-α siRNA but not control siRNA,
exhibited a significant increase in GFP-LC3 puncta formation
(Figure 4C), and LC3-II level (Figure 4D). It is noteworthy
that the addition of tetrandrine further augmented LC3-II level
in PKC-α knockdown cells, suggesting that tetrandrine may
potentiate autophagy by inhibiting the activity of residual PKC-
α. On the other hand, GFP-LC3 puncta formation (Figure 4E)
and LC3-II level (Figure 4F) were suppressed by the addition
of phorbol 12-myristate 13-acetate (PMA), a well-known PKC
activator, in tetrandrine-treated cells. Together these data
suggested that tetrandrine induces autophagy via inhibition of
PKC-α.

Tetrandrine Induces Autophagic Cell Death
in Apoptosis-Resistant Cells
To explore whether tetrandrine could act as an autophagic
inducer with anti-cancer activity, we determined the cytotoxicity
of tetrandrine, iso-tetrandrine and fangchinoline respectively,
toward a panel of cancer cell lines. Tetrandrine exhibited the

TABLE 1 | Cytotoxicity of tetrandrine and related compounds against different

tumors.

Compounds IC50 (mmol/L)

Cell type Iso-tetrandrine Tetrandrine Fangchinoline

HeLa 29.3 ± 0.1 11.7 ± 1.1 8.3 ± 1.5

MCF-7 26.4 ± 0.9 14.0 ± 0.6 19.2 ± 6.8

PC3 17.8 ± 2.4 8.2 ± 2.9 35.5 ± 10.5

SKHep-1 24.0 ± 2.2 9.3 ± 0.6 14.0 ± 2.7

HepG2 17.5 ± 3.5 8.2 ± 1.6 4.8 ± 0.3

PLC5 20.8 ± 3.5 8.9 ± 0.3 28.1 ± 4.8

Cell viability was measured by MTT assay at 48 h after compounds treatment. The

IC50 (mean ± S.E.M.) was determined graphically from the survival curves.

highest cytotoxic activity against various cell lines, whereas iso-
tetrandrine and fangchinoline were less effective (Table 1). On
the other hand, ATG7-deficient MEFs (IC50 = 8.5µM) were
more resistant to tetrandrine-induced cell death when compared
to ATG-WT MEF cells (IC50 = 3.48µM) (Figure 5A). This
observation was further supported by the cell death analysis using
annexin V staining, which demonstrated a significant higher
percentage of cell death in ATG-WT MEFs when compared to
ATG7-deficient MEFs after tetrandrine treatment (Figure 5B),
suggesting that autophagy may be involved in tetrandrine-
induced cell death.

Cancer cells are frequently resistant to apoptosis (Holohan
et al., 2013). We therefore evaluated if tetrandrine could enhance
cell death in apoptosis-resistant cancer cells. In this connection,
we evaluated the cytotoxicity of tetrandrine using a panel
of apoptosis-defective or apoptosis-resistant cells, including
MEFs that were deficient for caspase 3, caspase 7, caspase
3 and 7 (Figure 5C), and Bax-Bak (Figure 5D) respectively.
Tetrandrine exhibited similar potency toward each of these cell
lines compared to the WT cells, suggesting that tetrandrine
might induce cell death in the absence of apoptosis. To
further evaluate if tetrandrine-induced autophagic cell death is
associated with necrotic cell death, where a connection between
the two mechanisms has been evidenced (Nikoletopoulou et al.,
2013), Bax-Bak double knockout (DKO) MEFs were treated with
tetrandrine in the presence of necrostatin (Nec-1), a widely used
inhibitor of RIPK1 kinase activity which can block necrotic cell
death (Vandenabeele et al., 2013). As showed in Figure 5E, Nec-1
failed to suppress cell death induced by tetrandrine, suggesting
that necrotic cell death might not be involved, and further
suggests the involvement of autophagy in tetrandrine-induced
cell death.

DISCUSSION

Autophagy is a conserved cellular lysosomal degradation process
responsible for the digestion and recycle of cytoplasmic materials
for maintaining normal cellular homeostasis (Levine and
Klionsky, 2004; Mizushima, 2007). Malfunction in autophagic
pathways are frequently found in cancer (Sui et al., 2013),
neurodegeneration diseases (Nixon, 2013) or myopathies (Sandri
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FIGURE 5 | Tetrandrine induces autophagic cell death in apoptosis resistant cells. (A) Cytotoxicity of Tet on ATG7 wild-type and ATG7−/− MEFs as measured by

MTT assay, and (B) flow analysis after annexin V staining. (C) Cytotoxicity (IC50) of Tet on caspase 3/7 or caspase 3 and 7 knockout cells (left panel), caspase 8

knockout cells (middle panel), and Bax-Bak wild-type and DKO deficient MEFs cells (right panel). (D) Tet-mediated cell cytotoxicity (IC50) in Bax-Bak DKO MEFs with

the presence of 10µM necrostatin (Nec-1) for 24 h as measured by MTT assay, and (E) flow cytometry analysis after annexin V staining. Results shown are the means

± S.E.M. of three independent experiments. **p < 0.01; *p < 0.05.

et al., 2013). With its regulatory role in the pathogenesis of
cancer, loss of the autophagy gene such as beclin1 was reported
in different types of human cancers (Mathew et al., 2007a).

Although clinically approved agent, rapamycin, was suggested
to be a potential therapeutic anti-cancer via the induction
of autophagic cell death (Mathew et al., 2007a; Yang et al.,
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2011), it possess side effects in affecting protein synthesis
and cell proliferation (Levine and Kroemer, 2008; Pallet and
Legendre, 2013). Therefore, a new direction of identifying novel
autophagic enhancers from natural products or herbal medicines
for therapeutic application has been highlighted (Law et al.,
2016).

Tetrandrine, a bisbenzylisoquinoline alkaloid, exhibits
anticancer activity (Meng et al., 2004; Chen et al., 2009; Wu
et al., 2010) and is used as a calcium channel blocker to treat
hypertensive and arrhythmic conditions in traditional Chinese
medicine (Yu et al., 2004). Recent literature has reported
the novel antiviral function of tetrandrine by inhibiting the
Ebola viral infection of human macrophages in vivo, and with
high efficacy in mice model (Sakurai et al., 2015). Besides, it
can inhibit wnt/β-catenin signaling and suppresses tumor of
colorectal cancer (He et al., 2011). It also induces early G1
arrest accompanied by apoptosis in human colon cancer cells
model (Meng et al., 2004). Although the anti-tumor action and
mechanism of tetrandrine and its derivative fangchinoline have
been reported, its role in autophagy induction and its potential
application as an anti-tumor agent is still under investigation.
By reporting a novel pathway of tetrandrine induced autophagy
through PKC-α inhibition, we showed that tetrandrine exerted
its autophagic effect through an AMPK independent mechanism,
which did not affect the mitochondria membrane potential
nor the oxidative stress pathway in MCF-7 cells (data not
shown). Recent report has suggested that tetrandrine may play a
therapeutic role in hepatocellular carcinoma through autophagy
mediated via reactive oxygen species (ROS)/extracellular
signal-regulated kinase (Gong et al., 2012). Furthermore, while
Yibin Feng (Wang et al., 2011) has reported the autophagic
effect of fangchinoline, via p53/sestrin2/AMPK signaling in
human hepatocellular carcinoma cells, we are the first group
demonstrating the autophagic effect of tetrandrine through
PKC-α inhibition and mTOR inhibition in breast cancer cells,
which is independent of AMPK, ROS and sestrin2 signaling
pathway. Although all these studies have supported our findings
that tetrandrine may play its tumor suppression role in cancer
regulation through autophagy induction, the anti-cancer
properties and molecular mechanisms of tetrandrine is likely to
be cell-type specific, therefore, its beneficial effects in different
cell types remained to be further investigated.

Although recent report showed that palmitic acid induced-
autophagy is regulated via protein kinase C-mediated
signaling pathway that is independent of mTOR pathways
(Tan et al., 2012), other studies have demonstrated that
hypercholesterolemia was associated with hyperactive signaling
upstream and downstream of both mTOR complexes, including
myocardial Akt, S6K1, 4EBP1, S6, and PKC-α, leading to reduced
levels of myocardial autophagy (Glazer et al., 2009). Their
findings further suggested that PKC-α could be down-regulated
upon mTOR inhibition. Concomitantly, tetrandrine-induced
autophagy was dependent on mTOR inhibition, and its effect was
associated with the dephosphorylation of p70S6K and down-
regulation of PKC-α. In fact, autophagy induction was found
in PKC-α knockdown cells and activation of PKC-α by PMA
could markedly abrogate the tetrandrine -mediated autophagy.

Taken together, our findings provide a novel insight into the
role of PKC-α signaling in autophagy induction by tetrandrine
in breast cancer cells. PKC-α has been long recognized as
important kinase for tumor growth, proliferation, survival,
differentiation and motility. Many studies have reported the
role of PKC-α in enhancing proliferation and anti-apoptotic
signals, however, due to its very complex and highly tissue-
specific functions, PKC-α can also act as a tumor promoter
or a tumor suppressor depending on the cellular context. For
example, PKC-α is up-regulated in bladder, endometrial, and
breast cancer, but down-regulated in colorectal tumors and
malignant renal cell carcinomas. Therefore, further investigation
is required for interfering PKC in cancer therapy (Garg et al.,
2014).

Autophagic cell death is characterized by extensive
sequestration of cytoplasm leading to cell death with the
formation of autophagosomes or autolysosomes (Kroemer and
Levine, 2008). Recently, a new form of autophagy-dependent
cell death called autosis, which is mediated by the Na+, K+-
ATPase pump with unique morphological phenotype is reported.
Autosis can be triggered by autophagy-inducing peptides or
starvation that finally lead to excessive autophagy induction and
cell death (Liu and Levine, 2015). Therefore, the mechanistic
pathway regulating the form of tetrandrine -induced cell death
may worth us to further investigate in the future. Although
there is still no determinant evidence to support a certain
form or mechanism of autophagic cell death actually exist, it
is quite supportive that constitutive autophagy could finally
destroy a cell and lead to cell death (Tsujimoto and Shimizu,
2005).

Recent findings suggested that cytotoxic stimuli could activate
autophagic cell death in cells that are resistant to apoptosis,
for example, in cells expressing anti-apoptotic Bcl-2 or Bcl-
xL, or those lacking both Bax and Bak (Shimizu et al., 2004).
Natural polyphenolic compounds such as curcumin, genistein,
resveratrol, rottlerin, and quercetin have been reported recently
for their abilities in inducing cell death via autophagy induction
(Hasima and Ozpolat, 2014). Therefore, autophagy inducing
compounds co-treated with standard cancer therapies have
been proposed. Our recent publications have demonstrated
that small molecules-mediated autophagic cell death, may work
as a potential anti-cancer therapeutic approach for sensitizing
apoptosis-resistant cancer cells to cell death (Wong et al., 2013;
Law et al., 2014). However, during tumor development and
in cancer therapy, autophagy has been reported to have dual
roles in promoting both cell survival and cell death (Rosenfeldt
and Ryan, 2011). Many reports have suggested the protective
role of autophagy in promoting tumor cell survival under
metabolic or hypoxic stressful conditions (Degenhardt et al.,
2006; Karantza-Wadsworth et al., 2007; Mathew et al., 2007b).
Therefore, defining the role of autophagy in different cases
is critical in cancer therapy. Since autophagic cell death is
involved in various human diseases, it is important to study the
molecular basis of autophagic cell death in different cell types,
so that specific targeted therapeutic strategies could be developed
with the novel discovery of active natural products in cancer
therapy.
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Figure S1 | Bioactivity guided purification of Stephaniae tetrandrae crude extract.

(A) MCF-7 cells expressing GFP-LC3 were treated with the ethanol-extracted

fraction (100µg/ml) and (B) partially purified fractions (50µg/ml) from the root of

Stephania tetrandra, for 16 h. Representative fluorescence images depicting the

formation of GPF-LC3 puncta were shown. (C) Time lapse pictures (with time

lapse video, Video 1) on the induction of autophagy in MCF-7 cells treated with

5µM of tetrandrine (duration for 6 h) were shown. The panel of time lapse

fluorescent pictures showed the progressive increase in the number of GFP-LC3

punctate formation (yellow arrows) in cells from 0 to 6 h, and finally, cell death as

indicated by the burst of cells (red arrows).

Figure S2 | Tetrandrine increases expression of p62 mRNA level. (A) MCF-7 cells

were treated with tetrandrine (5 µM) from 0 to 48 h. The induction of p62 mRNA

were assessed by real time-PCR and normalized against β-actin as the

housekeeping gene. (B) MCF-7 cells were pre-treated with actinomycin D (ACD)

(2.5 µg/ml) for 1 h before tetrandrine (5 µM) treatment for 16 h. Cell lysates were

then analyzed for p62 and β-actin. Columns, means of three independent

experiments; bars, SEM. ∗∗P < 0.01.

Figure S3 | Tetrandrine induces autophagy via a calcium or AMPK independent

pathway. (A) Representative pictures showing punctated GFP fluorescence in

GFP-LC3 expressing MCF-7 cells treated with Tet (5 µM) or DMSO (ctrl) in the

presence or absence of CaMKK-β inhibitor, STO-609 (25 µM), or (B) calcium

chelator, Bapta-AM (25 µM), or (C) AMPK inhibitor, compound C (10 µM) for 16 h.

Cells were then fixed for fluorescence imaging and cells counting. The results were

representative images from three independent experiments.

Table S1 | Profiling of tetrandrine at two concentrations (1 and 10 µM) against

300 wild-type protein kinases. Kinase with residual activity <50% were highlighted

in yellow.
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