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Recently, Weyl fermions have attracted increasing interest in condensed matter physics due to their rich
phenomenology originated from their nontrivial monopole charges. Here, we present a theory of real Dirac
points that can be understood as real monopoles in momentum space, serving as a real generalization of
Weyl fermions with the reality being endowed by the PT symmetry. The real counterparts of topological
features of Weyl semimetals, such as Nielsen-Ninomiya no-go theorem, 2D subtopological insulators, and
Fermi arcs, are studied in the PT symmetric Dirac semimetals and the underlying reality-dependent
topological structures are discussed. In particular, we construct a minimal model of the real Dirac
semimetals based on recently proposed cold atom experiments and quantum materials about PT symmetric
Dirac nodal line semimetals.
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Introduction.—The discovery of topological insulators
[1,2] has galvanized the condensed matter community into
research of topological phenomena in a vast variety of
quantum matters. One class of materials that have attracted
particular attention in recent years are the gapless topological
systems, such as Weyl and various Dirac semimetals, Dirac
nodal line semimetals, and nodal topological superconduc-
tors. In this new topological paradigm of gapless solid state
physics, Weyl fermions are of the most fundamental status
[3–5], in the sense that a Weyl point can be interpreted as a
unit monopole of the UðNÞ Berry bundle of the band
structure in momentum space [3], which, unlike other
topological gapless modes, does not rely on any symmetry.
The nontrivial topological charges of Weyl points as
momentum space monopoles put strong constraints on the
global band structure of a Weyl semimetal, leading to two
primary consequences. First, a Weyl semimetal conforms the
Nielsen-Ninomiya (NN) no-go theorem that Weyl points
generically appear in pairs of opposite unit UðNÞ monopole
charges. This is due to the fact that the total monopole charge
has to vanish due to the orientability and closeness of the
first Brillouin zone (BZ) [6,7], and a multiply charged
monopole may unstably split into unit ones under perturba-
tions [5,8,9]. Second, the Chern number or Thouless-
Kohmoto-Nightingale-den Nijs (TKNN) invariant of a
two-dimensional (2D) subsystem [10,11] has to jump by
a unit when moving across a Weyl point, and consequently,
the gapless chiral states originated from the Chern numbers
of these 2D subsystems form Fermi arcs on the surface of a
Weyl semimetal connecting the projections ofWeyl points in
the bulk [12], which are experimentally observable [13–17].
In this Letter, we present a real generalization of the

Weyl semimetal through the combined PT symmetry with
ðPTÞ2 ¼ 1, where P indicates the inversion symmetry and

T the time reversal. Note that PT has to be broken for a
Weyl semimetal unless gauge potentials are present [18].
Analogous to the innumerable interesting phenomena
embedded in the classification of topological insulators
and superconductors [19,20], the real counterpart of the
Weyl point, which we call a real Dirac point, is of particular
interest in the recently established classification of PT and
CP (charge conjugate C) symmetric topological gapless
systems [21]. We show that the PT symmetry endows a
reality condition on the band structure inducing a real Berry
bundle over the BZ, and the real Dirac point is actually a
unit monopole for the OðNÞ Berry bundle in contrast to the
UðNÞ bundle associated to a Weyl point. Historically, the
real monopole first appeared in an entirely different context
about SOð3Þ gauge field theory in Polyakov’ classic work
[22]. While the real monopole nature of the real Dirac point
guarantees that all features of Weyl semimetals find their
real counterparts in the real Dirac semimetal including the
no-go theorem and gapless chiral Fermi arc surface states,
the reality plays a nontrivial role. In particular, the surface
Fermi arcs are of richer band structure that preserves the
reality. In addition, physical systems of such PT symmetry
have been recently predicted in real materials [23–26] and
designed in cold atom experiments [27] for the realization
of PT-invariant nodal line Dirac semimetals. Starting with
such Dirac semimetals, we provide a general recipe for
model construction of real Dirac semimetals, which may
pave the way for their future experimental realization.
Before moving to the detailed study, we note that through-
out this work only the combined PT symmetry is required,
while individual P and T symmetries may be violated
separately.
As real monopoles in momentum space.—We first recall

some basics of a Weyl point described by
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HWðkÞ ¼ k · σ: ð1Þ
The gapless point at the origin is associated with a
topologically nontrivial Uð1Þ Berry bundle on the sphere
S2 enclosing the gapless point, and therefore can be
regarded as a monopole of Uð1Þ group. To identify the
topological nature of Eq. (1), we analyze the Berry bundle
by choosing stereographic coordinates for the north and
south hemisphere, respectively, where without loss of
generality we choose the unit sphere jnj ¼ 1 [See the
Supplemental Material (SM) for details [28]]. The
Hamiltonian (1) has eigenstates jþ; ziN ¼ ð1; zÞT
(jþ; ziS ¼ ðz̄; 1ÞT) and j−; ziN ¼ ðz̄;−1ÞT (j−; ziS ¼
ð1;−zÞT) on the north (south) hemisphere with positive
and negative unit energy, respectively, where “T” denotes
vector or matrix transposition. Negative states j−; ziN=S on
the two patches of coordinates are sections of the Uð1Þ
principle fiber bundle given by the projector
P ¼ ½1 − sgnðHW jS2Þ�=2, which determine the transition
function on the intersection S1 of the two patches,

j−;ϕiS ¼ gCSNðϕÞj−;ϕiN; ð2Þ
where gCSNðϕÞ ∈ Uð1Þ for any point ϕ on the circle S1.
Therefore, we find gSNðϕÞ ¼ eiϕ with ϕ ∈ ½0; 2πÞ, which
has the unit winding number from S1 to Uð1Þ. Thus
the Weyl point, Eq. (1), corresponds to the topological
nontrivial complex vector bundle. This complex vector
bundle is the generator of the reducedK group, ~KðS2Þ ≅ Z,
which classifies UðNÞ monopoles as gapless points in 3D
momentum space, noting that Uð1Þ is the subgroup of
UðNÞ for any positive integer N. Namely, the bundle for a
monopole of multiple charge n can be obtained from a
n-copy direct sum of that for the Weyl point [29].
To give a real structure for a Berry bundle and construct a

OðNÞmonopole therein [30,31], we need the PT symmetry
with ðPTÞ2 ¼ 1. For a noninteracting fermionic model with
(lattice) translation symmetry described by HðkÞ, T and
P symmetries are represented in momentum space as T̂ ¼
UTK̂ Î and P̂ ¼ UPÎ, respectively, where UT=P are unitary

operators, K̂ the complex conjugate, and Î the inversion of
momentum. The combined PT symmetry is then repre-
sented as T̂ P̂ ¼ UPTK̂ with UPT ¼ UPUT , which gives a
reality relation for the Hilbert space at each momentum k.
From the viewpoint of K theory, the PT symmetry simply
changes the classifying space of a flattened gapped
Hamiltonian sgn(HðkÞ) at a specific k as follows [32]:

UðM þ NÞ
UðMÞ ×UðNÞ →

OðM þ NÞ
OðMÞ ×OðNÞ

with M (N) the number of conduction (valence) bands,
which symbolically illustrates the transition from complex-
ity to reality. Furthermore, for every k we can find a set of
eigenstates jα; ki for HðkÞ, such that

jα; ki ¼ P̂ T̂ jα; ki; ð3Þ
which makes a Berry bundle a real vector bundle associated
to a OðNÞ principle bundle. Note that there is no Kramers
degeneracy for ðP̂ T̂Þ2 ¼ 1 in contrast to the case of
ðP̂ T̂Þ2 ¼ −1, which guarantees that the reality condition
(3) holds for each band.
For convenience and without loss of generality, we choose

P̂ T̂ ¼ K̂, which simply means that the Hamiltonian is real,
and a real Dirac point may be represented as

HRDðkÞ ¼ kxσ1 ⊗ τ0 þ kyσ2 ⊗ τ2 þ kzσ3 ⊗ τ0; ð4Þ

as suggested by the Clifford algebra theory. It is noted that
the real Hamiltonian density of Eq. (4) is actually that of
Majorana fermion, but the spinor ψD here is a Dirac spinor
rather than a Majorana one, namely, they do not agree with
each other at second quantization. The topologically non-
trivial real vector bundle given by the projector P ¼ ½1 −
sgnðHRDjS2Þ�=2 is actually the generator of the reduced
orthogonal K group, gKOðS2Þ ≅ Z2, and thus, we may call
the gapless point of Eq. (4) the unit real monopole in
momentum space. To identify theOðNÞmonopole charge of
Eq. (4), we still adopt the stereographic coordinates for the
unit sphere S2 enclosing the gapless point, similar to the
case of Weyl point (See the Supplemental Material for
details [28]). Now it is a four-band theory, and the real
eigenstates on the north hemisphere are jþ; 1iN ¼
ð1; x; 0;−yÞT , jþ; 2iN ¼ ð0; y; 1; xÞT for positive energy
and j−; 1iN ¼ ðx;−1; y; 0ÞT , j−; 2iN ¼ ð−y; 0; x;−1ÞT for
negative energy, while on the south hemisphere,
jþ; 1iS ¼ ðx; 1; y; 0ÞT , jþ; 2iS ¼ ð−y; 0; x; 1ÞT , j−; 1iS ¼
ð1;−x; 0; yÞT , and j−; 2iS ¼ ð0;−y; 1;−xÞT , which satisfy
Eq. (3). On the intersection S1 of the two hemispheres,
eigenstates for negative energy are given explicitly as
j−; 1iN ¼ ðcosϕ;−1; sinϕ; 0ÞT , j−;2iN ¼ð−sinϕ;0;cosϕ;
−1ÞT , j−; 1iS ¼ ð1;− cosϕ; 0; sinϕÞT , and j−; 2iS ¼
ð0;− sinϕ; 1;− cosϕÞT . Then the transition function
gRNSðϕÞ ∈ Oð2Þ with ϕ ∈ S1, which gives the relation

j−; αiS ¼ ½gRSN �αβj−; βiN; ð5Þ

is calculated as

gRSNðϕÞ ¼
�
cosϕ − sinϕ
sinϕ cosϕ

�
: ð6Þ

It is transparent that the transition function as a map from S1

to Oð2Þ has a unit winding number, which verifies that the
real Berry bundle of Eq. (4) generates gKOðS2Þ ≅ Z2.
Recall that the topological invariant for a Weyl point is

given by the famous Chern number or TKNN invariant
[10], ν ¼ ð1=2πiÞ RS2 trF , where the Berry curvature is
derived from complex valence eigenvectors on the gapped
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S2 enclosing the Weyl point. To formulate a topological
invariant for the real monopole, similarly, we may use the
real Berry curvature FR, which is derived from the real
connection AR

αβ ¼ hα; kjdjβ; ki with the real eigenstates
jα; ki satisfying Eq. (3). The corresponding topological
invariant for two valence bands is given by

νR ¼ −
1

4π

Z
S2
trðIFRÞ mod 2; ð7Þ

where FR is the curvature for the real Berry bundle and
I ¼ −iλ2 is the generator of the SOð2Þ group with λ2 being
the second Pauli matrix. We may call Eq. (7) the real Chern
number, and the “mod 2” should be understood according
to the following paragraph.
For higher-dimensional real vector bundles on S2, the

transition functions on the equator are maps from S1 to
OðNÞ, which are classified by π1(OðNÞ) ≅ Z2, and non-
trivial transition functions correspond to nontrivial real
vector bundles. A transition function from S1 to OðNÞ can
always be continuously deformed to be a map from S1 to
Oð2Þ ⊂ OðNÞ, and the parity of the winding number gives
the homotopy class of the transition function, namely,
Z2 ≅ Z=2Z, though two-dimensional real vector bundles
have a Z2 classification since π1(Oð2Þ) ≅ Z. In this sense,
the Berry bundle of the Majorana Hamiltonian, Eq. (4),
is a generator of the reduce orthogonal K theory,gKOðS2Þ ≅ Z2.
No-go theorem.—Following almost the same topological

arguments for the NN No-go theorem of Weyl semimetals
[6,7], we can show that real Dirac semimetals of the PT
symmetry satisfy the No-go theorem that real Dirac points
always exist in pairs for a lattice model. Since a Brillouin
zone as a tori is a closed orientable manifold, when one
chooses an oriented S2 enclosing any real monopole, the S2

also encloses the rest of real monopoles with the opposite
orientation, which implies the topological charge of the real
monopole is equal to the inverse of the sum of topological
charges for the rest, namely,X

a

νaR ¼ 0; ð8Þ

where a labels real monopoles in a real Dirac semimetal
[28]. On the other hand, in contrast to Weyl points, real
Dirac points of positive or negative unit charge are
topologically indistinguishable as real monopoles due to
the Z2 nature. This implies there is no canonical dipole
pairing of real Dirac points in the whole Brillouin zone,
which is different from the situation of Weyl semimetals.
Considering copious topological features of Weyl semi-
metals originated from the monopole charges, particularly,
the surface Fermi arc, it is also intriguing to investigate the
real counterpart of them for PT invariant semimetals.
Minimal semimetal models as real dipoles.—Now we

shall construct a minimal model of real Dirac semimetals,

which contains a single dipole of real Dirac points in the
Brillouin zone. To motivate our model, we construct it from
PT symmetric Dirac nodal line semimetals, which have
recently been predicted in several quantum materials and
cold atom experimental proposals [26,27]. Let us start with
the Bloch Hamiltonian in a proposed cold atom experiment
for PT symmetric Dirac nodal line semimetals, HðkÞ¼
2tsinkyσ2þ½m−fðkÞ�σ3 with fðkÞ¼αþðcoskxþcoskzÞþ
α−cosky, where the Pauli matrices σj operate in every two-
level lattice site, and the PT operator is represented as
P̂ T̂ ¼ σ3K̂ with ðP̂ T̂Þ2 ¼ 1. Note that only the algebraic
properties of the PT operator are needed for the PT
symmetric topological classification, while resultant topo-
logical features are independent of concrete representations
[33]. Since a real Dirac point has a four dimensional
internal space, we first double the Dirac nodal line model,
H ⊗ τ0, and then introduce appropriate PT invariant
couplings between them which collapses a pair of over-
lapping nodal lines into two real Dirac points. For such
couplings, the only PT invariant gamma matrix is σ1 ⊗ τ2,
and a possible term is therefore sin kxσ1 ⊗ τ2, which leads
to our real Dirac semimetal model,

HRSMðkÞ ¼ 2tx sin kxσ1 ⊗ τ2 þ 2ty sin kyσ2 ⊗ τ0

þ ½m − fðkÞ�σ3 ⊗ τ0: ð9Þ

See the Supplemental Material [28] for the corresponding
tight-binding model in real space. Since the real Dirac
semimetal model is constructed from a cold atom system
[27], in principle, it is experimentally realizable and all
parameters in Eq. (9) are independently tunable. For
concreteness, we would like to work in a parameter region
where only a single pair of Dirac points separating in the kz
axis with linear dispersion relations for their coarse-gained
effective theories. The parameter region may be identified
with the region, tx ≠ 0, and 0 < ðm − α−Þ=2αþ < 1 and
ðmþ α−Þ=2αþ > 1, where for the Dirac nodal line model
only a single Dirac nodal line lies in the kx − kz sub-
Brillouin zone with ky ¼ 0 centered at the origin.
To prepare the discussions about the topology of the real

Dirac semimetal, it is helpful to have a look at the
topological features of the Dirac nodal line model in this
parameter region. Since the nodal circle has nontrivial Z2

topological charge [28], topological invariant for one-
dimensional systems along ky is nontrvial either inside
the circle or outside, but not both. To identify the nontrivial
region, it is sufficient to check the one at the origin of the
kx-kz plane, which is given by hðkyÞ ¼ 2t sin kyσ2 þ
½ðm − 2αþÞ − α− cos ky�σ3. Assuming that 2t ¼ α−, we
find the condition for nontrivial topological invariant is
given by jm − 2αþj < α−, which is always satisfied in the
aforementioned parameter region. Accordingly, when
boundaries are open properly perpendicular to ŷ direction,
there are drum-head states filling all the inside of the
nodal loop.
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Real Fermi arcs on the surfaces.—In momentum space,
two-dimensional subsystems on kx-ky planes away from
two real Dirac points are gapped as being shown in
Fig. 1(a), for which we may associate the same topological
invariant related to the PT symmetry as for the real
monopole, namely, Eq. (7) with S2 being replaced by
the BZ. Since the two real Dirac points have unit topo-
logical charges, a two-dimensional subsystem has its
topological invariant jumped by one when passing through
a Dirac point, which means the topological invariant of
subsystems with kz ∈ ðk−z ; kþz Þ is differentiated by one from
that of subsystems with kz∉½k−z ; kþz � (k�z are kz coordinates
of two real Dirac points). For a specific kz, the subsystem
of our model (9) has the Hamiltonian, H2D

kz
ðkx; kyÞ ¼

HRSMðkx; ky; kzÞ.
Instead of computing its the topological invariant

directly, we may infer it from the construction of our
model. Considering the boundaries perpendicular to ŷ
direction, we start with vanishing σ1 ⊗ τ2 term, namely,
tx ¼ 0 in Eq. (9), where for the bulk spectrum two
nodal loops overlaps degenerately in the kx − kz plane
with kz ¼ 0, so do two copies of drum-head states (see
the previous paragraph). Then turning on the term
2tx sin kxσ1 ⊗ τ2 with an infinitesimal tx, degeneracies in
the spectrum should be sensitive to the perturbation in
contrast to the gapped regions that are insensitive.
Consequently, on the surface spectrum, the region outside
the drum head may be still gapped, while only a degenerate
line segment survives connecting two remaining real Dirac
points in the bulk under the perturbation, since it is known

from above discussions that two-dimensional systems
parametrized by kz are topologically trivial or nontrivial
separated by two real Dirac points. Thus, we infer that the
Hamiltonian H2D

kz
ðkx; kyÞ is topologically nontrivial when

kz ∈ ðk−z ; kþz Þ. In fact, this inferred result can be confirmed
by direct calculation of the real Chern number, which is
given by Eq. (7) with S2 being replaced by the sub BZ.
Alternatively, one may work out the transition function of
the real bundles for 2D subsystems through the Wilson
loops

WðkxÞ ¼ P exp

�Z
dkyARðkx; kyÞ

�
∈ OðNÞ ð10Þ

(with P indicating the path order) along large circles
coordinated by ky, and then check the winding number
around the large circle parametrized by kx [28]. The
numeric results are illustrated in Fig. 2.
The spectrum of Eq. (9) with ŷ direction being confined

as a slab under natural boundary conditions respecting the
PT symmetry has been shown in Figs. 1(b), 1(c), and 1(d).
It is observed that for a surface the Fermi arc spectrum
consists of two inclined planes with different angles
connecting conduction and valence bands, where their
crossing line links two real Dirac points in the bulk, as

FIG. 1. Spectra of the real Dirac semimetal. (a) Bulk spectrum
with ky ¼ 0. (b) Spectrum of a slab with 100 unit cells along ŷ
direction. (c) The cross section of (b) at kx ¼ 0. (d) The cross
section of (b) at kz ¼ 0. Parameters: αþ ¼ 0.6, α− ¼ 0.4,
tx ¼ 0.2, ty ¼ 0.5, and m ¼ 0.1.

FIG. 2. The windings of Wilson loops around kx for 2D
subsystems with given kz. Each Wilson loop is computed along
a large circle parametrized by ky for fixed kx and kz. Panel (a) for
the 2D subsystem with kz ¼ 0 has unit winding number, but
(b) for kz ¼ π has zero winding number.

FIG. 3. Spectra with PT being violated. (a) and (b) are gapped
after breaking the PT symmetry by removing (↑A) and (↓B) on
the top layer and (↓A) and (↑B) on the bottom layer, compared
with (c) and (d) in Fig. 1 in the main text, respectively.
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illustrated by Figs. 1(b) and 1(d), in contrast to the Fermi
arc of a Weyl semimetal, which contains only one inclined
plane [12]. As low-energy degrees of freedom, Fermi arcs
on both surfaces have to preserve the reality of PT as a
whole, while either cannot do it alone, since P maps one
surface to the other and T is an internal transformation.
However, it is noted that the topological protection of the
surface Fermi arcs requires that the boundary conditions
have to respect the PT symmetry, since the reality of the
whole system has to be preserved. For instance, the gapless
boundary Fermi arcs are eliminated as shown in Fig. 3, after
removing degrees of (↑A) and (↓B) on the top layer and
(↓A) and (↑B) on the bottom layer of the slab [σj and τj act
on (↑;↓) and (AB), respectively], for which the PT
symmetry is broken, since P̂ ¼ σ3Î maps (↑A) [(↓B)] on
the bottom (top) layer to (↑A) [(↓B)] on the top (bot-
tom) layer.
Summary.—The real Dirac point has been identified as

the real monopole of Z2 type in the real Berry bundle with
the reality being endowed by the PT symmetry. The real
Dirac semimetal is studied with the essential role of reality
being elucidated for global topology in the whole BZ and
the nonchiral surface Fermi arcs.
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