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Review

Methods to Induce Chronic Ocular
Hypertension: Reliable Rodent Models as
a Platform for Cell Transplantation and
Other Therapies

Ashim Dey1, Abby L. Manthey2, Kin Chiu2,3,4, and Chi-Wai Do1

Abstract
Glaucoma, a form of progressive optic neuropathy, is the second leading cause of blindness worldwide. Being a prominent
disease affecting vision, substantial efforts are being made to better understand glaucoma pathogenesis and to develop novel
treatment options including neuroprotective and neuroregenerative approaches. Cell transplantation has the potential to play
a neuroprotective and/or neuroregenerative role for various ocular cell types (e.g., retinal cells, trabecular meshwork).
Notably, glaucoma is often associated with elevated intraocular pressure, and over the past 2 decades, several rodent models
of chronic ocular hypertension (COH) have been developed that reflect these changes in pressure. However, the underlying
pathophysiology of glaucoma in these models and how they compare to the human condition remains unclear. This limitation
is the primary barrier for using rodent models to develop novel therapies to manage glaucoma and glaucoma-related blindness.
Here, we review the current techniques used to induce COH-related glaucoma in various rodent models, focusing on the
strengths and weaknesses of the each, in order to provide a more complete understanding of how these models can be best
utilized. To so do, we have separated them based on the target tissue (pre-trabecular, trabecular, and post-trabecular) in
order to provide the reader with an encompassing reference describing the most appropriate rodent COH models for their
research. We begin with an initial overview of the current use of these models in the evaluation of cell transplantation
therapies.
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Introduction

Glaucoma is physiologically characterized by elevated

intraocular pressure (IOP), progressive retinal ganglion cell

(RGC) death, loss of RGC axons, optic nerve excavation,

and visual field loss that can lead to irreversible blindness1.

Although elevated IOP is considered the major risk factor2–5,

progressive loss of the RGCs has been shown to continue

even when the IOP is adequately controlled via medication

or surgery6,7. To better understand the glaucomatous RGC

degeneration, a large body of research has focused on the

pathophysiological mechanisms thought to be involved,

including the role of increased oxidative stress and free radi-

cals, the release of neurotransmitters (e.g., nitric oxide and

glutamate), the depletion of neurotrophins and growth fac-

tors, and the initiation of apoptosis8–13. There has also been

increased interest in the use of cell transplantation therapeu-

tics to treat these mechanisms via a single intervention

(e.g., cell graft) which could provide long-lasting protection
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during glaucoma pathogenesis or other chronic ocular dis-

eases14–16. Indeed, several preclinical studies have reported

positive outcomes using cell transplantation in animal glau-

coma models. For example, implantation of bone marrow

mesenchymal stem cells (BM-MSCs) reduces IOP in a

chronic ocular hypertension (COH) rodent model in addition

to significantly enhancing the survival of RGCs compared to

the control animals17. Similarly, implantation of induced

pluripotent stem cells in the anterior chamber (AC) of

4-mo-old transgenic-Y437H myocilin mutant mice (Tg-

MYOCY437H) has been shown to restore trabecular mesh-

work (TM) function and stabilize IOP as well as increase

RGC survival compared to control animals for 9 wk post-

implantation18. Several other studies have also reported neu-

roprotective effects following intravitreal injection of BM-

MSCs in a number of inducible COH rodent models, includ-

ing models using laser treatment19,20, hyaluronic acid (HA)

injection21, and intra-cameral injections of transforming

growth factor-b1 (TGF-b) for 0 to 35 d22. Intravitreal injec-

tion of dental pulp stem cells also appears to protect struc-

tural and functional loss of RGCs in induced COH rodent

glaucoma22 as well as in a rodent axotomy model23. Apart

from the injection of pluripotent and/or mesenchymal cells,

other cell transplantation therapies involving glucagon-like

peptide-1 have also been shown to protect RGCs and their

axons in an optic nerve crush model24. These studies indicate

that cell transplantation has the potential to play a favorable

hypotensive and neuroprotective role against glaucoma by

reducing IOP, enhancing RGC survival and outgrowth, and/

or altering the RGC microenvironment. While development

of neuroprotective and/or neuroregenerative therapeutic

strategies is an essential avenue of research, the majority

of these treatments have not yet been tested in clinical or

preclinical studies. Fortunately, various animal models have

been established that mimic the ocular changes associated

with glaucoma25–27, allowing investigation of the underlying

pathophysiology of this disease and the testing of treatment

efficacy.

While the anatomy and physiology of rodent eyes differ

in some ways to human eyes28–30, inducible rodent systems

are preferred for several reasons, including the ethics of their

experimental use, shorter life span, and cost-effective-

ness29,31–37. It has been suggested that the conventional out-

flow pathway in the mouse eye is similar to that of primate

eye as it has a continuous Schlemm’s canal and lamellated

TM38. Furthermore, the changes observed during human

glaucoma can also be reasonably mimicked in rodents. This

seems to be particularly true in regard to the lamina cribrosa

changes in the glaucomatous optic nerve head28. The aqu-

eous humor is produced by the ciliary body in the rat eye,

flows through the TM, and is collected in Schlemm’s canal

located in the angle of the AC in a manner similar to that

Figure 1. Schematic diagram illustrating the structure of whole eye (left) and anterior segment (right). During the conventional outflow
pathway, aqueous humor is produced by the ciliary body and it flows from the posterior chamber through the pupil into the anterior
chamber (shown by continuous lines with arrowheads). It then flows out through the trabecular meshwork into Schlemm’s canal and is
subsequently absorbed into the episcleral veins via the collector channels. In the unconventional outflow pathway, aqueous humor flows out
from anterior chamber through the face of the ciliary body and iris root to the ciliary muscle and suprachoroidal space to either veins in the
choroid and sclera or through scleral pores to episcleral tissue (shown by dashed lines and arrowheads).
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observed in humans31. The aqueous humor then enters the

venous plexus through collector channels in the limbal

region, allowing it to drain from the eye through the episcl-

eral drainage veins32. It is the dynamic balance of aqueous

humor inflow and outflow that effectively maintains physio-

logical IOP levels in both species (Figure 1).

In order to mimic the glaucoma-inducing changes in IOP,

various methods have been utilized to block the outflow of

aqueous humor in rodents25,26. Although a vast amount of

research using these models exists, very few articles have

directly compared the physiological attributes of these mod-

els to human glaucoma. In this review, we have summarized

the most prevalent experimental methods utilized to induce

COH in rodents, focusing on how they can be most effec-

tively used in translational research. This review can also

function as a guide for researchers to determine the appro-

priate glaucoma rodent model for their own research needs.

To this end, the methods described here can be classified into

3 primary groups: (Pre-TM), trabecular, and post- trabecular

(Post-TM) obstruction of the outflow39 as shown in Figure 1.

Pre-TM Models

AC Injection of Obstructive Substances

Outflow obstruction is often physically induced before the

aqueous humor passes through the TM. HA, microspheres/

microbeads, and magnetic microbeads have been used as

occlusion sources. Once injected into the AC, they cannot

pass through the TM due to their size and subsequently

impede outflow.

Injection of HA. HA is a naturally occurring glycosaminogly-

can polysaccharide that is widely distributed throughout the

human body in tissues such as the skin, cartilage, hair, and

eyes40. In the eye, HA is primarily localized to the aqueous

humor, vitreous humor, and TM, where it appears to play an

important role in the migration and maintenance of the

extracellular matrix40–42. Furthermore, this polysaccharide

also creates a gradient pressure between the AC and the

aqueous outflow pathways43. Thus, an optimal concentra-

tion of HA is required to maintain normal outflow levels

throughout the TM.

Interestingly, the concentration of HA in the aqueous

humor isolated from patients with primary open angle glau-

coma was found to be significantly lower (0.32 mg/mL) than

controls (0.61 to 2.56 mg/mL)44, whereas the concentration

in the aqueous humor of exfoliation subjects was signifi-

cantly higher (7.8 mg/mL) than controls45. In fact, it has been

noted that injection of HA during various intraocular sur-

geries, including cataract surgery46–48, appears to cause a

transient increase in IOP among 81% of operated eyes

(>10 mmHg)49.

The effect of HA on IOP has also been utilized to induce

changes in a number of animal models. Benozzi et al.50 were

the first to inject a 25 mL aliquot of HA (10 mg/mL) into the

AC of an anesthetized rat. In this study, 1 single injection

was found to raise the IOP 2-fold after 24 h, and this increase

sustained for 8 d. Weekly injection could also be used to

maintain the elevated IOP for up to 10 wk51. Notably, intra-

cameral HA injection also appears to cause a significant loss

of RGCs (40%) as well as functional changes compared with

the controls 10 wk after injection51.

Injection of latex microspheres. Microspheres are spherical

microbeads in the colloidal size range (diameter 0.02 to 15

mm) that are composed of an amorphous polymer such as

polystyrene. They can also be loaded with a variety of dyes

(e.g., fluorescein) that can be easily traced inside tissues via

fluorescence microscopy. In this way, microspheres have

been used for various experiments involving blood flow tra-

cing and drug delivery.

Weber and Zelenak52 were the first to use injected micro-

spheres to induce COH in the eyes of rhesus monkeys. Their

experiments were followed by those of Urcola et al.53 that

focused on using injected microspheres to similarly induce

COH in rat eyes. In these experiments, it appears that weekly

injections of 2 to 4 � 105 latex microspheres (diameter 10

mm) in 20 mL of a sterile aqueous solution (0.15 M NaCl,

0.02% Tween 20) into the AC using a 30-gauge needle

effectively blocked the TM, causing a subsequent elevation

in IOP. Similarly, a combination of 10 mL of microspheres (1

to 2� 105) with 10 mL of 2% hydroxypropylmethylcellulose

(HPM) injected weekly into the AC also increases IOP, but

this increase occurs earlier (6 wk) compared with injections

of microspheres alone (9 wk) and can be sustained for 30 wk.

While mechanical obstruction itself is a simple process, it

remains unclear why there is a delay in the elevation of IOP.

Researchers have speculated that this phenomenon could be

due to species differences and/or the repeated use of general

anesthesia53. Notably, the peak IOP in both studies was

observed at week 27, when the IOP was 1.69-fold and

1.98-fold higher than the controls, respectively. Morpholo-

gically, loss of the RGCs was noted in 23.1% + 2.1% of the

animals injected with microspheres alone, while 27.2% +
2.1% had RGC death in the microsphere and HPM group

after 24 wk of induced IOP elevation53.

More recently, Sappington et al.54 also used polystyrene

microbeads to block the TM and produce COH in both

brown Norway rats and C57BL/6 mice. In the rats, 15-mm-

diameter polystyrene microbeads were injected at a concen-

tration of 1 � 106 beads/mL via micropipette in volumes

ranging from 2.5 to 7 mL in order to evaluate the effect of

volume on elevated IOP. Single injections of these microbe-

ads were observed to induce a 21% to 34% increase in IOP

compared to the controls within the first 2 wk. An additional

injection after this initial 2 wk was also shown to maintain

this IOP increase for an additional 6 wk. Notably, there was a

significant difference in the induced IOP in the rat eyes after

injection of 2.5, 5, and 7 mL, with the 2 higher injection

volumes producing similar elevations in IOP. In the mice,

a 1 mL volume of 15 mm diameter microbeads injected into

Dey et al 215



the AC was observed to produce a 30% increase in IOP

compared with the controls and persisted for at least 3 wk.

There was also a significant loss of axons and induced gliosis

along with degeneration and disorganization of the optic

nerve in both rats and mice 4 to 5 wk after the initial injec-

tion. Recent experiments conducted by Cone-Kimball

et al.55 also highlighted the effects of mouse strain on IOP

elevation post-microbead injection, indicating that this tech-

nique involves a high level of variability depending on

genetic background, injection volume, and so on.

Injection of paramagnetic microspheres. Unlike latex micro-

spheres, paramagnetic microspheres are typically composed

of polystyrene and uniformly coated with a biocompatible

ferrosoferric oxide complex that allows them to respond to a

magnet or magnetic field. Following exposure to a magnetic

field, these particles retain their magnetic properties and can

be demagnetized and remagnetized repeatedly and reprodu-

cibly. Paramagnetic microspheres have also been shown to

be nontoxic and do not have any associated systemic side

effects56. Thus, these particles are ideal for drug delivery,

whereby various medicines can be enclosed in the polystyr-

ene bead, injected into the blood stream, and effectively

directed to the target site with the help of a magnet.

In addition to drug delivery, Samsel et al.57 have used this

technique to evenly distribute the microbeads into the AC of

rats to consistently induce COH. With this method, 10 to 20

mL aliquots of 30 mg/mL ferromagnetic microspheres (5 mm

in diameter) are injected into the AC with a 30-gauge needle.

After injection, the microbeads can be spread evenly around

the iridocorneal angle from the site of injection with a mag-

net. Using this technique, a single injection was observed to

induce a sustained increase in IOP greater than 5 mmHg for

12 d, while 3 injections resulted in 6 wk of prolonged IOP

elevation and a 36% loss of RGCs. A similar study using the

same model reported axonal loss (80%) 4 wk after injection,

a result which may reflect a more acute insult to the retina

rather than COH58. Recently, Bunker et al.59 used a modified

version of this procedure using a circular magnet placed

around the rat eye prior to injection of the magnetic microbe-

ads (diameter 8.0 mm). Using this technique, they observed

an even distribution of microbeads around the iridocorneal

angle as well as a sustained increase in IOP (40.5 + 2.8

mmHg) compared to control eyes (19.7 + 0.3 mmHg) for

18 d after a single injection. This increase also caused a

subsequent change in RGC death, with the level of apoptosis

increasing approximately 15-fold compared with the

controls59.

General Points Concerning Pre-TM Models

Each of these pre-trabecular obstruction methods is inexpen-

sive, easy to perform, and temporarily blocks the TM to

increase IOP. They have been used extensively for evaluat-

ing drug delivery and to investigate changes in outflow and

IOP. Furthermore, these methods also have minimal

ischemia associated with them, as they do not block blood

flow to or from the eye. However, although useful and effec-

tive, multiple injections are needed in order to sustain a

higher IOP, which is both time and labor intensive. This need

for multiple injections stems from the basic concept of phys-

ical obstruction to induce COH, whereby the beads get stuck

in the intracellular spaces of the TM causing impairment of

aqueous humor outflow and increased IOP. However, for

these effects to be considered chronic, the obstruction is by

nature transient, with small clumps of the microspheres gath-

ering to gradually obstruct drainage. This necessitates the

use of multiple injections in order to produce a sustained

increase in IOP. Furthermore, elevation of IOP also causes

widening of the paracellular spaces, which may increase the

space between the cells allowing greater aqueous humor

outflow and flow through of the beads themselves. Hence,

additional beads are required to completely block the TM52.

These issues with retaining the obstructive substance, be it

beads or HA, after injection may also result in variable or

inconsistent changes in IOP, which may limit the practical

use of these models. In fact, several studies using microbeads

to induce COH reported that the diameter and volume

injected into the AC significantly influences the resulting

change in IOP. Thus, several researchers have tried to mini-

mize the effects of these variables by using viscous sub-

stances and/or different compositions of bead size (Table 1).

Moreover, in addition to being time and labor intensive,

multiple injections increase the chance of infection and pos-

sible downstream changes in ocular function not associated

with COH. Indeed, multiple injections increase the likeli-

hood of injury to the cornea, lens, and retina as well as

changes in aqueous-vitreous or blood–ocular barrier integ-

rity66. Moreover, the localization of the obstruction within

the AC is also difficult to control. For example, if beads

aggregate in the pupillary zone, they can obscure the visual

axis, compromise fundoscopic monitoring of optic nerve

damage, or cause leakage of the substance into the eye.

Taken together, while these pre-trabecular models have a

number of advantages, additional work may be necessary to

develop consistent results for preclinical trials.

TM Models

Laser Treatments

Unlike the pre-trabecular methods, laser photocoagulation

(LPC) blocks the outflow of the aqueous humor by destroy-

ing the TM tissue itself, and TM tissues can be burned using

an argon laser to induce COH67. Lasers are forms of light

that can hold a huge amount of energy, which in this context

are focused to burn the target tissues. Argon lasers, for exam-

ple, have a spectral range with emission peaks at wave-

lengths within the visible light range (488 and 514 nm)

and have been extensively used for the treatment of various

ocular diseases, including diabetic retinopathy, glaucoma,

and premacular hemorrhage68.
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COH induced by LPC of the TM was first demonstrated

in rats by Ueda et al.69. They injected 0.05 mL of Indian ink

into the AC of rat eyes with a 30-gauge needle 1 wk prior to

laser treatment. Indian ink consists of carbon particles which

stick to the TM, creating a 0.2 mm wide black band in the

limbal area. Then, when a 250 mW power laser is focused

for 0.2 s (0.5 mm spot size) directly on the black band, the

small carbon particles absorb the heat of laser and effectively

damage/scar the TM. This damage results in the subsequent

impairment of the aqueous outflow and a sustained increase

in IOP for 4 wk following 3 consecutive laser treatments

performed in 7 d intervals. Notably, the IOP was observed

to decrease once the laser treatments were stopped. In addi-

tion to altering IOP, this method also produced glaucoma-

tous optic nerve changes, including thinning of the nerve

fiber layer, reduction of axons, and degeneration of the optic

nerve. Ink injection alone did not affect IOP and was natu-

rally eliminated from the tissue by 12 wk postinjection69.

Using similar methods, Park et al.70 reported a 47% increase

in IOP and a 51% loss of RGCs compared to contralateral

eyes after 8 wk of laser treatments in Wistar rats.

Levkovitch-Verbin et al.71 have also evaluated laser-

induced changes in multiple ocular tissues, focusing on the

TM with or without additional damage to the episcleral

veins, in Wistar rats. They reported that TM-only laser treat-

ments cause a significant increase in IOP and loss of RGCs

(approximately 49%) after 9 wk. However, 76% of the eyes

required an additional laser treatment on the TM to increas-

ing the IOP significantly compared to controls. Their work is

further discussed in the post-TM models section.

To establish a similar laser-induced COH model in mice,

various methods have been evaluated. For example, Aihara

et al.72 and Mabuchi et al.73 previously demonstrated the

applicability of this model for inducing COH in Black

Swiss mice. In these studies, the mouse pupil was dilated

with topical mydriasis, and the aqueous humor was aspi-

rated to flatten the AC, bringing the root of iris closer to the

peripheral cornea. Then, LPC was applied to the limbal

area with a diode laser system (532 nm) to achieve angle

closure (peripheral anterior synechia). This method pro-

duced a 1.3-fold rise in IOP for 6 wk after a single laser

treatment. Compared to the contralateral eye, there was

also a significant decrease in the optic nerve cross-

sectional area (28%), mean axonal density (58%), and total

number of axons (63%).

Viral Vector Treatment

Another emerging method for increased IOP in rodent mod-

els is the use of viral vectors, whereby injection into the AC

or vitreous cavity results in viral gene transfer leading to the

impairment of aqueous outflow and increased IOP74. She-

pard et al.75 have reported that a single intravitreal or intra-

cameral injection of a viral vector containing human TGF-2

into rat (5 mL) or mouse (2 mL) eyes caused a significant

increase in IOP. This significant increase was noted after 4 d

of injection and was maintained for 12 d in rat eyes and 29 d

in mouse eyes compared to their respective controls. Inter-

estingly, the authors also observed that intravitreal injection

in mice caused a prolonged effect compared to intracameral

injection. Similarly, Buie et al.76 reported a sustained 48 d

increase in IOP following single intracameral injection of

bone morphogenetic protein 2 in the eyes of Brown-Norway

and Wistar rats which caused 31% to 34% loss of RGCs

compared to the controls after 29 d of injection.

General Points Concerning TM Models

Although laser-induced destruction of the TM (Table 2) has

many advantages, it also has various limitations. For exam-

ple, laser treatment can alter TM pigmentation and repeated

application may also prompt other complications, including

dryness, corneal opacity, and cataract formation. These

changes may in turn affect the technical aspects of the pro-

cedures, imaging quality, experimental outcomes, and/or

cause higher mortality rates in the animals. Furthermore, one

of the primary drawbacks of the LPC methods described here

is that they require perforation of the cornea, which can

increase the chances of infection and may affect IOP mea-

surements made using tonometer devices as the corneal para-

meters are altered. Additionally, flattening of the AC can

also cause variability in the IOP, possibly limiting the sig-

nificance of the experiments.

As mentioned earlier, for the LPC TM model, trapped

carbon particles are used to damage the tissue; however, they

do not increase IOP alone and disappear 12 wk after Indian

ink injection69. These carbon particles form a cellular debris

material that, when a laser is applied, creates a transient pseu-

domembrane on the trabecular spaces. As noted, the IOP

decreases after laser treatments are stopped. However, the

mechanism underlying this normalization of pressure is still

elusive. One possible reason may be related to a decrease in

cellular debris material and the occurrence of endothelial cell

proliferation on the scarred TM tissue resulting in recovery of

aqueous outflow88. Studies have also reported that laser burn

induces an increase in TM cell division, resulting in the upre-

gulation of repair processes that could repopulate the TM and

recover function89,90. Additional work is warranted to better

understand this phenomenon.

It should also be noted that TM methods are not suggested

for albino rodents, as they do not have pigmented TM. How-

ever, several researchers have established an alternative

rodent COH model by applying laser destruction at the post-

trabecular level (discussed below; Table 2) which can be

performed in albino rodents. Viral vector treatment may also

be a better alternative for these animals. The elevation of

IOP after viral vector injections seems to be dependent on

method of injection, animal strain, and age. Unfortunately,

injection of these vectors has been reported to cause ocular

inflammation which may affect the outcome75. These meth-

ods also need specialized equipment and training for han-

dling, making them more expensive.
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Post-TM Models

Another common area of the eye involved in balancing aqu-

eous inflow and outflow that can be obstructed to increase

IOP is the region posterior to the TM, particularly the episcl-

eral veins. For post-trabecular COH models, a number of

different methods have been developed and validated to

impede the episcleral venous pathway.

Laser Treatments

While LPC is commonly used as a trabecular model of COH

(as described above), WoldeMussie et al.78 induced COH in

rats by directly applying the argon laser to the limbal and

episcleral vessels without interfering with the TM. In this

model, LPC is performed on the veins approximately 0.5 to

0.8 mm away from the limbus as well as the episcleral drai-

nage veins. After 2 consecutive laser treatments within a 1

wk interval, the IOP was observed to increase 2-fold com-

pared to normal and remained at this level for 2 mo, resulting

in a 44.2% loss of the RGCs. Further, the immunoreactivity

of the intermediate filament glial fibrillary acidic protein

(GFAP) was also increased in the Müller cells after 3 wk

of induced hypertension. Various studies using this COH

rodent model have also reported structural and functional

changes similar to those observed in human glaucoma81–83.

The effects of LPC on IOP were further evaluated by

Levkovitch-Verbin et al.71. As described in the TM model

section, in this study, a diode laser (532 nm) was used on

various combinations of tissues, including the TM with the

episcleral veins, the TM only, or the limbal and perilimbal

veins only. With the exception of the limbal veins–only

group, the elevated IOP was sustained for approximately 3

wk. A repeated laser treatment was also performed 1 wk

after the first laser treatment for the eyes where the increase

in IOP was less than 6 mmHg. In this experiment, the mean

IOP after 6 wk for the combined group and TM group was

25.5 + 2.9 mmHg and 22.0 + 1.8 mmHg, respectively.

Axonal loss was significantly increased with respect to the

duration of increased IOP. In fact, in the combined group,

the axonal loss was 16.1% + 14.4% after 1 wk (P ¼ 0.01),

59.7% + 25.7% after 6 wk (P < 0.001), and 70.9% + 23.6%
after 9 wk (P < 0.001). In contrast, the mean axonal loss for

the TM-only group was 19.1% + 14.0% after 3 wk (P ¼
0.004), 24.3% + 20.2% after 6 wk (P < 0.001), and 48.4%
+ 32.8% after 9 wk (P < 0.001).

In order to increase the local photocoagulative effect of

diode laser (810 nm) treatment, Grozdanic et al.77 injected

10 mL of photosensitive dye (10 mg/mL indocyanine green)

into the AC of C57/BL6 mice 20 min prior to laser exposure

and induction of COH. A significant, sustained increase in

IOP was detected in the first 6 wk in 88% of the laser-treated

eyes, which subsequently returned to normal levels after 8

wk. Notably, this study also detected a significant loss of

RGCs, thinning of the retina, and degeneration of the optic

nerve 8 wk after LPC, all of which appear to be associated

with a notable decrease in retinal function (i.e., the electro-

retinogram [ERG] responses). It is important to mention that

these authors also administered topical pilocarpine 20 min

prior to laser treatment to induce pupil miosis, which serves

to protect the posterior pigmented structures of the eye from

the diode laser energy during application of the laser to the

TM and limbal veins.

To overcome the need for indocyanine green injection,

Gross et al.87 utilized an argon laser to damage the episcleral

and limbal veins all around the eye to induce COH in mice,

similar to a previous study using rats78. This mouse model

does not require corneal perforation and successfully ele-

vated the IOP by 1.5-fold in 90% of the treated eyes, result-

ing in the loss of 23% of the RGCs by 4 wk compared to the

untreated eyes. Similarly, Ji et al.86 induced COH in mice by

LPC of the limbal and episcleral veins. In doing so, they

demonstrated that a single intervention of laser treatment

can increase IOP by 7 mmHg, from a baseline of 13.0 +
1.8 mmHg to 20.0 + 2.8 mmHg. This increase sustained for

8 wk (17.0 + 2.2 mmHg) and was associated with a 27%
loss of RGCs after 4 wk86.

Cauterization/Ligation of Episcleral Veins

Models utilizing cauterization. One of the earliest rat COH

models for glaucoma research was the cauterization model,

which was first demonstrated by Shareef et al.91, hence being

designated the Shareef–Sharma model. This model involves

cauterizing the episcleral veins (1 or multiple veins) in

anesthetized rats with an ophthalmic cautery followed by

exposure of the veins via incisions in the conjunctiva. Impor-

tantly, when using this method, care must be taken to mini-

mize the damage to the surrounding conjunctiva and

underlying sclera. When performed properly, this method

produces a significant increase in IOP that is correlated with

the number of cauterized veins. In fact, while single vein

cauterization does not appear to significantly affect IOP,

researchers observed a 1.5-fold elevation in IOP when 2

veins were cauterized that was maintained for at least 1.5

mo postsurgery. An IOP elevation of 1.9-fold for 2.5 mo was

observed following the cauterization of 3 veins. The highest

elevation (4.5-fold) was shown to occur after 1.5 wk in rats

with 4 cauterized veins; however, cauterizing this number of

veins also caused profound ocular complications, including

proptosis, corneal edema, exposure keratopathy, and catar-

act, which were not observed in rats with fewer veins cau-

terized91. Histological analysis also showed that the level of

RGC death in these rats was directly proportional to the

increase in IOP as well as the duration of this increase92.

Similarly, Sawada and Neufeld93 showed an increase in IOP

(1.6-fold) over a 6-mo period following cauterization of 3

veins. This increase was shown to cause cupping of the optic

nerve head associated with a 40% loss of RGCs in the per-

ipheral retina. Interestingly, the loss of RGCs per week was

estimated to be 1.4% in the peripheral retina, but only 0.3%
in the central retina, indicating that glaucoma-related vision
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loss may be primarily due to the loss of cell function in the

peripheral regions of this tissue.

A previous study by Mittag et al.94 reported that cauter-

ization of 3 veins resulted in an increase in IOP that lasted for

15 d, while repeated (4 to 5 times) injection of 5-fluorouracil,

an antimetabolic agent that disrupts angiogenesis, in 3 to 4 d

intervals after vein cauterization sustained this elevated IOP

for at least 12 wk. This observation suggests that the growth

of new vessels may result in increased episcleral venous

patency. An electrophysiology study also showed that this

technique can damage the photoreceptor cells as well as the

bipolar cells, as the amplitude of both the a-wave and b-wave

in their ERG analysis was significantly reduced in treated

eyes compared to controls95. The above findings suggest that

the damage to the outer retinal layer may be due to ischemia

in the tissue, which may limit the ability of this model to

mimic human glaucoma94,95.

While many cauterization models have used rats as a

model, a mouse model has also been established. While

cauterizing the episcleral veins in mice is more difficult

because of their small size, Ruiz-Ederra and Verkman96

were able to induce COH in albino cluster of differentiation

1 (CD1) mice. In fact, IOP was elevated in 87% of the treated

eyes for 4 wk and was associated with a 20% loss of RGCs

following a second round of cauterization (2 wk after the

first treatment). However, in this study, one-third of the

operated eyes were excluded due to surgery-related compli-

cations, such as vein leakage as well as conjunctiva and

scleral tissue damage. In mice, it also appears that cauteriza-

tion of 2 veins had no significant prolonged effect on the

IOP, meaning that 3 or more veins would need to be operated

on, which increases the chance of ocular damage and

complications96.

Models utilizing ligation. Ligation, similar in some ways to

cauterization, is performed by suturing the episcleral veins

to block the venous outflow. Notably, ligation of 3 episcleral

veins has been shown to induce COH in adult rabbits. More

recently, Yu et al.97 demonstrated COH in female Wistar rats

following ligation of 3 episcleral veins unilaterally with a 10/

0 nylon suture after dissecting the overlying conjunctiva and

Tenon’s capsule. This method produced a sustained increase

in IOP (24.5 + 2.3 mmHg in operated eyes compared to

19.7 + 1.9 mmHg in control eyes) for 7 mo in 40% of the

treated eyes. This prolonged elevation of IOP caused optic

disc cupping and a 35% loss of RGCs in 8 mo following the

ligation. Although this method is relatively inexpensive, it

requires excellent microsurgical skills in order to perform

the ligation on the miniscule episcleral veins and treated eyes

often (59.2%) require religation to elevate the IOP.

Ligation methods have also been established to induce

COH in mice. For example, ligation of 3 to 5 veins over a

300� area using 11-0 nylon sutures was shown to cause COH

in C57B1/6J mice98. This method produced a sustained ele-

vation in IOP (approximately 19 mmHg) for 10 wk com-

pared to unoperated eyes (approximately 11 mmHg) and

caused a 30% decrease in viable RGCs. Notably, repeated

surgeries at 1 wk intervals were needed for the eyes that did

not have a measurable elevation in IOP initially.

Intraepiscleral Vein Injection with Hypertonic Saline

Another well-established posttrabecular obstruction method

is the Moore–Morrison model99, whereby COH is induced in

a rat via cannulation of an aqueous vein with a 50-mm glass

microneedle followed by injection of a concentrated saline

solution (2 M). Injection of this hypertonic solution was

demonstrated to cause optic disc cupping, selective loss of

RGCs, disorganization of the nerve fibers at the level of the

lamina cribrosa, and loss of optic nerve axons. Furthermore,

injection of saline into one of the radial episcleral veins also

appears to cause sclerosis of the TM, which impedes AH

outflow and raises IOP. This method involves placement

of a polypropylene ring (C shaped) around the equator of

the eye in the anesthetized rat which temporarily occludes or

creates pressure in all of the episcleral veins except the one

to which hypertonic saline is injected. The plastic ring is

removed following injection of 50 mL of sodium chloride

(approximately 1.75 M) into the vein. This procedure drives

the hypertonic saline from the site of injection into the TM

and AC through Schlemm’s canal after being injected into

the exposed vein using a borosilicate glass microneedle. As a

result, the IOP was shown to increase in the first 7 to 10 d

and sustained for an extended period (200 d)100. This

increase occurred in approximately 60% of treated eyes and

ranged from 10 to 35 mmHg above baseline levels99,101.

Notably, the variability in IOP elevation likely reflects the

variability in the extent of sclerosis of the TM tissues fol-

lowing the saline injection. In fact, a second injection into

another vein 180� away from the first vein was often needed

in order to successfully induce elevation of the IOP. How-

ever, once an increase in IOP was observed, structural and

functional changes in the retina were also detected, including

RGC loss (39% to 93%), axon loss, extracellular matrix

protein deposition at the optic nerve head, and progressive

excavation of the optic disc, similar to other COH models.

Fortune et al.102 also reported a 50% reduction in the positive

scotopic threshold response (pSTR) after 5 wk of induced

COH among Brown-Norway rats using this model. Interest-

ingly, the functional and structural changes in this model

appear to be significantly correlated with the extent of ele-

vated IOP, but not with the duration of this increase103. A

recent study also reported an upregulation of inflammatory

response signals and reorientation of the astrocytes in the

optic nerve head in response to the elevated IOP104. Alter-

natively, Morrison et al.105 focused primarily on the effect of

hypertonic saline concentration (from 1.6 to 2.0 M) on IOP.

In doing so, they revealed that the higher concentration (>2.0

M) caused more destruction in the TM along with a higher

increase in IOP that lasted for several months. However,

injection of these higher concentrations of saline also

appears to cause excessive inflammation and ciliary body
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damage. Hence, a concentration of 1.74 M has become the

standard for use in most rodent COH models of this variety.

Similar to the rat hypertonic saline–injected COH model,

McKinnon et al.106 also induced COH in C57BL/6 mice by

injecting hypertonic saline (2.0 M) into an episcleral vein,

which resulted in a 20% decrease in viable RGCs. In another

study, 1.5 M saline was injected into C57BL/6 mouse eyes

and produced a sustained increase in IOP (10.0 + 3.3

mmHg) for at least 6 wk compared to controls (7.4 + 2.2

mmHg)107. However, in this study, 80% of the eyes required

repeated injection during the 2nd and 4th wk to sustain the

elevated IOP.

Circumlimbal Suture

Recently, a less invasive COH rat model was reported by Liu

et al.108, whereby an increase in IOP was induced in Long-

Evans rats using a circumlimbal suturing technique. Here, 8/

0 nylon suture was tied around the equator (approximately

1.5 mm behind the limbus) of the eye with 5 to 6 subcon-

junctival anchor points. Care was taken to avoid damage and

direct pressure over the episcleral veins. This method pro-

duced a 7 to 10 mmHg increase in IOP compared to the

baseline that lasted for 15 wk, resulting in progressive thin-

ning of the nerve fiber layer (approximately 40%). ERG

analysis also revealed a significant reduction in the ampli-

tude of the a-wave (10.8%), b-wave (9.0%), and pSTR

(26.7%) responses in the COH group. However, the reduc-

tion in photoreceptors and bipolar cells appeared to be stable

for 2 wk after suturing, whereas the response of the RGCs

(i.e., pSTR) progressively deteriorated from the 2nd to the

15th wk. Importantly, the suture material itself (untied) did

not affect the IOP, structural morphology of the retina, or the

ERG responses.

Technically, this method is relatively inexpensive and

temporary, as the induced COH can be reversed simply by

removing the suture. Furthermore, this method has less asso-

ciated risk in terms of the chances of infection, as it is less

invasive and only requires a single surgery. These attributes

make this model useful for evaluating the efficacy of drugs

aimed at reducing IOP as well as studies investigating neu-

roprotection for a longer time period. However, the extent of

the initial spike in IOP and the exact mechanism underlying

this increase in this model still remain unclear and further

investigation is necessary.

General Points Concerning Post-TM Models

The post-TM models mentioned here are the most com-

monly used to induce COH in rodents. However, direct com-

parison between these methods is difficult as the techniques

used for each are diverse, resulting in different levels and

duration of IOP elevation. Therefore, variability in the struc-

tural and functional losses correlated to IOP elevation among

these methods can be expected. Although they have their

differences, each of these post-trabecular obstruction

methods is relatively inexpensive but requires surgical

expertise in order to block the outflow drainage. They have

been used extensively for evaluating the effect of elevated

IOP, pathophysiology of glaucoma, and the neuroprotective

effects of new drugs. However, these methods also have

several limitations. For example, all post-trabecular methods

directly or indirectly cause a certain extent of retinal and/or

choroidal ischemia by blocking venous drainage. Therefore,

these models may not be suitable when evaluating the effi-

cacy of a drug which enhances the AH outflow facility to

reduce IOP. In addition, angiogenesis-related mechanisms

appear to be upregulated in the ocular vessels, which subse-

quently promote neovascularization and may also alter the

pathophysiology of glaucoma by activating downstream pro-

tective mechanisms in the retinal neurons.

Topical Application of Corticosteroids

Induced ocular hypertension is a well-known consequence of

steroid use among primates and nonprimate mammals, being

first reported by McLean et al.109 and Gordon et al.110. The

mechanism underlying this phenomenon was later described

by Francois and Victoria-Troncoso111, whereby they suggest

that steroids inhibit the activity of hyaluronidase, resulting in

the accumulation of mucopolysaccharides within the TM,

restricted aqueous outflow, and a subsequent increase in

IOP. These changes are thought to mimic the etiology of

primary open angle glaucoma in humans112. More recently,

similar steroid-induced changes in IOP have been documen-

ted in Wistar rats following the application of a topical ster-

oid (dexamethasone) 4 times per day for 4 wk. In this study,

a significant increase in IOP was noted after only 2 wk of

steroid application compared to the controls113. Topical

application of dexamethasone phosphate (0.1%) 3 times per

day also caused a significant increase in IOP (7.7 + 0.8

mmHg higher than control) in mouse eyes. This treatment

resulted in a 55% reduction in the amplitude of the pattern

ERG and a 16% decrease in viable RGCs after 20 wk of

treatment compared to the controls114.

Although this model is inexpensive and technically easy

to perform, the administration of steroids may introduce

other functional changes as steroid treatment has been shown

to facilitate neuroprotection as well as depression115,116.

Comparison of Induced COH with
Other Models

Transgenic Models

There are currently several transgenic rodent glaucoma mod-

els that have been developed and utilized to induce reprodu-

cible COH, including DBA/2J mice117, Col1a1r/r mice118,

Tyr423His Myoc mice119, Glutamate/aspartate-deficient

mice120, and Tg-MYCOY437H mice121. However, these

models have several limitations when compared with the

more common inducible COH rodent models. For example,
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transgenic rodents often only have mild to moderately ele-

vated IOP levels with anterior segment anomalies. This is

particularly true for the Col1a1r/r mice, which have signifi-

cantly higher IOP compared with the control mice at 18

(21% higher), 24 (44% higher), and 36 wk (36% higher) that

is associated with AC abnormalities that may affect the final

experimental outcome118. Furthermore, the time duration

needed for rodents to manifest a glaucoma phenotype (6 to

18 mo) is longer than that needed for the inducible models,

making these experiments more expensive, time-consuming,

and labor-intensive18. These transgenic rodents also develop

bilateral changes in IOP, thus another set of animals are

required for use as the experimental controls.

Acute Optic Nerve Trauma

The acute optic nerve trauma models currently used to

induce RGC death in rodents include various optic nerve

crush models as well as full thickness or partial axotomy

models122–124. Notably, these models are known to cause

apoptosis of all of the RGCs, with most of the cells dying

within the first 2 wk following the initial trauma. However,

these acute changes may or may not mimic those observed

during chronic diseases when the patient is exposed to an

insult for a relatively long period of time. Furthermore, dur-

ing human glaucoma, RGC death and optic nerve changes

are typically gradual. Thus, it is likely that the inducible

COH models described earlier can be used to mimic human

glaucoma more effectively than these acute optic nerve

trauma models.

Conclusions

Animal models of COH are useful tools for studying the

etiology of human glaucoma during disease onset and patho-

logical progression as well as the effect of therapies in a

controlled and reproducible manner. These models have

been extensively used to enhance our understanding of the

IOP-related changes observed in the eyes of glaucoma

patients and have clearly demonstrated the involvement of

COH in the morphological and functional damage that

occurs in their retinas. Importantly, when choosing the ideal

COH rodent model for a glaucoma study, researchers should

be aware of the various advantages and disadvantages of

each. Some general characteristics that should be preferred

are that the model is minimally invasive, inexpensive, and

easy to perform. Moreover, the model should be able to

produce a sustained elevation in IOP for a prolonged period

(>6 wk) that results in RGC death and loss of function with-

out interfering with the photoreceptors or other neurons in

the retina. Finally, no surgically induced complications, such

as intraocular bleeding, analysis obstruction (e.g., retinal

imaging), or damage to the optic nerve head, should occur.

Unfortunately, no single COH model currently in use incor-

porates all of these features.

While the present review is the first to compare these

specific methods (Table 3), others have previously

Table 3. Overview of Various Methods to Induce COH.

Level of Intervention Procedure Species

Specialized
Material/
Instruments Expertise Expense* References

Invasive Pre-trabecular HA injection Rat/mice Hyaluronic acid Micro surgery þ 50,51,125

Microbeads Rat/mice Microbeads þ 53–55,60–65

Magnetic microbeads Rat/mice Magnetic beads,
magnet

þ 57–59

Trabecular Viral vectors injection Rat/mice Viral vectors Micro surgery þþ 74–76

Laser on TM Rat/mice Laser machine Laser operation þþ 69,70,72,73

Post-trabecular Laser on limbal and
episcleral veins

Rat/mice Laser machine Laser operation þþ 71,78,81–83,86,87,80,84,85

Cauterization of
episcleral veins

Rat/mice Cautery Micro surgery þ 91–96,126–129

ligation of episcleral
veins

Rat/mice 10-0/11-0 nylon
suture

þ 97,98

Hypertonic saline
injection into
episcleral veins

Rat/mice Customized
plastic ring

þ 100–105,130

Circumlimbal suture Rat/mice 8-0 nylon suture þ 108

Combination of
Trabecular and post-
trabecular

Laser on TM þ
Episcleral veins

Rat/mice Laser machine Laser operation þþ 71,77

Noninvasive Topical corticosteroid Rat/mice Steroid drops NA NA 113,114,131–133

Abbreviations: COH, chronic ocular hypertension; TM, trabecular meshwork; NA, not applicable; þ, relatively mild expensive; þþ, relatively moderate to
high expensive.
*Relative expense.
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highlighted the similarities and differences among different

glaucoma models134–137. McKinnon et al.138, for instance,

compared the hypertonic saline injection model, cautery

models, and limbal laser (argon) model. In their analysis,

the laser-induced model appeared to produce the most repro-

ducible sustained elevation of IOP (occurring in 100% of the

animals compared to 42% and 49% for the hypertonic saline

and cautery models, respectively) but also appeared to cause

optic nerve damage in 83% while only 36% and 20% were

damaged for the other models. Similarly, Urcola et al.53 pre-

viously compared the cautery, injected microsphere, and

injected microsphere with HPM models, which produced

RGC death in 28.5% + 2.4%, 23.1% + 2.1%, and 27.2%
+ 2.1% of the animals, respectively. These other reviews,

much like the current analysis, largely recommend weighing

the advantages and disadvantages of each model before

designing the study. Unlike previous analyses, however,

we have provided a more thorough evaluation of these mod-

els based on the ocular tissue targeted (pre-trabecular, trabe-

cular, or post-trabecular). Furthermore, this review is

particularly relevant for researchers interested in using these

rodent models to investigate the use of various therapies,

such as cell transplantation. In fact, multiple cell transplan-

tation studies using a variety of cell types, including

mesenchymal stromal cells17,21,22 and pluripotent stem

cells18,139, have indicated that this technique may mediate

neuroprotection of the RGCs and help restore IOP regulatory

mechanisms during glaucoma18,139. Utilizing 1 or more of

the rodent models described here will further elucidate the

possible therapeutic applications of these treatments.

The future of glaucoma research will be fundamentally

based on the continual development of suitable COH mod-

els. These models are essential to advancing our understand-

ing of the physiological mechanisms functioning during

glaucoma onset and pathogenesis as well as for analyzing

novel glaucoma therapies. Additionally, there have also been

numerous advances in the technology used to assess glauco-

matous damage, including the measurement of IOP, RGC

death, optic nerve damage, and retinal function. Utilization

of these new technologies in basic science and biotechnol-

ogy studies will continue to lead to the development of better

translational glaucoma models and the subsequent enrich-

ment of patient treatment and care.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect

to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support

for the research and/or authorship of this article: This work is

supported by RGC GRF PolyU 5607/12M and PolyU internal funds

G-UB83 and G-UAAE (to C-W. D.) as well as Seed funding pro-

grammer for Basic Research, The University of Hong Kong

201511159295 (to K.C.).

References

1. Quigley HA, Broman AT. The number of people with glau-

coma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;

90(3):262–267.

2. Leske MC. The epidemiology of open-angle glaucoma: a

review. Am J Epidemiol. 1983;118(2):166–191.

3. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner

JL, Miller JP, Parrish RK II, Wilson MR, Gordon MO. The

Ocular Hypertension Treatment Study: a randomized trial

determines that topical ocular hypotensive medication delays

or prevents the onset of primary open-angle glaucoma. Arch

Ophthalmol. 2002;120(6):701–713; discussion 829–830.

4. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham

EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK II, Wilson

MR, Kass MA. The Ocular Hypertension Treatment Study:

baseline factors that predict the onset of primary open-angle

glaucoma. Arch Ophthalmol. 2002;120(6):714–720; discus-

sion 829–830.

5. Le A, Mukesh BN, McCarty CA, Taylor HR. Risk factors

associated with the incidence of open-angle glaucoma: the

visual impairment project. Invest Ophthalmol Vis Sci. 2003;

44(9):3783–3789.

6. Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B,

Hussein M. Reduction of intraocular pressure and glaucoma

progression: results from the early manifest glaucoma trial.

Arch Ophthalmol. 2002;120(10):1268–1279.

7. Drance S, Anderson DR, Schulzer M; Collaborative Normal-

Tension Glaucoma Study Group. Risk factors for progression

of visual field abnormalities in normal-tension glaucoma. Am J

Ophthalmol. 2001;131(6):699–708.

8. Davis BM, Crawley L, Pahlitzsch M, Javaid F, Cordeiro MF.

Glaucoma: the retina and beyond. Acta Neuropathol. 2016;

132(6):807–826.

9. Kaushik S, Pandav SS, Ram J. Neuroprotection in glaucoma. J

Postgrad Med. 2003;49(1):90–95.

10. Danesh-Meyer HV. Neuroprotection in glaucoma: recent and

future directions. Curr Opin Ophthalmol. 2011;22(2):78–86.

11. Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di

Polo A. The molecular basis of retinal ganglion cell death in

glaucoma. Prog Retin Eye Res. 2012;31(2):152–181.

12. Kuehn MH, Fingert JH, Kwon YH. Retinal ganglion cell death

in glaucoma: mechanisms and neuroprotective strategies.

Ophthalmol Clin North Am. 2005;18(3):383–395, vi.

13. Osborne NN, Melena J, Chidlow G, Wood JP. A hypothesis to

explain ganglion cell death caused by vascular insults at the

optic nerve head: possible implication for the treatment of

glaucoma. Br J Ophthalmol. 2001;85(10):1252–1259.

14. Johnson TV, Martin KR. Cell transplantation approaches to

retinal ganglion cell neuroprotection in glaucoma. Curr Opin

Pharmacol. 2013;13(1):78–82.

15. Zarbin M. Cell-based therapy for degenerative retinal disease.

Trends Mol Med. 2016;22(2):115–134.

16. Sun Y, Williams A, Waisbourd M, Iacovitti L, Katz LJ. Stem

cell therapy for glaucoma: science or snake oil? Surv Ophthal-

mol. 2015;60(2):93–105.

224 Cell Transplantation 27(2)



17. Roubeix C, Godefroy D, Mias C, Sapienza A, Riancho L,

Degardin J, Fradot V, Ivkovic I, Picaud S, Sennlaub F,

Denoyer A, Rostene W, Sahel JA, Parsadaniantz SM,

Brignole-Baudouin F, Baudouin C. Intraocular pressure reduc-

tion and neuroprotection conferred by bone marrow-derived

mesenchymal stem cells in an animal model of glaucoma. Stem

Cell Res Ther. 2015;6:177.

18. Zhu W, Gramlich OW, Laboissonniere L, Jain A, Sheffield

VC, Trimarchi JM, Tucker BA, Kuehn MH. Transplantation

of iPSC-derived TM cells rescues glaucoma phenotypes

in vivo. Proc Natl Acad Sci U S A. 2016;113(25):

E3492–E3500.

19. Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Mar-

tin KR. Neuroprotective effects of intravitreal mesenchymal

stem cell transplantation in experimental glaucoma. Invest

Ophthalmol Vis Sci. 2010;51(4):2051–2059.

20. Harper MM, Grozdanic SD, Blits B, Kuehn MH, Zamzow D,

Buss JE, Kardon RH, Sakaguchi DS. Transplantation of

BDNF-secreting mesenchymal stem cells provides neuropro-

tection in chronically hypertensive rat eyes. Invest Ophthalmol

Vis Sci. 2011;52(7):4506–4515.

21. Emre E, Yuksel N, Duruksu G, Pirhan D, Subasi C, Erman G,

Karaoz E. Neuroprotective effects of intravitreally transplanted

adipose tissue and bone marrow-derived mesenchymal stem

cells in an experimental ocular hypertension model. Cytother-

apy. 2015;17(5):543–559.

22. Mead B, Hill LJ, Blanch RJ, Ward K, Logan A, Berry M,

Leadbeater W, Scheven BA. Mesenchymal stromal cell-

mediated neuroprotection and functional preservation of ret-

inal ganglion cells in a rodent model of glaucoma. Cytother-

apy. 2016;18(4):487–496.

23. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA.

Intravitreally transplanted dental pulp stem cells promote neu-

roprotection and axon regeneration of retinal ganglion cells

after optic nerve injury. Invest Ophthalmol Vis Sci. 2013;

54(12):7544–7556.

24. Zhang R, Zhang H, Xu L, Ma K, Wallrapp C, Jonas JB. Neu-

roprotective effect of intravitreal cell-based glucagon-like

peptide-1 production in the optic nerve crush model. Acta

Ophthalmol. 2011;89(4):e320–e326.

25. Bouhenni RA, Dunmire J, Sewell A, Edward DP. Animal mod-

els of glaucoma. J Biomed Biotechnol. 2012;2012:692609.

26. Tomarev S. Animal models of glaucoma. Encyclopedia of the

Eye. 2010:106–111.

27. Weinreb RN, Lindsey JD. The importance of models in glau-

coma research. J Glaucoma. 2005;14(4):302–324.

28. Albrecht May C. Comparative anatomy of the optic nerve head

and inner retina in non-primate animal models used for glau-

coma research. Open Ophthalmol J. 2008;2:94–101.

29. Morrison J, Farrell S, Johnson E, Deppmeier L, Moore CG,

Grossmann E. Structure and composition of the rodent lamina

cribrosa. Exp Eye Res. 1995;60(2):127–135.

30. Chen L, Zhao Y, Zhang H. Comparative anatomy of the tra-

becular meshwork, the optic nerve head and the inner retina in

rodent and primate models used for glaucoma research. Vision.

2016;1(1):4.

31. van der Zypen E. Experimental morphological study on struc-

ture and function of the filtration angel of the rat eye. Ophthal-

mologica. 1977;174(5):285–298.

32. Morrison JC, Fraunfelder FW, Milne ST, Moore CG. Limbal

microvasculature of the rat eye. Invest Ophthalmol Vis Sci.

1995;36(3):751–756.

33. Morcos Y, Chan-Ling T. Concentration of astrocytic filaments

at the retinal optic nerve junction is coincident with the absence

of intra-retinal myelination: comparative and developmental

evidence. J Neurocytol. 2000;29(9):665–678.

34. Smith RS, Zabaleta A, Savinova OV, John SW. The mouse

anterior chamber angle and trabecular meshwork develop with-

out cell death. BMC Dev Biol. 2001;1:3.

35. May CA, Lutjen-Drecoll E. Morphology of the murine optic

nerve. Invest Ophthalmol Vis Sci. 2002;43(7):2206–2212.

36. Aihara M, Lindsey JD, Weinreb RN. Aqueous humor

dynamics in mice. Invest Ophthalmol Vis Sci. 2003;44(12):

5168–5173.

37. Johnson TV, Tomarev SI. Rodent models of glaucoma. Brain

Res Bull. 2010;81(2–3):349–358.

38. Dismuke WM, Overby DR, Civan MM, Stamer WD. The value

of mouse models for glaucoma drug discovery. J Ocul Phar-

macol Ther. 2016;32(8):486–487.

39. Vecino E, Sharma SC. Glaucoma animal models. European

Union: INTECH Open Access Publisher; 2011;319–334.

40. Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature,

distribution, functions and turnover. J Intern Med. 1997;

242(1):27–33.

41. Lerner LE, Polansky JR, Howes EL, Stern R. Hyaluronan in

the human trabecular meshwork. Invest Ophthalmol Vis Sci.

1997;38(6):1222–1228.

42. Toole BP. Hyaluronan in morphogenesis. J Intern Med. 1997;

242(1):35–40.

43. Knepper PA, Goossens W, Hvizd M, Palmberg PF. Glycosa-

minoglycans of the human trabecular meshwork in primary

open-angle glaucoma. Invest Ophthalmol Vis Sci. 1996;

37(7):1360–1367.

44. Navajas EV, Martins JR, Melo LA, Jr., Saraiva VS, Dietrich

CP, Nader HB, Belfort R Jr. Concentration of hyaluronic acid

in primary open-angle glaucoma aqueous humor. Exp Eye Res.

2005;80(6):853–857.

45. Gartaganis SP, Georgakopoulos CD, Exarchou AM, Mela EK,

Lamari F, Karamanos NK. Increased aqueous humor basic

fibroblast growth factor and hyaluronan levels in relation to

the exfoliation syndrome and exfoliation glaucoma. Acta

Ophthalmol Scand. 2001;79(6):572–575.

46. Goa KL, Benfield P. Hyaluronic acid. A review of its pharma-

cology and use as a surgical aid in ophthalmology, and its

therapeutic potential in joint disease and wound healing.

Drugs. 1994;47(3):536–566.

47. Barron BA, Busin M, Page C, Bergsma DR, Kaufman HE.

Comparison of the effects of Viscoat and Healon on postopera-

tive intraocular pressure. Am J Ophthalmol. 1985;100(3):

377–384.

48. Mac Rae SM, Edelhauser HF, Hyndiuk RA, Burd EM, Schultz

RO. The effects of sodium hyaluronate, chondroitin sulfate,

Dey et al 225



and methylcellulose on the corneal endothelium and intraocu-

lar pressure. Am J Ophthalmol. 1983;95(3):332–341.

49. Henry JC, Olander K. Comparison of the effect of four viscoe-

lastic agents on early postoperative intraocular pressure. J Cat-

aract Refract Surg. 1996;22(7):960–966.

50. Benozzi J, Nahum LP, Campanelli JL, Rosenstein RE. Effect

of hyaluronic acid on intraocular pressure in rats. Invest

Ophthalmol Vis Sci. 2002;43(7):2196–2200.

51. Moreno MC, Marcos HJ, Oscar Croxatto J, Sande PH, Campa-

nelli J, Jaliffa CO, Benozzi J, Rosenstein RE. A new experi-

mental model of glaucoma in rats through intracameral

injections of hyaluronic acid. Exp Eye Res. 2005;81(1):71–80.

52. Weber AJ, Zelenak D. Experimental glaucoma in the primate

induced by latex microspheres. J Neurosci Methods. 2001;

111(1):39–48.

53. Urcola JH, Hernandez M, Vecino E. Three experimental glau-

coma models in rats: comparison of the effects of intraocular

pressure elevation on retinal ganglion cell size and death. Exp

Eye Res. 2006;83(2):429–437.

54. Sappington RM, Carlson BJ, Crish SD, Calkins DJ. The

microbead occlusion model: a paradigm for induced ocular

hypertension in rats and mice. Invest Ophthalmol Vis Sci.

2010;51(1):207–216.

55. Cone-Kimball E, Nguyen C, Oglesby EN, Pease ME, Steinhart

MR, Quigley HA. Scleral structural alterations associated with

chronic experimental intraocular pressure elevation in mice.

Mol Vis. 2013;19:2023–2039.

56. McBain SC, Yiu HH, Dobson J. Magnetic nanoparticles for

gene and drug delivery. Int J Nanomedicine. 2008;3(2):

169–180.

57. Samsel PA, Kisiswa L, Erichsen JT, Cross SD, Morgan JE. A

novel method for the induction of experimental glaucoma

using magnetic microspheres. Invest Ophthalmol Vis Sci.

2011;52(3):1671–1675.

58. Dai C, Khaw PT, Yin ZQ, Li D, Raisman G, Li Y. Structural

basis of glaucoma: the fortified astrocytes of the optic nerve

head are the target of raised intraocular pressure. Glia. 2012;

60(1):13–28.

59. Bunker S, Holeniewska J, Vijay S, Dahlmann-Noor A, Khaw

P, Ng YS, Shima D, Foxton R. Experimental glaucoma induced

by ocular injection of magnetic microspheres. J Vis Exp. 2015;

96:5.

60. Cone FE, Gelman SE, Son JL, Pease ME, Quigley HA. Differ-

ential susceptibility to experimental glaucoma among 3 mouse

strains using bead and viscoelastic injection. Exp Eye Res.

2010;91(3):415–424.

61. Kalesnykas G, Oglesby EN, Zack DJ, Cone FE, Steinhart MR,

Tian J, Pease ME, Quigley HA. Retinal ganglion cell morphol-

ogy after optic nerve crush and experimental glaucoma. Invest

Ophthalmol Vis Sci. 2012;53(7):3847–3857.

62. Cone FE, Steinhart MR, Oglesby EN, Kalesnykas G, Pease

ME, Quigley HA. The effects of anesthesia, mouse strain and

age on intraocular pressure and an improved murine model of

experimental glaucoma. Exp Eye Res. 2012;99:27–35.

63. Frankfort BJ, Khan AK, Tse DY, Chung I, Pang JJ, Yang Z,

Gross RL, Wu SM. Elevated intraocular pressure causes inner

retinal dysfunction before cell loss in a mouse model of experi-

mental glaucoma. Invest Ophthalmol Vis Sci. 2013;54(1):

762–770.

64. Smedowski A, Pietrucha-Dutczak M, Kaarniranta K, Lewin-

Kowalik J. A rat experimental model of glaucoma incorporat-

ing rapid-onset elevation of intraocular pressure. Sci Rep.

2014;4:5910.

65. Khan AK, Tse DY, van der Heijden ME, Shah P, Nusbaum

DM, Yang Z, Wu SM, Frankfort BJ. Prolonged elevation of

intraocular pressure results in retinal ganglion cell loss and

abnormal retinal function in mice. Exp Eye Res. 2015;130:

29–37.

66. Ho LC, Conner IP, Do CW, Kim SG, Wu EX, Wollstein G,

Schuman JS, Chan KC. In vivo assessment of aqueous humor

dynamics upon chronic ocular hypertension and hypotensive

drug treatment using gadolinium-enhanced MRI. Invest

Ophthalmol Vis Sci. 2014;55(6):3747–3757.

67. Gaasterland D, Kupfer C. Experimental glaucoma in the rhesus

monkey. Invest Ophthalmol. 1974;13(6):455–457.

68. Krauss JM, Puliafito CA. Lasers in ophthalmology. Lasers

Surg Med. 1995;17(2):102–159.

69. Ueda J, Sawaguchi S, Hanyu T, Yaoeda K, Fukuchi T, Abe

H, Ozawa H. Experimental glaucoma model in the rat

induced by laser trabecular photocoagulation after an intra-

cameral injection of India ink. Jpn J Ophthalmol. 1998;

42(5):337–344.

70. Park KH, Cozier F, Ong OC, Caprioli J. Induction of heat

shock protein 72 protects retinal ganglion cells in a rat glau-

coma model. Invest Ophthalmol Vis Sci. 2001;42(7):

1522–1530.

71. Levkovitch-Verbin H, Quigley HA, Martin KR, Valenta D,

Baumrind LA, Pease ME. Translimbal laser photocoagulation

to the trabecular meshwork as a model of glaucoma in rats.

Invest Ophthalmol Vis Sci. 2002;43(2):402–410.

72. Aihara M, Lindsey JD, Weinreb RN. Experimental mouse ocu-

lar hypertension: establishment of the model. Invest Ophthal-

mol Vis Sci. 2003;44(10):4314–4320.

73. Mabuchi F, Aihara M, Mackey MR, Lindsey JD, Weinreb RN.

Optic nerve damage in experimental mouse ocular hyperten-

sion. Invest Ophthalmol Vis Sci. 2003;44(10):4321–4330.

74. Pang IH, Millar JC, Clark AF. Elevation of intraocular pressure

in rodents using viral vectors targeting the trabecular mesh-

work. Exp Eye Res. 2015;141:33–41.

75. Shepard AR, Millar JC, Pang IH, Jacobson N, Wang WH,

Clark AF. Adenoviral gene transfer of active human transform-

ing growth factor-fbetag2 elevates intraocular pressure and

reduces outflow facility in rodent eyes. Invest Ophthalmol Vis

Sci. 2010;51(4):2067–2076.

76. Buie LK, Karim MZ, Smith MH, Borras T. Development of a

model of elevated intraocular pressure in rats by gene transfer

of bone morphogenetic protein 2. Invest Ophthalmol Vis Sci.

2013;54(8):5441–5455.

77. Grozdanic SD, Betts DM, Sakaguchi DS, Allbaugh RA, Kwon

YH, Kardon RH. Laser-induced mouse model of chronic ocu-

lar hypertension. Invest Ophthalmol Vis Sci. 2003;44(10):

4337–4346.

226 Cell Transplantation 27(2)



78. WoldeMussie E, Ruiz G, Wijono M, Wheeler LA. Neuropro-

tection of retinal ganglion cells by brimonidine in rats with

laser-induced chronic ocular hypertension. Invest Ophthalmol

Vis Sci. 2001;42(12):2849–2855.

79. Hare W, WoldeMussie E, Lai R, Ton H, Ruiz G, Feldmann B,

Wijono M, Chun T, Wheeler L. Efficacy and safety of mem-

antine, an NMDA-type open-channel blocker, for reduction of

retinal injury associated with experimental glaucoma in rat and

monkey. Surv Ophthalmol. 2001;45(suppl 3):S284–S289; dis-

cussion S295–S296.

80. Schori H, Kipnis J, Yoles E, WoldeMussie E, Ruiz G, Wheeler

LA, Schwartz M. Vaccination for protection of retinal ganglion

cells against death from glutamate cytotoxicity and ocular

hypertension: implications for glaucoma. Proc Natl Acad Sci

U S A. 2001;98(6):3398–3403.

81. Siu AW, Leung MC, To CH, Siu FK, Ji JZ, So KF. Total retinal

nitric oxide production is increased in intraocular pressure-

elevated rats. Exp Eye Res. 2002;75(4):401–406.

82. Ji JZ, Elyaman W, Yip HK, Lee VW, Yick LW, Hugon J, So

KF. CNTF promotes survival of retinal ganglion cells after

induction of ocular hypertension in rats: the possible involve-

ment of STAT3 pathway. Eur J Neurosci. 2004;19(2):265–272.

83. Chan HH, Leung MC, So KF. Electroacupuncture provides a

new approach to neuroprotection in rats with induced glau-

coma. J Altern Complement Med. 2005;11(2):315–322.

84. Chan HC, Chang RC, Koon-Ching Ip A, Chiu K, Yuen WH,

Zee SY, So KF. Neuroprotective effects of Lycium barbarum

Lynn on protecting retinal ganglion cells in an ocular hyperten-

sion model of glaucoma. Exp Neurol. 2007;203(1):269–273.

85. Chiu K, Zhou Y, Yeung SC, Lok CK, Chan OO, Chang RC, So

KF, Chiu JF. Up-regulation of crystallins is involved in the

neuroprotective effect of wolfberry on survival of retinal gang-

lion cells in rat ocular hypertension model. J Cell Biochem.

2010;110(2):311–320.

86. Ji J, Chang P, Pennesi ME, Yang Z, Zhang J, Li D, Wu SM,

Gross RL. Effects of elevated intraocular pressure on mouse

retinal ganglion cells. Vision Res. 2005;45(2):169–179.

87. Gross RL, Ji J, Chang P, Pennesi ME, Yang Z, Zhang J, Wu

SM. A mouse model of elevated intraocular pressure: retina

and optic nerve findings. Trans Am Ophthalmol Soc. 2003;

101:163–169; discussion 169–171.

88. Wang RF, Schumer RA, Serle JB, Podos SM. A comparison of

argon laser and diode laser photocoagulation of the trabecular

meshwork to produce the glaucoma monkey model. J Glau-

coma. 1998;7(1):45–49.

89. Acott TS, Samples JR, Bradley JM, Bacon DR, Bylsma SS,

Van Buskirk EM. Trabecular repopulation by anterior trabe-

cular meshwork cells after laser trabeculoplasty. Am J

Ophthalmol. 1989;107(1):1–6.

90. Dueker DK, Norberg M, Johnson DH, Tschumper RC, Fee-

ney-Burns L. Stimulation of cell division by argon and Nd:

YAG laser trabeculoplasty in cynomolgus monkeys. Invest

Ophthalmol Vis Sci. 1990;31(1):115–124.

91. Shareef SR, Garcia-Valenzuela E, Salierno A, Walsh J,

Sharma SC. Chronic ocular hypertension following episcleral

venous occlusion in rats. Exp Eye Res. 1995;61(3):379–382.

92. Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC. Pro-

grammed cell death of retinal ganglion cells during experi-

mental glaucoma. Exp Eye Res. 1995;61(1):33–44.

93. Sawada A, Neufeld AH. Confirmation of the rat model of

chronic, moderately elevated intraocular pressure. Exp Eye

Res. 1999;69(5):525–531.

94. Mittag TW, Danias J, Pohorenec G, Yuan HM, Burakgazi E,

Chalmers-Redman R, Podos SM, Tatton WG. Retinal damage

after 3 to 4 months of elevated intraocular pressure in a rat

glaucoma model. Invest Ophthalmol Vis Sci. 2000;41(11):

3451–3459.

95. Bayer AU, Danias J, Brodie S, Maag KP, Chen B, Shen F,

Podos SM, Mittag TW. Electroretinographic abnormalities in

a rat glaucoma model with chronic elevated intraocular pres-

sure. Exp Eye Res. 2001;72(6):667–677.

96. Ruiz-Ederra J, Verkman AS. Mouse model of sustained ele-

vation in intraocular pressure produced by episcleral vein

occlusion. Exp Eye Res. 2006;82(5):879–884.

97. Yu S, Tanabe T, Yoshimura N. A rat model of glaucoma

induced by episcleral vein ligation. Exp Eye Res. 2006;

83(4):758–770.

98. Zhu Y, Zhang L, Schmidt JF, Gidday JM. Glaucoma-induced

degeneration of retinal ganglion cells prevented by hypoxic

preconditioning: a model of glaucoma tolerance. Mol Med.

2012;18:697–706.

99. Moore C, Milne S, Morrison J. A rat model of pressure-

induced optic nerve damage. Philadelphia, PA: Lippincott-

Raven; 1993:1141–1141.

100. Johnson EC, Morrison JC, Farrell S, Deppmeier L, Moore

CG, McGinty MR. The effect of chronically elevated intrao-

cular pressure on the rat optic nerve head extracellular matrix.

Exp Eye Res. 1996;62(6):663–674.

101. Hanninen VA, Pantcheva MB, Freeman EE, Poulin NR, Gros-

skreutz CL. Activation of caspase 9 in a rat model of experi-

mental glaucoma. Curr Eye Res. 2002;25(6):389–395.

102. Fortune B, Bui BV, Morrison JC, Johnson EC, Dong J,

Cepurna WO, Jia L, Barber S, Cioffi GA. Selective

ganglion cell functional loss in rats with experimental

glaucoma. Invest Ophthalmol Vis Sci. 2004;45(6):

1854–1862.

103. Chauhan BC, Pan J, Archibald ML, LeVatte TL, Kelly ME,

Tremblay F. Effect of intraocular pressure on optic disc topo-

graphy, electroretinography, and axonal loss in a chronic

pressure-induced rat model of optic nerve damage. Invest

Ophthalmol Vis Sci. 2002;43(9):2969–2976.

104. Tehrani S, Johnson EC, Cepurna WO, Morrison JC. Astrocyte

processes label for filamentous actin and reorient early within

the optic nerve head in a rat glaucoma model. Invest Ophthal-

mol Vis Sci. 2014;55(10):6945–6952.

105. Morrison JC, Moore CG, Deppmeier LM, Gold BG, Meshul

CK, Johnson EC. A rat model of chronic pressure-induced

optic nerve damage. Exp Eye Res. 1997;64(1):85–96.

106. McKinnon S, Reitsamer H, Ransom N, Caldwell M, Harrison

J, Kiel J. Induction and tonopen measurement of ocular

hypertension in C57BL/6 mice. Invest Ophthalmol Vis Sci.

2003;44(13):3319–3319.

Dey et al 227



107. Kipfer-Kauer A, McKinnon SJ, Frueh BE, Goldblum D. Dis-

tribution of amyloid precursor protein and amyloid-beta in

ocular hypertensive C57BL/6 mouse eyes. Curr Eye Res.

2010;35(9):828–834.

108. Liu HH, Bui BV, Nguyen CT, Kezic JM, Vingrys AJ, He Z.

Chronic ocular hypertension induced by circumlimbal suture

in rats. Invest Ophthalmol Vis Sci. 2015;56(5):2811–2820.

109. McLean J, Gordon DM, Koteen H. Clinical experiences with

ACTH and cortisone in ocular diseases. Trans Am Acad

Ophthalmol Otolaryngol. 1951;55:565–572.

110. Gordon DM, Mc LJ, Koteen H, Bousquet FP, Mc CW, Baras

I, Wetzig P, Norton EW. The use of ACTH and cortisone in

ophthalmology. Am J Ophthalmol. 1951;34(12):1675–1686.

111. Francois J, Victoria-Troncoso V. Corticosteroid glaucoma.

Ophthalmologica. 1977;174(4):195–209.

112. Overby DR, Clark AF. Animal models of glucocorticoid-

induced glaucoma. Exp Eye Res. 2015;141:15–22.

113. Sawaguchi K, Nakamura Y, Nakamura Y, Sakai H, Sawagu-

chi S. Myocilin gene expression in the trabecular meshwork

of rats in a steroid-induced ocular hypertension model.

Ophthalmic Res. 2005;37(5):235–242.

114. Zode GS, Sharma AB, Lin X, Searby CC, Bugge K, Kim GH,

Clark AF, Sheffield VC. Ocular-specific ER stress reduction

rescues glaucoma in murine glucocorticoid-induced glau-

coma. J Clin Invest. 2014;124(5):1956–1965.

115. Patten SB, Neutel CI. Corticosteroid-induced adverse psy-

chiatric effects: incidence, diagnosis and management. Drug

Saf. 2000;22(2):111–122.

116. Po KT, Siu AM, Lau BW, Chan JN, So KF, Chan CC.

Repeated, high-dose dextromethorphan treatment decreases

neurogenesis and results in depression-like behavior in rats.

Exp Brain Res. 2015;233(7):2205–2214.

117. Chang B, Smith RS, Hawes NL, Anderson MG, Zabaleta A,

Savinova O, Roderick TH, Heckenlively JR, Davisson MT,

John SW. Interacting loci cause severe iris atrophy and glau-

coma in DBA/2J mice. Nat Genet. 1999;21(4):405–409.

118. Aihara M, Lindsey JD, Weinreb RN. Ocular hypertension in

mice with a targeted type I collagen mutation. Invest Ophthal-

mol Vis Sci. 2003;44(4):1581–1585.

119. Senatorov V, Malyukova I, Fariss R, Wawrousek EF, Swa-

minathan S, Sharan SK, Tomarev S. Expression of mutated

mouse myocilin induces open-angle glaucoma in transgenic

mice. J Neurosci. 2006;26(46):11903–11914.

120. Harada C, Namekata K, Guo X, Yoshida H, Mitamura Y,

Matsumoto Y, Tanaka K, Ichijo H, Harada T. ASK1 defi-

ciency attenuates neural cell death in GLAST-deficient mice,

a model of normal tension glaucoma. Cell Death Differ. 2010;

17(11):1751–1759.

121. Zode GS, Kuehn MH, Nishimura DY, Searby CC, Mohan K,

Grozdanic SD, Bugge K, Anderson MG, Clark AF, Stone

EM, Sheffield VC. Reduction of ER stress via a chemical

chaperone prevents disease phenotypes in a mouse model of

primary open angle glaucoma. J Clin Invest. 2011;121(9):

3542–3553.

122. Levkovitch-Verbin H, Harris-Cerruti C, Groner Y,

Wheeler LA, Schwartz M, Yoles E. RGC death in mice

after optic nerve crush injury: oxidative stress and neuro-

protection. Invest Ophthalmol Vis Sci. 2000;41(13):

4169–4174.

123. Villegas-Perez MP, Vidal-Sanz M, Rasminsky M, Bray GM,

Aguayo AJ. Rapid and protracted phases of retinal ganglion

cell loss follow axotomy in the optic nerve of adult rats. J

Neurobiol. 1993;24(1):23–36.

124. Berkelaar M, Clarke DB, Wang YC, Bray GM, Aguayo AJ.

Axotomy results in delayed death and apoptosis of retinal

ganglion cells in adult rats. J Neurosci. 1994;14(7):

4368–4374.

125. Mayordomo-Febrer A, Lopez-Murcia M, Morales-Tatay JM,

Monleon-Salvado D, Pinazo-Duran MD. Metabolomics of the

aqueous humor in the rat glaucoma model induced by a series

of intracamerular sodium hyaluronate injection. Exp Eye Res.

2015;131:84–92.

126. Ahmed FA, Hegazy K, Chaudhary P, Sharma SC. Neuropro-

tective effect of alpha(2) agonist (brimonidine) on adult rat

retinal ganglion cells after increased intraocular pressure.

Brain Res. 2001;913(2):133–139.

127. Ko ML, Hu DN, Ritch R, Sharma SC, Chen CF. Patterns of

retinal ganglion cell survival after brain-derived neurotrophic

factor administration in hypertensive eyes of rats. Neurosci

Lett. 2001;305(2):139–142.

128. Naskar R, Wissing M, Thanos S. Detection of early neuron

degeneration and accompanying microglial responses in the

retina of a rat model of glaucoma. Invest Ophthalmol Vis Sci.

2002;43(9):2962–2968.

129. Neufeld AH, Sawada A, Becker B. Inhibition of nitric-oxide

synthase 2 by aminoguanidine provides neuroprotection of

retinal ganglion cells in a rat model of chronic glaucoma. Proc

Natl Acad Sci U S A. 1999;96(17):9944–9948.

130. Schlamp CL, Johnson EC, Li Y, Morrison JC, Nickells RW.

Changes in Thy1 gene expression associated with damaged

retinal ganglion cells. Mol Vis. 2001;7:192–201.

131. Overby DR, Bertrand J, Tektas OY, Boussommier-Calleja A,

Schicht M, Ethier CR, Woodward DF, Stamer WD, Lutjen-

Drecoll E. Ultrastructural changes associated with

dexamethasone-induced ocular hypertension in mice. Invest

Ophthalmol Vis Sci. 2014;55(8):4922–4933.

132. Whitlock NA, McKnight B, Corcoran KN, Rodriguez LA,

Rice DS. Increased intraocular pressure in mice treated with

dexamethasone. Invest Ophthalmol Vis Sci. 2010;51(12):

6496–6503.

133. Shinzato M, Yamashiro Y, Miyara N, Iwamatsu A, Takeuchi

K, Umikawa M, Bayarjargal M, Kariya K, Sawaguchi S. Pro-

teomic analysis of the trabecular meshwork of rats in a

steroid-induced ocular hypertension model: downregulation

of type I collagen C-propeptides. Ophthalmic Res. 2007;

39(6):330–337.

134. Struebing FL, Geisert EE. What animal models can tell us

about glaucoma. Prog Mol Biol Transl Sci. 2015;134:

365–380.

135. Ishikawa M, Yoshitomi T, Zorumski CF, Izumi Y. Experi-

mentally Induced mammalian models of glaucoma. Biomed

Res Int. 2015;2015:281214.

228 Cell Transplantation 27(2)



136. Morgan JE, Tribble JR. Microbead models in glaucoma. Exp

Eye Res. 2015;141:9–14.

137. Morrison JC, Cepurna WO, Johnson EC. Modeling glaucoma

in rats by sclerosing aqueous outflow pathways to elevate

intraocular pressure. Exp Eye Res. 2015;141:23–32.

138. McKinnon S, Pease M, WoldeMussie E, Zack D, Quigley H,

Kerrigan-Baumrind L, Mitchell R, Ruiz G. Comparison of

three models of rat glaucoma caused by chronic intraocular

pressure elevation. Bethesda, MD: Association Research

Vision Ophthalmology; 1999:S787–S787.

139. Abu-Hassan DW, Li X, Ryan EI, Acott TS, Kelley MJ.

Induced pluripotent stem cells restore function in a human

cell loss model of open-angle glaucoma. Stem Cells. 2015;

33(3):751–761.

Dey et al 229



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


