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ABSTRACT

Cancer therapies have experienced rapid progress
in recent years, with a number of novel small-
molecule kinase inhibitors and monoclonal antibod-
ies now being widely used to treat various types
of human cancers. During cancer treatments, mu-
tations can have important effects on drug sensi-
tivity. However, the relationship between tumor ge-
nomic profiles and the effectiveness of cancer drugs
remains elusive. We introduce Mutation To Can-
cer Therapy Scan (mTCTScan) web server (http:
//jjwanglab.org/mTCTScan) that can systematically
analyze mutations affecting cancer drug sensitivity
based on individual genomic profiles. The platform
was developed by leveraging the latest knowledge on
mutation-cancer drug sensitivity associations and
the results from large-scale chemical screening us-
ing human cancer cell lines. Using an evidence-
based scoring scheme based on current integrative
evidences, mTCTScan is able to prioritize mutations
according to their associations with cancer drugs
and preclinical compounds. It can also show related
drugs/compounds with sensitivity classification by
considering the context of the entire genomic profile.
In addition, mTCTScan incorporates comprehensive
filtering functions and cancer-related annotations to
better interpret mutation effects and their association

with cancer drugs. This platform will greatly bene-
fit both researchers and clinicians for interrogating
mechanisms of mutation-dependent drug response,
which will have a significant impact on cancer preci-
sion medicine.

INTRODUCTION

An increasing number of cancer drugs have been developed
to treat various types of human cancers. Studies have indi-
cated that the genomic context of a tumor is a major factor
affecting the effectiveness of cancer drugs (1). Tumor ge-
nomic alterations could either confer changes in drug sensi-
tivity (2) or could be used to identify subsets of patients with
a dramatic response (3). However, the association between
tumor genomic profiles and drug effectiveness remains to be
fully determined. To date, only a small proportion of cancer
genomic alterations have been confirmed to be actionable
with approved agents.

Recently, there have been unprecedented advancements
in next generation sequencing technologies that now allow
high-throughput tumor genomic profiling at relatively low
cost. Along with the precision medicine initiative, large scale
clinical trials, such as the NCI-Molecular Analysis for Ther-
apy Choice (NCI-MATCH, also referred as NCT02465060
in ClinicalTrials.gov), are being conducted to investigate
the association between drug response and somatic muta-
tions (4). Meanwhile, rapidly accumulating data from chem-
ical screening on cancer cell lines including the cancer cell
line encyclopedia (5), Cancer Therapeutics Response Portal
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(6,7) and Genomics of Drug Sensitivity in Cancer (GDSC)
(8–10), can provide both drug sensitivity and cancer cell line
genomic profiles. Both efforts are continuing to generate in-
valuable information for identifying new associations be-
tween mutations and drug/compound sensitivity. Follow-
ing the emergence of these studies, several databases have
been developed to collate and format these data. For exam-
ple, Clinical Interpretations Of Variants In Cancer (CIViC)
(11), My Cancer Genome (12), Gene Drug Knowledge
Database (13) and MD Anderson Cancer Center’s Person-
alized cancer therapy (14) focus on curating mutation as-
sociations with cancer drugs from peer-reviewed literature.
Meanwhile, Cancer Driver Log (15) collects potentially ac-
tionable driver mutations with functional characterization
or targeted by existing therapies from literature. However,
these databases mainly focus on curating and formatting
mutation association information, with data queries per-
formed only at the single mutation level. Few tools could
accept genomic profiles as input to interpret mutations as-
sociated with cancer drug sensitivity.

The integrating molecular profiles with actionable ther-
apeutics (16) is an analysis pipeline that combines muta-
tion calling from sequencing data with drug prioritization
based on detected mutations. However, it utilizes a gene–
drug interaction based strategy to make drug predictions
and is limited to only U.S. Food and Drug Administration-
approved drugs. Currently, there is no web-based tool that
can automatically handle individual-level cancer genomic
profiles and provide comprehensive mutation associations
with cancer drugs. Moreover, for better analysis of muta-
tions associated with drug sensitivity, it is necessary to inte-
grate various types of information, such as mutation anno-
tations, drug descriptions and related clinical trials. There-
fore, an integrative platform which compiles all known mu-
tation associations with cancer drugs and comprehensive
annotations is urgently needed.

We developed a web server, called Mutation To Cancer
Therapy Scan, or mTCTScan for short (http://jjwanglab.
org/mTCTScan), that can analyze mutation-cancer drug as-
sociations based on given cancer genomic profiles. We first
curated and compiled known mutation associations with
cancer drugs from the literature and public resources, in-
cluding CIViC and Gene Drug Knowledge Database. We
also incorporated cell line level associations between can-
cer functional events and drug sensitivity from GDSC. Us-
ing an evidence-based scoring scheme, mTCTScan is able
to prioritize mutations by incorporating all their associ-
ations with cancer drugs and preclinical compounds and
to classify the drugs/compounds by considering the en-
tire cancer genomic profile provided. In addition, compre-
hensive cancer-related mutation annotations and drug in-
formation, including mutation genomic features, mutation
germline/somatic occurrence rates, known and predicted
pathogenicity/deleteriousness of the mutation across dif-
ferent biological processes, conservation, drug descriptions
and clinical trial information, were incorporated to better
interpret the mutation effects on drug sensitivity.

METHODS AND PIPELINE

Data collection and processing

Mutation-drug sensitivity information. We collected and
curated mutation-cancer drug associations from the late
2016 version of two publically available databases, CIViC
and Gene Drug Knowledge Database, and from additional
245 publications from PubMed or conference abstracts. We
then compiled these mutation-drug associations according
to standardized criteria: (i) each association record included
essential attributes such as drug name, gene name, muta-
tion description, association direction, confidence level, re-
lated disease, genomic coordinates of the mutation and the
reference; (ii) association directions were normalized to a
value of either ‘Increased sensitivity or response’ or ‘Re-
duced sensitivity or response’; (iii) confidence levels were
normalized into five grades including ‘Proven’, ‘Clinical
trial stage’, ‘Case report stage’, ‘Preclinical stage’ and ‘Infer-
ential stage’; and (iv) supporting references were provided
as a PubMed ID or by URL links. To acquire structured
disease terminology, we mapped the related disease onto
Disease Ontology (17). We used DrugBank (18) and Clin-
icalTrials.gov (19) to obtain drug/compound descriptions
and their corresponding clinical information. To associate
drugs with their target genes, we integrated gene–drug inter-
actions from DGIdb (20). Cell line-based cancer functional
events and drug sensitivity associations were incorporated
from GDSC, which employs ANNOVA analysis methods
to identify significant associations (see Supplementary Ta-
ble S1 for detailed information of the resources used).

Mutation annotation information. We used a series of base-
wise annotations to help researchers interpret the underly-
ing functions of the mutation in the cancer genomes, includ-
ing mutation genomic features, germline and somatic occur-
rence frequency from population-scale projects, known and
predicted pathogenicity/deleteriousness across different ge-
nomic areas, as well as sequence conservation. Gene-based
annotations were retrieved from SnpEff (21) and SNVrap
(22,23) for each mutation. Germline variant frequencies
were integrated from 1000 Genomes Project phase3 (24)
and Exome Aggregation Consortium (ExAC) (25). To ac-
quire somatic mutation recurrence rates in cancer patients,
aggregation of somatic mutations were constructed by in-
tegrating several cancer-specific resources including The
Cancer Genome Atlas Data Coordinating Center (26), In-
ternational Cancer Genome Consortium Data Portal (27)
and Catalogue of Somatic Mutations in Cancer (28). Be-
cause the functional prediction of cancer mutations could
facilitate in evaluating the biological activity of drug tar-
gets, we incorporated large-scale mutation functional pre-
diction scores of three major biological domains: (i) non-
coding single-nucleotide variant functional scores from db-
NCFP (29), (ii) splicing single-nucleotide variant functional
scores from dbscSNV (30) and (iii) non-synonymous single-
nucleotide variants functional scores from dbNSFP (31). In
addition, base-wise conservation score from CADD were
also included (32) (see Supplementary Table S2 for detailed
information of the annotations used).
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Annotation and prioritization pipeline

Given an individual cancer genomic profile, mTCTScan
uses an analytical pipeline to filter, annotate and priori-
tize mutations and cancer drugs. The overall workflow of
mTCTScan is shown in Figure 1.

Mutation filtering and annotation at the transcript level.
The Individual cancer genomic profile (usually The Variant
Call Format (VCF) file generated by somatic mutation call-
ing tools (33)) is first annotated by SnpEff and SNVrap to
acquire mutation features, including mutation type and as-
sociated genomic effects. To efficiently convert the mutation
descriptions between VCF format and Human Genome
Variation Society (HGVS) format (DNA, RNA and protein
levels) (34), we used TransVar (35) to perform forward (to
translate a genomic variant to mRNA or protein changes)
and reverse (to trace an mRNA or protein variant to all po-
tential genomic origins) annotations considering all possi-
ble mRNA and protein isoforms. For cases where the in-
put mutations contain known/germline alleles in human
populations, we filtered them by an allele frequency <0.005
for human pan-populations using an aggregated allele fre-
quency database. Furthermore, mutations could be further
reduced by user-defined target genes, tumor types and spe-
cific mutation types at this step.

Identifying mutation-drug associations at different levels.
For each filtered mutation at the gene transcript level, we
used a series of matching strategies to link it to the col-
lected mutation-cancer drug association records, including
‘Exact Match’, ‘Partial Match’, ‘Small-scale Overlap’ and
‘Locus-based Overlap’: (i) ‘Exact Match’ requires the ge-
nomic coordinates or protein effect of query mutations to
be exactly the same as the collected records; (ii) ‘Partial
Match’ indicates that the protein effect of the query muta-
tion matches the amino acid change in the collected records
(but the altered amino acid of the query mutation and the
records are different), or the genomic coordinates or pro-
tein effect of the query mutation exactly match one or part
of the record’s mutations (some records require the con-
currence of multiple mutations); (iii) ‘Small-scale Overlap’
means the genomic coordinates of query mutation overlaps
with collected records at the small insertions or deletions
(Indel) level; (iv) ‘Locus-based Overlap’ indicates that the
genomic coordinates of query mutation overlaps with the
collected records at the structure variations level. In addi-
tion, the web server would also search through cancer func-
tional events and drug sensitivity associations from the cell
line data by matching the query mutation to related cancer
functional events. To retrieve all relevant data at the differ-
ent levels, we mapped the filtered cancer mutations to each
of above categories.

Evidence-based mutation prioritization. For all matched
and overlapped mutation-drug associations for each query
mutation, the web server then uses an evidence-based en-
semble score to represent the matching degree, breadth and
reliability of the retrieved association records according to
their matching type and confidence level. The ensemble
score is analogous to the ‘Altmetric Attention Score’ for

measuring the degree of attention received by research out-
puts (36). The ensemble score is calculated as:

ES =
n∑

i

Mi × Ci

where n is the total number of retrieved mutation-cancer
drug association records for each mutation, M is the match-
ing score for corresponding matching category (‘Exact
Match’: 10; ‘Partial Match’: 3; ‘Small-scale Overlap’: 0.5;
‘Locus-based Overlap’: 0.1), C is the weighting factor for
the corresponding confidence level (‘Proven’: 1; ‘Clinical
trial stage’: 0.6; ‘Case report stage’: 0.4; ‘Preclinical stage’:
0.2; ‘Inferential stage’: 0.1). The same matching strategies
and a fixed confidence level of ‘Preclinical stage’ are then
applied to score the mutations matched with the cell line-
based cancer functional events and drug sensitivity associ-
ation records.

In the formula, the matching score describes the degree of
agreement between the query mutation and retrieved asso-
ciation records. One mutation may retrieve multiple records
by ‘Locus-based Overlap’ matching, especially if it falls on
some popular cancer drug targets. Presumably, one ‘Ex-
act Match’ should be assigned an equal or higher score
than all ‘Locus-based Overlap’ matches together for each
mutation. Considering that the highest number of possi-
ble ‘Locus-based Overlap’ matches for one query muta-
tion is around 100 if it falls on ERBB2:104, PTEN:94,
KRAS:86 or EGFR:83, we thus required a 100-fold differ-
ence between the ‘Exact Match’:10 and ‘Locus-based Over-
lap’:0.1 matching scores. The matching scores of ‘Partial
Match’:2 and ‘Small-scale Overlap’:0.5 are then calculated
as 10/100

1
3 and 10/100

2
3 respectively, and these two num-

bers are further adjusted to integers. The weighting factor
describes the confidence level of the association records and
the descending weighting factors from ‘Proven’ to ‘Inferen-
tial stage’ reflect the decreasing reliability of the association
records. Taken together, this ensemble score reflects the rel-
evance between query mutations and cancer drug responses
based on the current evidence and can be used to prioritize
the query mutations.

Cancer drug classification. Because different mutations
may confer consistent or opposite effects on drug sensi-
tivity when considering the entire cancer genomic profile,
we classified the cancer drugs/compounds according to the
matched mutation-drug associations in the above steps. For
each drug/compound, the web server compares whether the
mutations’ impact on drug sensitivity is consistent or con-
flicting across all associated mutations at the ‘Exact Match’
and ‘Partial Match’ levels. The drugs/compounds are then
divided into three categories based on the following crite-
ria: (i) ‘Increased Sensitivity’ indicates the mutations con-
sistently increase the drug’s sensitivity or response; (ii) ‘Re-
duced Sensitivity’ indicates the mutations consistently de-
crease the drug’s sensitivity or response; and (iii) ‘Conflict-
ing Sensitivity’ indicates at least one mutation modulates
the drug’s sensitivity or response in the opposite direction
compared with the other mutations. Finally, we used the
number of associated mutations to order the drugs in each
category.
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Figure 1. The workflow of mTCTScan (see the description for details of the pipeline).

WEB SERVER DESCRIPTION

Usage and interface

The mTCTScan web server accepts inputs as VCF text
or as an uploaded VCF file. Users can either select
single/multiple cancer type(s) to investigate disease-specific
associations between mutations and drug sensitivity, or use
a default pan-cancer analysis mode. Allele frequency filter-
ing based on both 1000 Genomes Project and ExAC is well
supported for filtering known variants. Users can also de-
fine a target gene panel to limit mutations to a list of genes
of interest. To help users to identify mutations with certain
genomic effects, mTCTScan allows users to select only mu-
tations with specific features for further analysis. Once the
job is submitted, users can track the job status from either
an encrypted link or the job queue.

The mTCTScan platform displays the results in several
user-friendly interfaces, such as the drug-oriented tab and
the mutation-oriented tab with detailed mutation-drug sen-
sitivity association information and interactive functions.
The mutation-oriented tab provides a ranking table summa-
rizing the integrative evidence for each mutation’s impacts
on cancer drug sensitivity according to the scoring scheme
(Figure 2A). By clicking on the ‘details’ link for each mu-
tation, users can examine the comprehensive mutation an-
notations at the gene transcript level including mutation ge-
nomic features, germline and somatic occurrence rates, mu-
tation functional prediction scores and base pair level se-
quence conservation (Figure 2B). In addition to the detailed
mutation-drug response associations and drug/compound
information, mTCTScan also incorporates a lollipop-style
mutation diagram (37) to visualize the variant position in
the protein functional domain (Figure 2C). Furthermore,
by mapping the mutation to its genomic locus, mTCTScan
can also report on related drugs based on the gene–drug
relationship. The drug-oriented tab classifies the mutation-
related cancer drugs into three categories by combining all
retrieved mutation-drug associations from the entire cancer
genomic profile. Users can check all actionable mutations
for each drug (Figure 2D). Last but not least, mTCTScan
provides a query function that allows users to quickly search
mutation-drug associations at the single mutation level.

Web server design

We implemented the mTCTScan web server using the Perl-
based web framework ‘Catalyst’. Annotation information is
indexed and retrieved by Tabix (38). Oracle Grid Engine is
used as the job management system for task submission and
JQuery and related UI components are used to construct
the interactive web pages.

Evaluation

We used several actionable mutations in protein tyrosine
kinase domain of human epidermal growth factor recep-
tor (EGFR) to evaluate the usefulness and effectiveness
of our mTCTScan platform. One of the most common
EGFR-activating mutations is an amino acid substitution
in exon 21 (leucine to arginine at codon 858; L858R),
which confers increased affinity in the adenosine triphos-
phate (ATP)-binding pocket for EGFR-tyrosine kinase in-
hibitor (EGFR-TKIs) compared to wild-type EGFR (39).
We investigated this mutation using mTCTScan and found
45 mutation-drug association records, including 18 ’Ex-
act Match’ records and 11 drugs/therapies with increased
sensitivity or response. During the treatment of second-
generation EGFR-TKIs, the major mechanism of acquired
resistance can be explained by the occurrence of a secondary
EGFR kinase domain mutation in exon 20 (threonine to
methionine at codon 790; T790M) (40). When consider-
ing both L858R and T790M, mTCTScan identified more
mutation-drug records and additional drug response cate-
gories, such as ‘Reduced Sensitivity’ and ‘Conflicting Sensi-
tivity’. For example, several third-generation EGFR-TKIs
(such as Osimertinib and Rociletinib) show increased sen-
sitivity, while, four drugs Afatinib, Dacomitinib, Gefitinib
and Erlotinib were shown to have conflicting sensitivity
when considering these two mutations simultaneously. Fur-
thermore, recent clinical studies revealed that a ‘tertiary’
substitution mutation that changes EGFR cysteine 797 into
serine (C797S) can affect covalent binding of drugs, which
confers resistance to all third-generation EGFR-TKIs (41).
When considering all three mutations (L858R, T790M and
C797S), mTCTScan further revealed conflicting sensitivity
for Osimertinib and EAI045, a promising fourth-generation
EGFR-TKI with increased sensitivity in the preclinical
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Figure 2. The web server result pages. (A) mutation-oriented tab; (B) mutation annotations at the transcript level; (C) lollipop-style mutation diagram; and
(D) drug-oriented tab.

stage (42). Taken together, mTCTScan was able to accu-
rately interpret mutation-dependent drug sensitivity based
on the entire genomic context.

DISCUSSION

In current cancer treatment practices, only a small propor-
tion of cancer genomic alterations have been confirmed ac-

tionable with approved therapies, which significantly limits
the scope of cancer precision medicine. Recent large-scale
clinical use of mutation-dependent treatments in cancer pa-
tients and chemical screening on human cancer cell lines
have revealed many new associations between mutations
and drug/compound sensitivity. Such association informa-
tion is highly valuable for researchers and clinicians, but ef-
forts to compile this data and to provide an integrative plat-
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form for analyzing personalized genomic profiles are lack-
ing. To address this, we developed mTCTScan to compre-
hensively analyze mutation-cancer drug associations con-
sidering an individual cancer genomic profile. Compared
with existing software and databases, mTCTScan compiled
more types of data and the latest information to build an
integrative one-stop web server that allows clinicians and
researchers to interpret the effects of mutations on cancer
drug sensitivity.

Many drug sensitivities are associated with structure vari-
ations or combinations of mutations in tumor cells. How-
ever, exact matching of such types of genomic alteration
between the query mutation and known mutation-drug as-
sociations is difficult, which could result in the underesti-
mation of the effects of those mutations when using this
web server. Furthermore, precise comparison of the phar-
macogenomic effects of different mutations across existing
anti-cancer agents is currently unfeasible. Therefore, our
matching strategy serves more as an information retrieval
method and should be interpreted with care, especially its
biological significance. Even if cell line-based pharmacolog-
ical screening can provide an effective way to interrogate the
genetic effect of the mutations on drug response, there are
still many other factors that could confound the indepen-
dent mutation effect on drug sensitivity. Our prioritization
pipeline uses an evidence-based ensemble score to measure
the mutation’s relevance to known mutation-cancer drug as-
sociations, as well as the breadth and confidence level of
these associations, which provides an indicator of the ac-
tionability of individual mutations. In the future, we will
continue curating and integrating more mutation-cancer
drug response associations from both clinical and exper-
imental studies. We also plan to introduce more accurate
matching strategies and prioritization methods to better in-
terpret the associations between mutations and drug sensi-
tivity in cancers.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We are grateful to Dr Maria P. Wong for her helpful com-
ments and suggestions.

FUNDING

Y S and Christabel Lung Postgraduate Scholarship
from the University of Hong Kong; Talent Excellence
Program from Tianjin Medical University (to M.J.L);
Research Grants Council, Hong Kong SAR, China
[17121414M]; Mayo Clinic (Mayo Clinic Arizona and
Center for Individualized Medicine); National Institute
of Health [5R01CA170357, 2P30CA015083 to J.W.W,
1U54CA210180 to J.W.W, N.L.T]. Funding for open access
charge: Mayo Clinic (Mayo Clinic Arizona and Center for
Individualized Medicine).
Conflict of interest statement. None declared.

REFERENCES
1. Hu,X. and Zhang,Z. (2016) Understanding the genetic mechanisms

of cancer drug resistance using genomic approaches. Trends Genet. ,
32, 127–137.

2. Schmitt,M.W., Loeb,L.A. and Salk,J.J. (2016) The influence of
subclonal resistance mutations on targeted cancer therapy. Nat. Rev.
Clin. Oncol., 13, 335–347.

3. Carr,T.H., McEwen,R., Dougherty,B., Johnson,J.H., Dry,J.R.,
Lai,Z., Ghazoui,Z., Laing,N.M., Hodgson,D.R., Cruzalegui,F. et al.
(2016) Defining actionable mutations for oncology therapeutic
development. Nat. Rev. Cancer, 16, 319–329.

4. McNeil,C. (2015) NCI-MATCH launch highlights new trial design in
precision-medicine era. J. Natl. Cancer Inst., 107, djv193.

5. Barretina,J., Caponigro,G., Stransky,N., Venkatesan,K.,
Margolin,A.A., Kim,S., Wilson,C.J., Lehar,J., Kryukov,G.V.,
Sonkin,D. et al. (2012) The cancer cell line encyclopedia enables
predictive modelling of anticancer drug sensitivity. Nature, 483,
603–607.

6. Basu,A., Bodycombe,N.E., Cheah,J.H., Price,E.V., Liu,K.,
Schaefer,G.I., Ebright,R.Y., Stewart,M.L., Ito,D., Wang,S. et al.
(2013) An interactive resource to identify cancer genetic and lineage
dependencies targeted by small molecules. Cell, 154, 1151–1161.

7. Seashore-Ludlow,B., Rees,M.G., Cheah,J.H., Cokol,M., Price,E.V.,
Coletti,M.E., Jones,V., Bodycombe,N.E., Soule,C.K., Gould,J. et al.
(2015) Harnessing connectivity in a large-scale small-molecule
sensitivity dataset. Cancer Discov., 5, 1210–1223.

8. Garnett,M.J., Edelman,E.J., Heidorn,S.J., Greenman,C.D.,
Dastur,A., Lau,K.W., Greninger,P., Thompson,I.R., Luo,X.,
Soares,J. et al. (2012) Systematic identification of genomic markers of
drug sensitivity in cancer cells. Nature, 483, 570–575.

9. Yang,W., Soares,J., Greninger,P., Edelman,E.J., Lightfoot,H.,
Forbes,S., Bindal,N., Beare,D., Smith,J.A., Thompson,I.R. et al.
(2013) Genomics of Drug Sensitivity in Cancer (GDSC): a resource
for therapeutic biomarker discovery in cancer cells. Nucleic Acids
Res., 41, D955–D961.

10. Iorio,F., Knijnenburg,T.A., Vis,D.J., Bignell,G.R., Menden,M.P.,
Schubert,M., Aben,N., Goncalves,E., Barthorpe,S., Lightfoot,H.
et al. (2016) A Landscape of pharmacogenomic interactions in
cancer. Cell, 166, 740–754.

11. Griffith,M., Spies,N.C., Krysiak,K., McMichael,J.F., Coffman,A.C.,
Danos,A.M., Ainscough,B.J., Ramirez,C.A., Rieke,D.T., Kujan,L.
et al. (2017) CIViC is a community knowledgebase for expert
crowdsourcing the clinical interpretation of variants in cancer. Nat.
Genet., 49, 170–174.

12. Yeh,P., Chen,H., Andrews,J., Naser,R., Pao,W. and Horn,L. (2013)
DNA-Mutation Inventory to Refine and Enhance Cancer Treatment
(DIRECT): a catalog of clinically relevant cancer mutations to enable
genome-directed anticancer therapy. Clin. Cancer Res., 19,
1894–1901.

13. Dienstmann,R., Jang,I.S., Bot,B., Friend,S. and Guinney,J. (2015)
Database of genomic biomarkers for cancer drugs and clinical
targetability in solid tumors. Cancer Discov., 5, 118–123.

14. Johnson,A., Zeng,J., Bailey,A.M., Holla,V., Litzenburger,B.,
Lara-Guerra,H., Mills,G.B., Mendelsohn,J., Shaw,K.R. and
Meric-Bernstam,F. (2015) The right drugs at the right time for the
right patient: the MD Anderson precision oncology decision support
platform. Drug Discov. Today, 20, 1433–1438.

15. Damodaran,S., Miya,J., Kautto,E., Zhu,E., Samorodnitsky,E.,
Datta,J., Reeser,J.W. and Roychowdhury,S. (2015) Cancer Driver Log
(CanDL): catalog of potentially actionable cancer mutations. J. Mol.
Diagn., 17, 554–559.

16. Hintzsche,J., Kim,J., Yadav,V., Amato,C., Robinson,S.E.,
Seelenfreund,E., Shellman,Y., Wisell,J., Applegate,A., McCarter,M.
et al. (2016) IMPACT: a whole-exome sequencing analysis pipeline
for integrating molecular profiles with actionable therapeutics in
clinical samples. J. Am. Med. Inform. Assoc., 23, 721–730.

17. Kibbe,W.A., Arze,C., Felix,V., Mitraka,E., Bolton,E., Fu,G.,
Mungall,C.J., Binder,J.X., Malone,J., Vasant,D. et al. (2015) Disease
Ontology 2015 update: an expanded and updated database of human
diseases for linking biomedical knowledge through disease data.
Nucleic Acids Res., 43, D1071–D1078.

18. Wishart,D.S., Knox,C., Guo,A.C., Shrivastava,S., Hassanali,M.,
Stothard,P., Chang,Z. and Woolsey,J. (2006) DrugBank: a

Downloaded from https://academic.oup.com/nar/article-abstract/45/W1/W215/3804427/mTCTScan-a-comprehensive-platform-for-annotation
by University of Hong Kong user
on 08 September 2017



Nucleic Acids Research, 2017, Vol. 45, Web Server issue W221

comprehensive resource for in silico drug discovery and exploration.
Nucleic Acids Res., 34, D668–D672.

19. Zarin,D.A., Tse,T., Williams,R.J. and Carr,S. (2016) Trial reporting
in ClinicalTrials.gov - the final rule. N. Engl. J. Med., 375, 1998–2004.

20. Wagner,A.H., Coffman,A.C., Ainscough,B.J., Spies,N.C.,
Skidmore,Z.L., Campbell,K.M., Krysiak,K., Pan,D.,
McMichael,J.F., Eldred,J.M. et al. (2015) DGIdb 2.0: mining
clinically relevant drug-gene interactions. Nucleic Acids Res., 44,
D1036–D1044.

21. Cingolani,P., Platts,A., Wang le,L., Coon,M., Nguyen,T., Wang,L.,
Land,S.J., Lu,X. and Ruden,D.M. (2012) A program for annotating
and predicting the effects of single nucleotide polymorphisms,
SnpEff: SNPs in the genome of Drosophila melanogaster strain
w1118; iso-2; iso-3. Fly, 6, 80–92.

22. Li,M.J. and Wang,J. (2015) Current trend of annotating single
nucleotide variation in humans–A case study on SNVrap. Methods,
79-80, 32–40.

23. Li,M.J., Sham,P.C. and Wang,J. (2012) Genetic variant
representation, annotation and prioritization in the post-GWAS era.
Cell Res., 22, 1505–1508.

24. Genomes Project,C., Auton,A., Brooks,L.D., Durbin,R.M.,
Kang,H.M., Korbel,J.O., Marchini,J.L., McCarthy,S., McVean,G.A.
et al. (2015) A global reference for human genetic variation. Nature,
526, 68–74.

25. Lek,M., Karczewski,K.J., Minikel,E.V., Samocha,K.E., Banks,E.,
Fennell,T., O’Donnell-Luria,A.H., Ware,J.S., Hill,A.J.,
Cummings,B.B. et al. (2016) Analysis of protein-coding genetic
variation in 60,706 humans. Nature, 536, 285–291.

26. Cancer Genome Atlas Research, N., Weinstein,J.N., Collisson,E.A.,
Mills,G.B., Shaw,K.R., Ozenberger,B.A., Ellrott,K., Shmulevich,I.,
Sander,C. and Stuart,J.M. (2013) The cancer genome atlas
pan-cancer analysis project. Nat. Genet., 45, 1113–1120.

27. Zhang,J., Baran,J., Cros,A., Guberman,J.M., Haider,S., Hsu,J.,
Liang,Y., Rivkin,E., Wang,J., Whitty,B. et al. (2011) International
Cancer Genome Consortium Data Portal–a one-stop shop for cancer
genomics data. Database (Oxford), 2011, bar026.

28. Forbes,S.A., Beare,D., Boutselakis,H., Bamford,S., Bindal,N.,
Tate,J., Cole,C.G., Ward,S., Dawson,E., Ponting,L. et al. (2017)
COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids
Res., 45, D777–D783.

29. Li,M.J., Pan,Z., Liu,Z., Wu,J., Wang,P., Zhu,Y., Xu,F., Xia,Z.,
Sham,P.C., Kocher,J.P. et al. (2016) Predicting regulatory variants
with composite statistic. Bioinformatics, 32, 2729–2736.

30. Jian,X., Boerwinkle,E. and Liu,X. (2014) In silico prediction of
splice-altering single nucleotide variants in the human genome.
Nucleic Acids Res., 42, 13534–13544.

31. Liu,X., Wu,C., Li,C. and Boerwinkle,E. (2016) dbNSFP v3.0: a
one-stop database of functional predictions and annotations for
human nonsynonymous and splice-site SNVs. Hum. Mutat., 37,
235–241.

32. Kircher,M., Witten,D.M., Jain,P., O’Roak,B.J., Cooper,G.M. and
Shendure,J. (2014) A general framework for estimating the relative
pathogenicity of human genetic variants. Nat. Genet., 46, 310–315.

33. Danecek,P., Auton,A., Abecasis,G., Albers,C.A., Banks,E.,
DePristo,M.A., Handsaker,R.E., Lunter,G., Marth,G.T., Sherry,S.T.
et al. (2011) The variant call format and VCFtools. Bioinformatics,
27, 2156–2158.

34. den Dunnen,J.T. and Antonarakis,S.E. (2000) Mutation
nomenclature extensions and suggestions to describe complex
mutations: a discussion. Hum. Mutat., 15, 7–12.

35. Zhou,W., Chen,T., Chong,Z., Rohrdanz,M.A., Melott,J.M.,
Wakefield,C., Zeng,J., Weinstein,J.N., Meric-Bernstam,F., Mills,G.B.
et al. (2015) TransVar: a multilevel variant annotator for precision
genomics. Nat. Methods, 12, 1002–1003.

36. Thelwall,M., Haustein,S., Lariviere,V. and Sugimoto,C.R. (2013) Do
altmetrics work? Twitter and ten other social web services. PloS One,
8, e64841.

37. Jay,J.J. and Brouwer,C. (2016) Lollipops in the clinic: information
dense mutation plots for precision medicine. PloS One, 11, e0160519.

38. Li,H. (2011) Tabix: fast retrieval of sequence features from generic
TAB-delimited files. Bioinformatics, 27, 718–719.

39. Paez,J.G., Janne,P.A., Lee,J.C., Tracy,S., Greulich,H., Gabriel,S.,
Herman,P., Kaye,F.J., Lindeman,N., Boggon,T.J. et al. (2004) EGFR
mutations in lung cancer: correlation with clinical response to
gefitinib therapy. Science, 304, 1497–1500.

40. Yun,C.H., Mengwasser,K.E., Toms,A.V., Woo,M.S., Greulich,H.,
Wong,K.K., Meyerson,M. and Eck,M.J. (2008) The T790M mutation
in EGFR kinase causes drug resistance by increasing the affinity for
ATP. Proc. Natl. Acad. Sci. U.S.A., 105, 2070–2075.

41. Morgillo,F., Della Corte,C.M., Fasano,M. and Ciardiello,F. (2016)
Mechanisms of resistance to EGFR-targeted drugs: lung cancer.
ESMO Open, 1, e000060.

42. Jia,Y., Yun,C.H., Park,E., Ercan,D., Manuia,M., Juarez,J., Xu,C.,
Rhee,K., Chen,T., Zhang,H. et al. (2016) Overcoming
EGFR(T790M) and EGFR(C797S) resistance with mutant-selective
allosteric inhibitors. Nature, 534, 129–132.

Downloaded from https://academic.oup.com/nar/article-abstract/45/W1/W215/3804427/mTCTScan-a-comprehensive-platform-for-annotation
by University of Hong Kong user
on 08 September 2017


