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Abstract

This paper addresses the problem of designing fixed-order output feedback controllers and tuning

parameters for reducing the instability of linear time-invariant (LTI) systems. Specifically, continuous-

time (CT) and discrete-time (DT) LTI systems are considered, whose coefficients are rational functions

of design parameters that are searched for in a given semi-algebraic set. Two instability measures are

considered, the first defined as the spectral abscissa (CT case) or the spectral radius (DT case), and the

second defined as the sum of the real parts of the unstable eigenvalues (CT case) or the product of the

magnitudes of the unstable eigenvalues (DT case). Two sufficient conditions are given for establishing

either the non-existence or the existence of design parameters that reduce the considered instability

measure under a desired value. These conditions require to solve a semidefinite program (SDP), which

is a convex optimization problem, and to find the roots of a multivariate polynomial, which is a difficult

problem in general. To overcome this difficulty, a techniquebased on linear algebra operations is

exploited, which easily provides the sought roots in commoncases by taking into account the structure

of the polynomial under consideration. Also, it is shown that these conditions are also necessary by

increasing enough the size of the SDP under some mild assumptions. Lastly, it is explained how the

proposed methodology can be used to search for design parameters that minimize a given cost function

while reducing the instability.

I. INTRODUCTION

Instability measures play a key role in control systems. ForLTI systems, a commonly used

instability measure is the spectral abscissa (CT case) or the spectral radius (DT case). This
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instability measure, which will be referred to as spectral measure (SM), is important for several

reasons, for instance because tells whether the system is asymptotically stable and reveals the

speed of the least stable modes. Hence, the problem of reducing the SM is of fundamental

importance. However, problems such as the design of fixed-order output feedback controllers or

tuning parameters for achieving such a goal are notoriouslydifficult to solve. Indeed, by using

classic stability conditions based on Lyapunov functions and linear matrix inequalities (LMIs)

[3], one generally faces the problem of establishing feasibility of bilinear matrix inequalities

(BMIs) due to the product of the coefficients of the Lyapunov function with the coefficients of

the controller or the tuning parameters, which unfortunately involve non-convex optimization. For

the case of static output feedback controllers, an approachbased on the use of Hermite matrices

is proposed in [15], where LMI relaxations based on the theory of moments are derived.

Another instability measure of interest for linear systemsis the sum of the real parts of the

unstable eigenvalues (CT case) or the product of the magnitudes of the unstable eigenvalues

(DT case). This instability measure, that in the DT case is known as Mahler measure [19], will

be referred to as entropy measure (EM) being strictly related to the entropy of LTI systems,

see [2], [23] for details. The EM is important because allowsone to establish whether a

stabilizing controller can be designed in a number of scenarios characterized by the presence

of communication constraints. Indeed, this is shown in the contexts of quantized feedback

stabilization [12], data rate constrained mean square stabilizability [21], data rate constrained

observability and stabilizability [27], stabilization with sector bound uncertainty [13], signal-to-

noise ratio (SNR) constrained feedback stabilization [4],and stabilization with multirate sampling

[5]. See Section II-B for details, and see also [18], [20] forother applications of the EM. However,

similarly to the case of the SM, design problems for reducingthe EM generally involve non-

convex optimization.

This paper proposes a novel framework for addressing the above mentioned problems, namely

the design of fixed-order output feedback controllers and tuning parameters for reducing the SM

and EM. Specifically, CT and DT LTI systems are considered, whose coefficients are rational

functions of design parameters that are searched for in a given semi-algebraic set. First, two

sufficient conditions are given for establishing either thenon-existence or the existence of design

parameters that reduce the considered instability measureunder a desired value. These conditions

require to solve an SDP, which is a convex optimization problem, and to find the roots of a

multivariate polynomial, which is a difficult problem in general. To overcome this difficulty, a
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technique based on linear algebra operations is exploited,which easily provides the sought roots

in common cases by taking into account the structure of the polynomial under consideration.

These conditions are obtained by introducing eigenvalue combinations and modified stability

tables, and by exploiting polynomials that can be expressedas sums of squares of polynomials

(SOS). Second, it is shown that these conditions are also necessary by increasing enough the

size of the SDP under some mild assumptions on the semi-algebraic set. Such assumptions

concern the polynomial inequalities used to define the semi-algebraic set, and are shown to be

automatically satisfied in typical cases. Third, it is explained how the proposed methodology can

be used to search for design parameters that minimize a givencost function while reducing the

instability.

This paper extends the preliminary conference version [9] which does not consider the case

of DT systems, the SM measure, and the minimization of a givencost function. It is worth

mentioning that the SM and EM are studied in [7], [8], [10], which address the determination of

worst-cases values of these measures in the contexts of uncertain systems and nonlinear systems.

The paper is organized as follows. Section II introduces some preliminaries. Section III derives

the sufficient conditions. Section IV investigates the necessity of these conditions. Section V

discusses the specializations and extensions. Section VI presents some illustrative examples.

Lastly, Section VII concludes the paper with some final remarks.

II. PRELIMINARIES

This section provides the problem formulation, the motivation, and some information about

SOS polynomials.

A. Problem Formulation

The notation used in the paper is as follows. The symbolsR andC denote the spaces of real

numbers and complex numbers. We denote with0 andI the null matrix and the identity matrix

of size specified by the context. The transpose is denoted byA′. The expressionsA > 0 and

A ≥ 0, whereA is a real symmetric matrix, denote a positive definite matrixand a positive

semidefinite matrix. The quantitiesℜ(a), ℑ(a), and |a| are the real part, imaginary part, and

magnitude ofa ∈ C. The adjoint, determinant, image, null space, spectrum, and trace of a

matrixA are denoted byadj(A), det(A), img(A), ker(A), spec(A), andtrace(A). The function

sgn(a), with a ∈ R, denotes the sign function, i.e.,1 if a > 0, 0 if a = 0, and−1 if a < 0.
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The expressions⌊a⌋ and⌈a⌉ denote the largest integer not greater thana ∈ R and the smallest

integer not smaller thana ∈ R. The notationdeg(p(v)) denotes the degree of the polynomial

p(v). We say that an eigenvalue is unstable if it has positive realpart (CT case) or magnitude

greater than1 (DT case). We say that a matrix is asymptotically stable if all its eigenvalues

have negative real part (CT case) or magnitude less than1 (DT case). We say that an univariate

polynomial is asymptotically stable if all its roots have negative real part (CT case) or magnitude

less than1 (DT case).

Let us consider the parametric LTI system

δ(x(t)) = A(v)x(t) (1)

wheret ∈ R is the time,x ∈ Rn is the state,δ(·) is the operator

δ(x(t)) =







ẋ(t) (CT case)

x(t + 1) (DT case),
(2)

v ∈ R
m is the vector of design parameters, andA : Rm → R

n×n is a rational matrix function

that we express as

A(v) =
Anum(v)

aden(v)
(3)

whereAnum : Rm → Rn×n andaden : Rm → R are matrix polynomials.

In the sequel, the vector of design parameters will be searched for into the semi-algebraic set

V = {v ∈ R
m : wi(v) ≥ 0 ∀i = 1, . . . , nw} (4)

wherewi(v), i = 1, . . . , nw, are polynomials. Semi-algebraic sets, in fact, can represent a large

class of sets, in particular sets that are connected or disconnected, convex or non-convex, bounded

or unbounded.

In order to ensure thatA(v) does exist for all the admissible values of the design parameters,

we introduce the well-posedness condition

|aden(v)| ≥ ζ ∀v ∈ V (5)

where ζ ∈ R, ζ > 0, is a chosen threshold. Let us observe that the well-posedness condition

(5) introduces a minor restriction on the problem addressed, as the thresholdζ can be chosen

arbitrary small. We define the set

Z = {v ∈ R
m : (5) holds} . (6)
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We consider the following two instability measures of a matrix X ∈ R
n×n. The first is the

spectral abscissa (CT case) or the spectral radius (DT case). This measure is referred to as

spectral measure (SM), and is denoted by

µSM(X) =











max
i=1,...,n

ℜ (λi(X)) (CT case)

max
i=1,...,n

|λi(X)| (DT case).
(7)

The second instability measure is the sum of the real parts ofthe unstable eigenvalues (CT case)

or the product of the magnitude of the unstable eigenvalues (DT case). This measure, that in

the DT case is known as Mahler measure [19], is referred to as entropy measure (EM) being

strictly related to the entropy of LTI systems [2], [23], andis denoted by

µEM(X) =























n
∑

i=1

max {0,ℜ (λi(X))} (CT case)

n
∏

i=1

max {1, |λi(X)|} (DT case).

(8)

For brevity of presentation, we denote all these measures with the common function

µ(X) =







µSM(X) (SM case)

µEM(X) (EM case).
(9)

Let us introduce the constant

µ0 =



































−∞ (CT & SM case)

0 (DT & SM case)

0 (CT & EM case)

1 (DT & EM case).

(10)

For a givenψ ∈ R, ψ > µ0, let us define the set

U = {v ∈ R
m : µ(A(v)) < ψ} . (11)

The problem addressed in this paper is formulated as follows.

Problem 1:Establish whether the set of sought design parameters

S = V ∩ Z ∩ U (12)

is non-empty and, if yes, find a vectorv in this set.

�
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B. Motivation

Problem 1 includes important problems in control systems. Hereafter we present two of them,

namely the design of stabilizing fixed-order output feedback controllers and the design of tuning

parameters for reducing the entropy. It turns out that theseproblems are difficult to solve being

non-convex optimization problems.

1) Design of stabilizing fixed-order output feedback controllers: One of the problems

included in Problem 1 is the design of stabilizing fixed-order output feedback controllers. Indeed,

let us denote the plant as






δ(xpla(t)) = Aplaxpla(t) +Bplau(t)

y(t) = Cplaxpla(t) +Dplau(t)
(13)

wherexpla(t) ∈ Rnpla is the plant state,u(t) ∈ Rnu is the input,y(t) ∈ Rny is the output, and

Apla ∈ Rnpla×npla , Bpla ∈ Rnpla×nu, Cpla ∈ Rny×npla andDpla ∈ Rny×nu are given matrices.

Then, let us denote the fixed-order output feedback controller as






δ(xcon(t)) = Acon(v)xcon(t) +Bcon(v)y(t)

u(t) = Ccon(v)xcon(t) +Dcon(v)y(t)
(14)

wherexcon(t) ∈ Rncon is the controller state,v ∈ Rm is the vector of design parameters, and

Acon(v) ∈ Rncon×ncon, Bcon(v) ∈ Rncon×ny , Ccon(v) ∈ Rnu×ncon andDcon(v) ∈ Rnu×ny are matrix

polynomials that define the desired structure of the controller matrices. Also, let us impose that

the closed-loop system is well-posed by constrainingv with

|det(E(v))| ≥ ζ (15)

where

E(v) = I −Dcon(v)Dpla (16)
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and ζ ∈ R, ζ > 0, is a chosen threshold. It follows that the closed-loop system obtained from

(13)–(14) can be expressed as in (1) where


















































































x(t) =





xpla(t)

xcon(t)





Anum(v) =




det(E(v))Apla +Bplaadj(E(v))Dcon(v)Cpla

Bcon(v) (det(E(v))I +Dplaadj(E(v))Dcon(v))Cpla

Bplaadj(E(v))Ccon(v)

det(E(v))Acon(v) +Bcon(v)Dplaadj(E(v))Ccon(v)





aden(v) = det(E(v)).

(17)

Problem 1 boils down to the search forv (and, hence, the controller (14)) such that the closed-

loop system is asymptotically stable by simply choosing

µ(·) = µSM(·) (18)

and

ψ =







0 (CT & SM case)

1 (DT & SM case).
(19)

This situation is considered in Examples 2 and 3 in Section VI.

2) Design of tuning parameters for reducing the entropy: Another problem included in

Problem 1 is the design of tuning parameters for reducing theentropy. Indeed, let us consider

the case wherev in the system (1) represents a vector of tuning parameters that can be selected

in order to achieve a desired performance. In particular, the target is to selectv such that the

EM is smaller than a certain value. Problem 1 boils down to such a problem by simply choosing

µ(·) = µEM(·). (20)

This situation is considered in Example 4 in Section VI.

Reducing the entropy is important in a number of scenarios characterized by the presence of

communication constraints. Hereafter we mention some of them.

a) Quantized feedback stabilization: as explained in Theorem 2.2 of [12], the coarsest

quantizer that quadratically stabilizes a single input DT system is logarithmic, and the
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optimal logarithmic base is given by the ratio between the EMminus one and the EM

plus one.

b) Data rate constrained mean square stabilizability: as explained in Theorem 2.1 of [21]

for the case of DT stochastic systems with noise, a necessarycondition for stabilizability

in the mean square sense is that the logarithm of the EM is smaller than the data rate of

the channel.

c) Data rate constrained observability and stabilizability: as explained in Propositions 3.1–

3.2 of [27] for the case of DT systems, a necessary condition for asymptotical observability

and asymptotical stabilizability is that the logarithm of the EM is smaller than the data

rate of the channel.

d) Stabilization with sector bound uncertainty: as explained in Theorem 2.1 of [13] for

the case of DT single input systems, there exists a quadratically stabilizing state feedback

controller in the presence of sector bound uncertainty if and only if the sector bound is

smaller than the inverse of the EM.

e) SNR constrained feedback stabilization: as explained in Theorem II.1 of [4] for the case

of single input CT systems, there exists a stabilizing statefeedback controller such that

the power of the sent signal is not larger than a desired valueif and only if the EM is not

larger than a half of the ratio between such a value and the power spectral density of the

noise.

f) Stabilization with multirate sampling : as explained in Theorems 4.1–4.2 in [5] for

the case of CT systems with multirate sampling, there existsa stabilizing state feedback

controller if and only if the EM is not greater than the total network capacity.

C. SOS Polynomials

Here we provide some information about SOS polynomials, seefor instance [6] for details

and references. Let us start by introducing the following definition.

Definition 1: A polynomial p : Rm → R is said to be SOS if there exist polynomialspi :

Rm → R, i = 1, . . . , k, such that

p(v) =
k

∑

i=1

pi(v)
2. (21)
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SOS polynomials have gained a lot of interest in last years for two main reasons. First, SOS

polynomials can be used to express (and, hence, recognize) non-negative polynomials. Second,

establishing whether a polynomial is SOS amounts to solvinga convex optimization problem.

Indeed, a necessary and sufficient condition for establishing whetherp(v) is SOS can be obtained

via an LMI feasibility test.

In fact, letd be a non-negative integer such thatdeg(p(v)) ≤ 2d. Then,p(v) can be expressed

as

p(v) = b(v)′Pb(v) (22)

whereb(v) ∈ R
σ(m,d) is a vector containing all monomials of degree less than or equal to d in

v, σ(m, d) is the number of such monomials given by

σ(m, d) =
(m+ d)!

m!d!
, (23)

andP ∈ R
σ(m,d)×σ(m,d) is a symmetric matrix. The representation (22) is known as Gram matrix

method and as square matrix representation (SMR). It follows thatp(v) is SOS if and only if

there existsP = P ′ such that






P ≥ 0

(22) holds.
(24)

The condition (24) is an LMI subject to a linear equality. Thenumber of free decision variables

in this condition is given by the number of independent entries ofP minus the number of linear

constraints imposed by (22), and turns out to be

τ(m, 2d) =
1

2
σ(m, d) (σ(m, d) + 1)− σ(m, 2d). (25)

III. PROPOSEDMETHODOLOGY: SUFFICIENCY

The first step of the proposed methodology consists of partitioning the setZ into two subsets

in order to tackle separately the cases whereaden(v) is either positive or negative. To this end,

let us define the set

Θ = {−1, 1}. (26)

For θ ∈ Θ we define the polynomial

f(v) = θaden(v)− ζ (27)
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whereζ has been introduced in the well-posedness condition (5). Hence, we partitionZ in (6)

as

Z =
⋃

θ∈Θ

Z̃ (28)

where

Z̃ = {v ∈ R
m : f(v) ≥ 0} . (29)

The second step of the proposed methodology consists of defining a family of matrices for

recasting both SM and EM into a common instability measure, in particular the SM. To this

end, the eigenvalues of such matrices have to be the sums (CT case) or the products (DT case)

of the possible subsets of the eigenvalues of a given matrixX ∈ Rn×n. Hence, let us define the

set

K =







{1} (SM case)

{1, . . . , n} (EM case).
(30)

For k ∈ K, let Ωk(X) be a matrix that satisfies the property

spec(Ωk(X)) =























{

k
∑

i=1

λai(X), a ∈ Tk

}

(CT case)

{

k
∏

i=1

λai(X), a ∈ Tk

}

(DT case)

(31)

whereTk is the set ofk-tuples in{1, . . . , n}, i.e.,

Tk = {(a1, . . . , ak) : ai ∈ {1, . . . , n}

andai < ai+1 ∀i = 1, . . . , k − 1} .
(32)

One way to buildΩk(X) is described in [1] and is as follows. LetY ∈ Rk×k be the submatrix

of X built with the rows indexed byz(i) and the columns indexed byz(j). Moreover, letZ be

the submatrix ofX built similarly to Y by removing fromz(i) and z(j) the common entries.

Lastly, let z be the difference between the sums of the positions of the common entries inz(j)

and inz(i). Then, the(i, j)-th entry ofΩk(X) is given by, in the CT case,

(Ωk(X))i,j =



















trace(Y ) if i = j

(−1)zZ else ifZ has size1× 1

0 else

(33)

and, in the DT case,

(Ωk(X))i,j = det(Y ). (34)
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Some comments aboutΩk(X) are as follows:

1) the size ofΩk(X) is ck × ck, whereck is the binomial coefficient

ck =
n!

(n− k)!k!
; (35)

2) some special cases ofΩk(X) are

Ω1(X) = X (36)

and

Ωn(X) =







trace(X) (CT case)

det(X) (DT case);
(37)

3) Ωk(X) is linear in the CT case, and polynomial of degreek in the DT case;

4) in the SM case, onlyΩ1(X) is needed sinceK = {1}.

The next lemma clarifies howΩk(X) can be used to study the instability measureµ(X).

Lemma 1:One hasµ(X) < ψ if and only if

µSM (Ωk(X)) < ψ ∀k ∈ K. (38)

Proof. Let us start by supposing thatµ(X) is the SM. Then,µ(X) < ψ is equivalent to (38)

sinceK = {1} andΩ1(X) = X. Next, let us continue by supposing thatµ(X) is the EM. One

hasµ(X) < ψ if and only if the sum of the real parts of the unstable eigenvalues ofX (CT case)

or the product of the magnitudes of the unstable eigenvaluesof X (DT case) is smaller thanψ.

This holds if and only if the sum of the real parts of any subsetof eigenvalues ofX (CT case)

or the product of the magnitudes of any subsets of eigenvalues of X (DT case) is smaller than

ψ. SinceX is real, the spectrum is symmetric with respect to the real axis. This implies that the

previous condition holds if and only if the sum of any subset of eigenvalues ofX (CT case) or the

product of any subsets of eigenvalues ofX (DT case) is smaller thanψ. Therefore, (38) holds.�

The third step of the proposed methodology consists of introducing a family of polynomials

that are asymptotically stable if and only if the vector of design parameters belongs to the set

U in (11). To this end, let us define the matrix polynomial

Gk(v) =











θ(Ωk(Anum(v))− ψaden(v)I) (CT case)

θΩk(Anum(v))

ψ
(DT case)

(39)
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whereθ andψ have been introduced in (27) and (11). Observe thatGk(v) is well-defined also

in the DT case sinceψ > µ0 andµ0 > 0. Let λ ∈ C, and define the polynomial

gk(λ, v) =







det(λI −Gk(v)) (CT case)

det(λθakden(v)I −Gk(v)) (DT case).
(40)

The following lemma explains how the polynomialgk(λ, v) can be used to investigate Problem

1.

Lemma 2:Let v ∈ Z. One hasv ∈ U if and only if the polynomialgk(λ, v) is asymptotically

stable (in the variableλ) for all k ∈ K with

θ = sgn (aden(v)) . (41)

Proof. From (3), (15) and Lemma 1 it follows thatv ∈ U holds if and only if

µSM

(

Ωk

(

Anum(v)

aden(v)

))

< ψ ∀k ∈ K.

Let us start by considering the CT case. SinceΩk(X) is linear in this case, it follows that the

previous condition holds if and only if

µSM (Ωk (θAnum(v))) < |aden(v)|ψ ∀k ∈ K

with θ given by (41). This holds if and only ifGk(v) is asymptotically stable for allk ∈ K.

Since gk(λ, v) is the characteristic polynomial ofGk(v), this holds if and only ifgk(λ, v) is

asymptotically stable (in the variableλ) for all k ∈ K.

Next, let us continue by considering the DT case. SinceΩk(X) is polynomial of degreek in

this case, it follows thatv ∈ U holds if and only if

µSM (Ωk (θAnum(v))) < |aden(v)|
kψ ∀k ∈ K

with θ given by (41). This holds if and only ifGk(v)|aden(v)|−k is asymptotically stable for

all k ∈ K. Sincegk(λ, v) is the product of|aden(v)|ckk times the characteristic polynomial of

Gk(v)|aden(v)|−k, this holds if and only ifgk(λ, v) is asymptotically stable (in the variableλ)

for all k ∈ K. �
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The fourth step of the proposed methodology consists of imposing asymptotic stability on the

family of polynomialsgk(λ, v) by introducing suitable stability tables. To this end, let us express

gk(λ, v) as

gk(λ, v) =

ck
∑

j=0

hck−j,k(v)λ
j (42)

whereh0,k(v), . . . , hck,k(v) ∈ R are its coefficients. In the CT case, we introduce a modified

Routh-Hurwitz table by defining the quantities






































































m0,j,k(v) = h2j,k(v) ∀j = 0, . . . ,
⌊ck

2

⌋

m1,j,k(v) = h2j+1,k(v) ∀j = 0, . . . ,

⌊

ck − 1

2

⌋

mi,j,k(v) = mi−1,0,k(v)mi−2,j+1,k(v)

−mi−2,0,k(v)mi−1,j+1,k(v)

∀i = 2, . . . , ck − 1 ∀j = 0, . . . ,

⌊

ck − i

2

⌋

mck,0,k(v) = mck−2,1,k(v).

(43)

In particular,mi,j,k(v) is the entry of the table in thei-th row andj-th column. This table is

modified with respect to the standard Routh-Hurwitz table [16], [24] because no division is made

when obtaining the entries of one row from those of the previous two rows, except for the last

row. This ensures that the entries of the modified table are polynomials in v. In the DT case,

we introduce a modified Jury table by defining the quantities






































































m0,j,k(v) = hj,k(v) ∀j = 0, . . . , ck

m1,j,k(v) = hck−j,k(v) ∀j = 0, . . . , ck

m2i,j,k(v) = m2i−2,j,k(v)m2i−1,ck+1−i,k(v)

−m2i−1,j,k(v)m2i−2,ck+1−i,k(v)

∀i = 1, . . . , ck ∀j = 0, . . . , ck − i

m2i+1,j,k(v) = m2i,ck−i−j,k(v) ∀i = 1, . . . , ck

∀j = 0, . . . , ck − i.

(44)

In particular,m2i,j,k(v) is the entry of the table in the2i-th row andj-th column. This table is

modified with respect to the standard Jury table [17] becauseno division is made when obtaining
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the entries of one row from those of the previous two rows. As in the CT case, this ensures that

the entries of the modified table are polynomials inv. Let us define the set

Ik =







{1, 2, . . . , ck} (CT case)

{0, 2, . . . , 2ck} (DT case).
(45)

The following lemma explains how one can impose asymptotic stability on gk(λ, v) by using

the constructed tables.

Lemma 3:The polynomialgk(λ, v) is asymptotically stable (in the variableλ) if and only if

mi,0,k(v) > 0 ∀i ∈ Ik. (46)

Proof. Let us start by considering the CT case. Let us observe that the entrymi,j,k(v) satisfies

mi,j,k(v) = m̃i,j,k(v)
∏

l=i−1,i−3,...
l≥1

ml,0,k(v) ∀i = 0, . . . , ck − 1

and

mck,0,k(v) = m̃ck,0,k(v)
∏

l=i−3,i−5,...
l≥1

ml,0,k(v)

wherem̃i,j,k(v) is the entry in thei-th row andj-th column of the standard Routh-Hurwitz table.

This implies thatgk(λ, v) is asymptotically stable (in the variableλ) if and only if

m̃i,0,k(v) > 0 ∀i ∈ Ik,

and this conditions holds if and only if (46) holds.

Next, let us continue by considering the DT case. Let us observe that the entrym2i,j,k(v)

satisfies

m2i,j,k(v) = m̃2i,j,k(v)
∏

l=0,...,i−1

m2l,0,k(v)

wherem̃2i,j,k(v) is the entry in the2i-th row andj-th column of the standard Jury table. This

implies thatgk(λ, v) is asymptotically stable (in the variableλ) if and only if

m̃i,0,k(v) > 0 ∀i ∈ Ik,

and this conditions holds if and only if (46) holds. �
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The fifth step of the proposed methodology consists of introducing a certificate, based on con-

vex optimization, for establishing that a polynomial is non-negative whenever some polynomials

are. To this end, we exploit the Positivstellensatz, see forinstance [22], [25]. Let us define such

a certificate as follows.

Definition 2: Let p, qi : Rm → R, i = 1, . . . , nq, be polynomials, andd be a non-negative

integer. Let us define

Q(v) = {qi(v) ∀i = 1, . . . , nq} . (47)

We denote with

incone(p(v),Q(v), d) (48)

the condition
∃ polynomialsri(v), i = 1, . . . , nq :


















ri(v) is SOS∀i = 1, . . . , nq

s(v) is SOS

deg(qi(v)ri(v)) ≤ 2(d0 + d)

(49)

wheres(v) is the polynomial

s(v) = p(v)−

nq
∑

i=1

qi(v)ri(v) (50)

andd0 is the integer

d0 =

⌈

1

2
max

{

deg(p(v)), deg(q1(v)), . . . , deg(qnq
(v))

}

⌉

. (51)

�

Definition 2 introduces the conditionincone(p(v),Q(v), d) which establishes the existence of

SOS polynomialsri(v) with degree bounded bydeg(qi(v)ri(v)) ≤ 2(d0+ d) such that the poly-

nomial s(v) in (50) is SOS. From (21)–(24) it follows that the conditionincone(p(v),Q(v), d)

is equivalent to establish feasibility of a finite system of LMIs with finite dimensions.

The following lemma summarizes how the conditionincone(p(v),Q(v), d) can be used.

Lemma 4:The conditionincone(p(v),Q(v), d) implies that

p(v) ≥ 0 ∀v ∈ R
m : qi(v) ≥ 0 ∀i = 1, . . . , nq. (52)

DRAFT



16

Proof. Let us suppose thatincone(p(v),Q(v), d) holds. This implies thatri(v) ands(v) are SOS

and, consequently, non-negative. Letṽ ∈ Rm be such that

qi(ṽ) ≥ 0 ∀i = 1, . . . , nq.

From (50) it follows that

0 ≤ s(ṽ)

= p(ṽ)−

nq
∑

i=1

qi(ṽ)ri(ṽ)

≤ p(ṽ),

i.e., p(ṽ) is non-negative. Therefore, (52) holds. �

The sixth step of the proposed methodology consists of defining an SDP for investigating

Problem 1. The goal is to maximize one of the entry of the first column of the modified Routh-

Hurwitz table (CT case) or the modified Jury table (DT case) over the set of vector of design

parameters that make positive the remaining entries in thiscolumn. In fact, if the result of

this maximization is positive, one can say that the maximizer of this maximization makes all

entries of the first column of these tables positive since themaximizer is a feasible point of

the maximization. On the other hand, if the result of this maximization is non-positive, one can

say that there does not exist any vector of design parametersthat makes all entries of the first

column of these tables positive since the chosen entry is negative over the feasible set or the

feasible set is empty.

In order to achieve this goal, let us denote withicost ∈ Ikcost andkcost ∈ K the indicesi and

k that identify the chosen entry to be maximized. Also, letε ∈ R, ε > 0, be a chosen lower

bound for the remaining entries. Let us introduce the set of polynomials

M(v) = {mi,0,k(v)− ε ∀(i, k) ∈ Ik ×K :

(i, k) 6= (icost, kcost)} .
(53)

Also, let us define the set of polynomials

Q(v) = {f(v)} ∪M(v) ∪W(v) (54)

wheref(v) is given by (27),M(v) is defined in (53), and

W(v) = {wi(v) ∀i = 1, . . . , nw} . (55)
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Let γ ∈ R, and let us define the polynomial

p(v) = γ −micost,0,kcost(v). (56)

Let d be a non-negative integer, and let us define the optimizationproblem

γ∗ = inf
γ∈R

γ

s.t. incone(p(v),Q(v), d).

(57)

The optimization problem (57) is an SDP since the cost function is linear and the constraint is

equivalent to a finite system of LMIs with finite dimensions.

The following theorem provides a sufficient condition for establishing the non-existence of a

vector of design parameters that solves Problem 1.

Theorem 1:Let ε = 0, whereε is used in (53). The setS in (12) is empty if, for allθ ∈ Θ,

there exists a non-negative integerd such that

γ∗ ≤ 0. (58)

Proof. Let us start by consideringθ fixed in Θ. Let us suppose that there exists a non-negative

integerd such that (58) holds withε = 0. Let us define

F = {v ∈ R
m : qi(v) ≥ 0 ∀i = 1, . . . , nq} .

First, let us suppose thatF is non-empty. From Lemma 4 it follows that

micost,0,kcost(v) ≤ 0 ∀v ∈ F .

From Lemma 3 it follows thatgkcost(λ, v) cannot be asymptotically stable for anyv in the setF .

This means thatgkcost(λ, v) cannot be asymptotically stable for anyv that belongsV, satisfies

f(v) ≥ 0, and makesgk(λ, v) asymptotically stable for allk ∈ K \ {kcost}. From Lemma 2 this

implies that there does not exist anyv ∈ V ∩ Z̃ ∩ U .

Second, let us suppose thatF is empty. The fact thatF is empty implies that there does not

exist anyv that belongsV, satisfiesf(v) ≥ 0, and makesgk(λ, v) asymptotically stable for all

k ∈ K, if ckcost > 1, or for all k ∈ K \ {kcost} if ckcost = 1. As in the previous case, this implies

that there does not exist anyv ∈ V ∩ Z̃ ∩ U .
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Next, let us continue by considering that (58) holds for allθ ∈ Θ. From the previous part of

the proof and (28) it follows that the setS is empty. �

The condition of Theorem 1 certifies that the setS is empty. In particular, for a fixed value

of θ ∈ Θ, (58) guarantees thatV ∩ Z̃ ∩ U is empty.

For any chosenθ ∈ Θ and non-negative integerd, the condition provided by Theorem 1

requires to solve the SDP (57) and to check whether the foundγ∗ is non-positive. Let us

observe that this includes the case whereγ∗ = −∞.

As it will be shown in Section IV, the condition provided by Theorem 1 is not only sufficient

but also necessary for a sufficiently larged by introducing some assumptions on Problem 1.

Next, let us suppose thatγ∗ is finite for someθ ∈ Θ (if not, thenγ∗ = −∞ for all θ ∈ Θ, and

Theorem 1 certifies the non-existence of a vector of design parameters in the regionZ). Let us

denote withr∗i (v) and s∗(v) the optimal values of the polynomialsri(v) and s(v) in the SDP

(57) introduced via Definition 2, and let us observe thatr∗i (v) ands∗(v) are SOS polynomials.

The following theorem provides a sufficient condition for establishing the existence of a vector

of design parameters that solves Problem 1.

Theorem 2:The setS is non-empty if there existθ ∈ Θ, a non-negative integerd, ε > 0 and

v∗ ∈ Rm such that 

































γ∗ > 0

qi(v
∗) ≥ 0 ∀i = 1, . . . , nq

qi(v
∗)r∗i (v

∗) = 0 ∀i = 1, . . . , nq

s∗(v∗) = 0.

(59)

Moreover,v∗ ∈ S.

Proof. Let us consider suchθ, d, ε andv∗ in the sequel of this proof. From the third and fourth

conditions in (59) it follows that

0 = s∗(v∗)

= γ∗ −micost,0,kcost(v
∗)−

nq
∑

i=1

qi(v
∗)r∗i (v

∗)

= γ∗ −micost,0,kcost(v
∗)

which implies from the first constraint in (59) that

micost,0,kcost(v
∗) > 0.
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From the second constraint in (59) andε > 0 it follows that

mi,0,k(v
∗) > 0 ∀(i, k) ∈ Ik ×K.

The second constraint in (59) also implies that






wi(v
∗) ≥ 0 ∀i = 1, . . . , nw

f(v∗) ≥ 0,

i.e., v∗ ∈ V ∩ Z̃. Hence, Lemma 3 implies that the polynomialgk(λ, v
∗) is asymptotically stable

(in the variableλ) for all k ∈ K. Let us observe that (41) is satisfied withv = v∗ sincev∗ ∈ V∩Z̃.

Hence, from Lemma 2 it follows thatv∗ ∈ U , i.e., v∗ ∈ S. �

Theorem 2 certifies that the setS is non-empty, and provides a vector of design parameters

v∗ in such a set. In particular, this vector belongs toV ∩ Z̃ ∩ U .

For any chosenθ ∈ Θ and non-negative integerd, the condition of Theorem 2 requires to

solve the SDP (57) and to check whether there existsv∗ ∈ Rm such that (59) holds.

The search forv∗ ∈ Rm satisfying (59) can be addressed via linear algebra operations once

that the SDP (57) has been solved. Specifically, one determines the candidates forv∗ that satisfy

the fourth constraint in (59), i.e., the zeros ofs∗(v). This operation can be done with the method

proposed in [11] for solving systems of polynomial equations as explained hereafter:

1) once that the SDP (57) has been solved, one obtains from theSDP solver a positive

semidefinite Gram matrix ofs∗(v), i.e., a symmetric matrixS∗ ≥ 0 such thats∗(v) =

b(v)′S∗b(v), whereb(v) is a vector of monomials inv;

2) sinceS∗ ≥ 0, one has thats∗(v) = 0 if and only if b(v) ∈ ker(S∗). Hence, the problem

of finding the zeros ofs∗(v) is equivalent to the problem of finding vectors of monomials

in ker(S∗);

3) the problem of finding vectors of monomials inker(S∗) can be addressed by pivoting

operations that reduce the problem to finding the roots of a polynomial in a single

variable whenever the dimension ofker(S∗) is smaller than a certain value as shown in

[11]. Alternatively, this step can be solved by computing Cholesky factorizations, column

echelon forms, and Schur decompositions as explained in [14].

The following example clarifies the above procedure for determining the zeros ofs∗(v).
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Example 1. Let us suppose that

s∗(v) = (3− v31 − 2v22)
2 + (1− 2v1v2 − v31 + v32)

2.

A positive semidefinite Gram matrixS∗ of s∗(v) can be obtained from an SDP solver as explained

in Section II-C. By using the SDP solver specified at the beginning of Section VI, the foundS∗

provides1

ker(S∗) = img(S∗
1), S

∗
1 =



















































−0.355 0.330 −0.085

−0.236 0.252 0.205

0.403 0.361 0.083

−0.238 0.190 0.402

0.223 0.311 −0.174

−0.385 0.427 −0.426

−0.294 0.136 0.596

0.182 0.265 −0.307

−0.161 0.334 −0.106

0.507 0.427 0.332



















































whereb(v) is chosen asb(v) = (1, v1, v2, v
2
1, v1v2, v

2
2, v

3
1, v

2
1v2, v1v

2
2, v

3
2)

′. Following the method

proposed in [11], one builds an equivalent representation of ker(S∗) by means of pivoting

operations, in particular

ker(S∗) = img(S∗
2), S

∗
2 =



















































1.000 0.000 0.000

1.656 0.117 −0.790

0.000 1.000 0.000

2.269 0.086 −1.382

−0.612 0.642 0.658

0.000 0.000 1.000

3.000 0.000 −2.000

−1.072 0.494 1.032

0.510 0.233 0.192

0.776 1.284 −0.685



















































.

1The number of LMI scalar variables is28, and the computational time is less than1 second.

DRAFT



21

From the last row ofS∗
2 one has that anyv such thatb(v) ∈ ker(S∗) must satisfy

0.776 + 1.284v2 − 0.685v22 − v32 = 0.

By simply computing the roots of this equation inv2, and by reading the value ofv1 in the

vector S∗
2(1, v2, v

2
2)

′ built for each one of these roots, one obtains that the zeros of s∗(v) are

included in the set










0.346

−1.216



 ,





0.818

1.108



 ,





1.327

−0.576











.

Lastly, one simply substitutes the vectors of this set intos∗(v), concluding that all of them are

zeros ofs∗(v). �

See also Section VI where the search forv∗ ∈ R
m satisfying (59) is illustrated in other

numerical examples. Once the candidates forv∗ have been determined, one just checks whether

any of them satisfies the other constraints in (59).

As it will be shown in Section IV, the condition provided by Theorem 2 is not only sufficient

but also necessary for a sufficiently larged by introducing some assumptions on Problem 1.

IV. PROPOSEDMETHODOLOGY: NECESSITY

In this section we analyze the conservatism of the sufficientconditions provided by Theorems

1 and 2. Let us start by introducing the following assumption.

Assumption 1:The setV is non-empty and compact. Moreover, the polynomialswi(v), i =

1, . . . , nw, in (4) have even degree and their highest degree forms have no common root except

zero. �

It is important to observe that Assumption 1 introduces minor restrictions. Indeed, the set of

admissible controllers parametersv has to be non-empty. Moreover, for numerical computation

and practical implementation of the controller, it is reasonable to require that this set is compact.
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Lastly, the requirement that the polynomialswi(v) have even degree and their highest degree

forms have no common root except zero is automatically satisfied for typical sets such as spheres,

V = {v ∈ Rm : v′v ≤ 1}

m






w1(v) = 1− v′v

nw = 1

and multi-interval sets,

V =
{

v ∈ Rm : [v−i , v
+
i ], i = 1, . . . , m

}

m






wi(v) = (v−i − v)(v − v+i )

nw = m.

Next, we introduce a change on the construction of the SDP (57) as follows.

Change C1. Any polynomial qi(v) with odd degree in the setQ(v) in (54) is replaced in

such a set by

qi(v) → qi(v)z(v) (60)

wherez(v) is any affine linear function such that

z(v) > 0 ∀v ∈ V. (61)

�

Let us observe that Change C1 has the effect of making all the polynomials qi(v) in the

set Q(v) having even degree, without changing the set ofv for which all these polynomials

are non-negative (sinceV is included in such a set). Also, let us observe that the affinelinear

function z(v) always exists sinceV is compact.

The following result analyzes the necessity of the condition provided by Theorem 1 under

Assumption 1.

Theorem 3:Let us suppose that Assumption 1 holds, and let us modify the set Q(v) in (54)

according to Change C1. Letε = 0. The setS is empty only if, for all θ ∈ Θ, there exists a

non-negative integerd such that (58) holds.
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Proof. Let us suppose that the setS is empty. Letθ ∈ Θ. From Lemma 2 it follows that, for

all v ∈ V, the polynomialgk(λ, v) is not asymptotically stable for somek ∈ K or (41) does not

hold. From Lemma 3 one has that, for allv ∈ V, (46) or (41) does not hold. LetF be the set

introduced in the proof of Theorem 1. First, let us consider the case whereF is non-empty. It

follows that

micost,0,kcost(v) ≤ 0 ∀v ∈ V ∩ Z̃.

From Assumption 1, Change C1, and Putinar’s Positivstellensatz [22], it follows that

∀γ > 0 ∃ri(v) :







ri(v) is SOS∀i = 1, . . . , nq

s(v) is SOS.

Since the degrees of the polynomialsri(v) in (49) arbitrarily increase by increasingd, it follows

that γ∗ ≤ 0 for a sufficiently larged.

Second, let us consider the case whereF is empty. Without loss of generality, let us suppose

that the polynomialswi(v), i = 1, . . . , nw, are the firstnw polynomials in the listqi(v), i =

1, . . . , nq, i.e.,

qi(v) = wi(v) ∀i = 1, . . . , nw.

It follows that

F = V ∩ F̃

where

F̃ = {v ∈ R
m : qi(v) ≥ 0 ∀i = nw + 1, . . . , nq} .

SinceF is empty andV is non-empty, it follows that

∀v ∈ V ∃i = nw + 1, . . . , nq : qi(v) < 0.

Hence, exploiting again Putinar’s Positivstellensatz, itfollows that

∀γ < 0 ∃ri(v) :







ri(v) is SOS∀i = 1, . . . , nq

s(v) is SOS.

�

Theorem 3 states that the sufficient condition provided by Theorem 1, which certifies that the

setS is empty, is also necessary for a sufficiently larged, at least when Assumption 1 holds

and the setQ(v) in (54) is modified according to Change C1.
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The following result analyzes the necessity of the condition provided by Theorem 2 under

Assumption 1.

Theorem 4:Let us suppose that Assumption 1 holds, and let us modify the set Q(v) in (54)

according to Change C1. The setS is non-empty only if there existθ ∈ Θ, a non-negative

integerd, ε > 0 andv∗ ∈ Rm such that (59) holds. Moreover,v∗ ∈ S.

Proof. Let us suppose that the setS is non-empty, and letv ∈ S. From Lemma 2 it follows

that the polynomialgk(λ, v) is asymptotically stable for allk ∈ K with θ given by (41). From

Lemma 3 one has that (46) holds. Hence, there existsε > 0 such that

F 6= ∅

whereF is the set introduced in the proof of Theorem 1. Let us consider such anε in the sequel

of this proof. SinceF is compact due to Assumption 1, we can define

γ̃ = max
v∈F

micost,0,kcost(v)

and letṽ be the maximizer in this optimization problem, i.e.,






ṽ ∈ F

γ̃ = micost,0,kcost(ṽ).

It follows that

γ̃ > 0.

Let us observe that

incone(p(v),Q(v), d) ⇒ γ ≥ γ̃

which implies

γ∗ ≥ γ̃ ∀d ≥ 0.

From Assumption 1, Change C1, and Putinar’s Positivstellensatz [22], it follows that there exists

a non-negative integerd such that

γ∗ = γ̃.
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Let us consider such ad in the sequel of this proof. Sinces∗(v) andr∗i (v) are SOS polynomials,

it follows that
0 ≤ s∗(ṽ)

= γ∗ −micost,0,kcost(ṽ)−

nq
∑

i=1

qi(ṽ)r
∗
i (ṽ)

= −

nq
∑

i=1

qi(ṽ)r
∗
i (ṽ)

≤ 0

sinceqi(ṽ) ≥ 0. This implies that






qi(ṽ)r
∗
i (ṽ) = 0 ∀i = 1, . . . , nq

s∗(ṽ) = 0.

Therefore, (59) holds withv∗ = ṽ, and ṽ ∈ S. �

Theorem 4 states that the sufficient condition provided by Theorem 2, which certifies that the

setS is non-empty and provides a vector of design parametersv∗ in such a set, is also necessary

for a sufficiently larged at least when Assumption 1 holds and the setQ(v) in (54) is modified

according to Change C1.

V. REMARKS, SIMPLIFICATIONS, AND EXTENSIONS

This section provides some remarks about the methodology proposed in Sections III and IV,

and investigates some simplifications and extensions of interest.

A. Remarks

The first remark concerns the integersicost and kcost introduced in the definition of the set

M(v) in (53) and in the polynomialp(v) in (56). These integers can be freely selected in the

setsIkcost andK, and have the role of identifying the entry of the first columnof the modified

Routh-Hurwitz table (CT case) or Jury table (DT case) to be maximized over the set of vector

of design parameters that make positive the remaining entries in this column. A criterion for

selectingicost andkcost can be the maximization of the degree of the polynomialp(v) in (56).

This criterion is based on the fact that, by maximizing the degree ofp(v), one can reduce the

degree ofs(v) in (50) for multipliersri(v) of the same degree.
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The second remark is about the scalarε introduced in the setM(v) in (53). The role of

this scalar is to define a chosen lower bound for the entries ofthe first column of the modified

Routh-Hurwitz table (CT case) or Jury table (DT case), in order to impose that they are positive.

In Theorems 1 and 3, this scalar does not need to be selected sinceε = 0 is the only possibility.

In Theorems 2 and 4,ε has to be positive, and can be chosen as small as the computer precision

in order to minimize the conservatism.

The third remark is about the difference between the CT and DTcases. In the DT case, the

computational burden of the SDP (57) is larger than in the CT case because the polynomials in

the setQ(v) have higher degree. This is due to the stability tables used for handling the CT and

DT cases. Another reason is that the matrix polynomialΩk(X) in (31) is linear inX in the CT

case, and polynomial of degreek in the DT case.

B. Simplifications

The first simplification concernsA(v) in the system (1) and its expression in (3). Indeed, the

methodology proposed in Sections III and IV can be simplifiedin any of the following situations:

1) A(v) is a matrix polynomial, i.e.,aden(v) = 1;

2) A(v) is a rational matrix function andaden(v) is positive for allv ∈ V.

In the context of fixed-order output feedback controllers design, the situations just mentioned

occur whenever one of the following situations occurs:

1) the plant (13) or the controller (14) are strictly proper,i.e.,Dpla = 0 or Dcon(v) = 0;

2) the determinant ofE(v) in (16) is positive for allv ∈ V.

In such situations, one does not need to investigate the casewhere aden(v) is negative. This

means that the SDP (57) needs to be solved only forθ = 1 in Theorems 1–4. Hence, provided

that

aden(v) ≥ ζ ∀v ∈ V, (62)

the methodology proposed in Sections III and IV can be simplified by introducing the following

change.
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Change C2. The setsΘ in (26) andQ(v) in (54) are replaced by






Θ = {1}

Q(v) = M(v) ∪W(v).
(63)

�

The second simplification is about the polynomialsmi,0,k(v) included in the setM(v) in (53)

and in the polynomialp(v) in (56). Let us observe that:

1) one does not need to include in the setM(v) or in the polynomialp(v) the polynomials

mi,0,k(v) that are positive for allv ∈ V, such as positive constants. Indeed,v is searched

for such thatmi,0,k(v) is positive overV. This leads to a reduction of the number of

multipliers ri(v) in the conditionincone(p(v),Q(v), d) and, hence, to a reduction of the

number of LMI scalar variables in the SDP (57);

2) if at least one of the polynomialsmi,0,k(v), i ∈ Ik andk ∈ K, is known to be non-positive

for all v ∈ V, then the condition (58) is automatically satisfied, and thesetV ∩ Z̃ ∩ U is

empty.

C. Extensions

In the previous sections we have addressed Problem 1, which aims at finding a vector of

design parameters in the setS. It turns out that the proposed methodology can be extended to

find a vector of design parameters in the setS that minimizes a given cost function. Indeed, let

us formulate the problem as follows.

Problem 2:For givenψ ∈ R, ψ > µ0, and polynomialc : Rm → R, solve

c∗ = inf
v∈S

c(v). (64)

�

In Problem 2,c(v) is a given cost function that one aims at minimizing over the set S. For

instance, ifc(v) is chosen asv′v, one aims at determining the vector of design parameters with

the smallest Euclidean norm that satisfies the required constraints. Problem 2 can be addressed
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by introducing the following change.

Change C3. The setM(v) in (53) is replaced by

M(v) = {mi,0,k(v)− ε ∀(i, k) ∈ Ik ×K} , (65)

the polynomialp(v) in (56) by

p(v) = c(v)− γ, (66)

and the SDP (57) by

γ∗ = sup
γ∈R

γ

s.t. incone(p(v),Q(v), d).

(67)

�

In short, Change C3 redefines the set of polynomialsQ(v) by including the polynomial

micost,0,kcost(v) in the setM(v) that was previously absent, the polynomialc(v) since now we

aim at minimizingc(v) rather than maximizingmicost,0,kcost(v), and the SDP (57) sinceγ is now

a lower bound and must be maximized. It follows that, for any non-negative integerd,

γ∗ ≤ c∗. (68)

Moreover, under Assumption 1,γ∗ converges toc∗. The proof is analogous to those of Theorems

1–4 and is omitted for brevity.

VI. EXAMPLES

In this section we present some illustrative examples of theproposed methodology. The SDP

(57) is solved with the toolbox SeDuMi [26] for Matlab on a standard computer with Windows

10, Intel Core i7, 3.4 GHz, 8 GB RAM. The degree of the polynomial multipliers ri(v) are

bounded according to the last constraint in (49) withd = 0 unless specified otherwise. The

numbersicost andkcost are chosen as explained in the first remark in Section V-A. Thescalarε

is chosen asε = 0.1 unless specified otherwise.
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A. Example 2

In this example we consider, in the CT case, the design of a static output feedback controller

with structural constraints for stabilizing the plant (13)with










































Apla =











1 −3 3

2.5 0 6

−0.5 2.5 0











, Bpla =











0 0

1 1

0 1











Cpla =





1 0 1

−1 1 1



 , Dpla =





0 0

0 1



 .

We consider the following two scenarios.

1) Scenario 1:Here the sought static output feedback controller is chosenas in (14) with


















Acon(v) = ∅, Bcon(v) = ∅

Ccon(v) = ∅, Dcon(v) =





v1 0

v2 0





wherev = (v1, v2)
′ is the vector of design parameters. The closed-loop system can be expressed

as in (1)–(3) withAnum(v) andAden(v) given by (17).

The problem consists of finding a vectorv in the setS in (12), whereV = [−3, 3]2, Z is as

in (6) with ζ = 0.1, U is as in (11) withψ = −0.5, andµ(·) is the SM.

First of all, let us observe that this plant is unstable, in particular






spec(Apla) = {−1.313± j1.339, 3.625}

µ(Apla)) = 3.625.

From (16)–(17) one has






























Anum(v)=











1 −3 3

2.5 + v1 + v2 0 6 + v1 + v2

−0.5 + v2 2.5 v2











aden(v)= 1.

The setZ in (5) is Z = R2.

Let us observe that, since (62) holds, the methodology proposed in Sections III and IV can

be simplified with Change C2 in (63). Therefore, in the sequelof this scenario we consider

Θ = {1}.
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We expressV as in (4) by choosingnw = 2 andwi(v) = 9− v2i for all i = 1, 2. The setQ(v)

in (63) is

Q(v) = {−2.5 − v2,−10.125− 6.75v1 + 4.5v2, 9− v21 , 9− v22}

and the polynomialp(v) in (56) is

p(v) = γ − 20.75− 5.5v1 − v2 + 0.5v1v2 − 0.5v22.

Solving the SDP (57) we findγ∗ = −∞ with ε = 0. The polynomialsri(v) have degree0, the

number of LMI scalar variables is5, and the computational time is less than1 second. From

Theorem 1 this implies that there does not exist any sought static output feedback controller,

i.e., the setS is empty.

This result is verified by Figure 1 which shows the SM of the closed-loop system over the set

V. As it can be seen from Figure 1, the SM is always greater thanψ, indeed it is always positive.

0

0.5

3

1

1.5

2

2

2.5

3

1

3.5

4

0
3-1 2

1
0-2

-1
-2-3 -3 v1

v2

µ
(A

(v
))

Fig. 1. Example 2, Scenario 1: SM of the closed-loop system over the setV. As it can be seen, the SM is always positive in

this case.
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2) Scenario 2:Here we repeat the previous search by considering the presence of an additional

design parameter in the sought static output feedback controller, specifically we consider that

the matrixDcon(v) has the form

Dcon(v) =





v1 0

v2 v3





wherev = (v1, v2, v3)
′ is the vector of design parameters constrained inV = [−3, 3]3.

It follows that

aden(v) = 1− v3

and, hence, the setZ in (5) is

Z =
{

v ∈ R
3 : v3 ∈ (−∞, 0.9] ∪ [1.1,∞)

}

.

Solving the SDP (57) we findγ∗ = 26.358 with θ = −1. The polynomialsri(v) have degree

in the range[0, 2], the number of LMI scalar variables is72, and the computational time is less

than1 second.

At this point, we look forv∗ ∈ R3 satisfying (59). As explained after Theorem 2, this can

be done by looking for the zeros ofs∗(v), which can be addressed by looking for vector of

monomialsb(v) in ker(S∗). It turns out that

S∗ =





















12.406 2.637 −0.892 −4.194 · · ·

⋆ 2.863 −1.096 −3.264 · · ·

⋆ ⋆ 2.503 0.004 · · ·

⋆ ⋆ ⋆ 5.643 · · ·
...

...
...

...
. . .





















b(v) =



























1

v1

v2

v3

v21
...



























, ker(S∗) = img



























0.054

0.161

0.161

0.104

0.482
...



























.

By simply scaling, one obtains that the only possible candidate forv∗ given by

v∗ = (3.000, 3.000, 1.949)′.
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We verify that this candidate satisfies (59). Hence, we conclude thatv∗ ∈ S. Indeed,


















det(E(v∗)) = −0.949

spec(A(v∗)) = {−4.151,−1.060± j3.136}

µ(A(v∗)) = −1.060.

B. Example 3

In this example we consider, in the DT case, the design of a first-order output feedback

controller with structural constraints for stabilizing the plant (13) with


















Apla =





1 −1

−1 2



 , Bpla =
(

1 2
)

Cpla =
(

1 −1
)

, Dpla = 0.

We look for a first-order output feedback controller with a pole in the origin, which can be

expressed as in (14) with






Acon(v) = 0, Bcon(v) = 1

Ccon(v) = v1, Dcon(v) = v2

wherev = (v1, v2)
′ is the vector of design parameters. The closed-loop system can be expressed

as in (1)–(3) withAnum(v) andAden(v) given by (17).

The problem consists of finding a vectorv in the setS in (12), whereV = [−3, 3]2, Z is as

in (6) with ζ = 0.1, U is as in (11) withψ = 0.9, andµ(·) is the SM.

First of all, let us observe that this plant is unstable, in particular






spec(Apla) = {0.382, 2.618}

µ(Apla)) = 2.618.

Let us observe that, since the plant is strictly proper, the closed-loop system is well-posed for

all v ∈ V, in particularaden(v) = 1. Hence, the methodology proposed in Sections III and IV

can be simplified with Change C2 in (63). Therefore, in the sequel of this example we consider

Θ = {1}.

Solving the SDP (57) we findγ∗ = 0.002. The polynomialsri(v) have degree in the range

[4, 6], the number of LMI scalar variables is262, and the computational time is less than1

second.
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At this point, we look forv∗ ∈ R
2 satisfying (59). As explained after Theorem 2, this can

be done by looking for the zeros ofs∗(v), which can be addressed by looking for vector of

monomialsb(v) in ker(S∗). It turns out that

S∗ =















0.291 6.319 1.12 · · ·

⋆ 142.247 25.371 · · ·

⋆ ⋆ 4.644 · · ·
...

...
...

. . .















b(v) =





















1

v1

v2

v21
...





















, ker(S∗) = img





















0.371

−0.182

0.384

0.089
...





















.

By simply scaling, one obtains that the only possible candidate forv∗ given by

v∗ = (−0.490, 1.035)′.

We verify that this candidate satisfies (59). Hence, we conclude thatv∗ ∈ S. Indeed,






spec(A(v∗)) = {0.584± j0.523, 0.797}

µ(A(v∗)) = 0.797.

Figure 2 shows the setS found by brute force. As it can be seen, this set is quite smallin

this case.

C. Example 4

In this example we consider, in the CT case, the design of tuning parameters for reducing the

EM. Specifically, we consider the system (1) with

A(v) =











2 3 v1

1− v2 −2 −1

−3 1 + v3 1











where v = (v1, v2, v3)
′ is the vector of design parameters. We consider the following two

scenarios.

DRAFT



34

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

v1

v
2

Fig. 2. Example 3: setS . As it can be seen, the setS is quite small in this case.

1) Scenario 1:Here the problem consists of findingv in the setS in (12), whereV = [−3, 3]3,

Z is as in (6) withζ = 0.1, U is as in (11) withψ = 2, andµ(·) is the EM.

First of all, let us observe that the EM of the plant can be larger than the required value,

indeed forv = (0, 0, 0)′ one has






spec(A(0)) = {−3.220, 2.110± j1.066}

µ(A(0)) = 4.220.

Let us observe that, sinceA(v) is a matrix polynomial, one hasaden(v) = 1 in (17). Hence,

the methodology proposed in Sections III and IV can be simplified with Change C2 in (63).

Therefore, in the sequel of this example we considerΘ = {1}.

Solving the SDP (57) we findγ∗ = 66.000. The polynomialsri(v) have degree in the range

[0, 2], the number of LMI scalar variables is54, and the computational time is less than1 second.

At this point, we look forv∗ ∈ R3 satisfying (59). As explained after Theorem 2, this can

be done by looking for the zeros ofs∗(v), which can be addressed by looking for vector of
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monomialsb(v) in ker(S∗). It turns out that

S∗ =





















43.449 −0.817 −0.935 0.965 · · ·

⋆ 1.046 0.347 −0.487 · · ·

⋆ ⋆ 0.874 −0.237 · · ·

⋆ ⋆ ⋆ 0.939 · · ·
...

...
...

...
. . .





















b(v) =



























1

v1

v2

v3

v21
...



























, ker(S∗) = img



























0.044

0.132

0.132

−0.132

0.397
...



























.

By simply scaling, one obtains that the only possible candidate forv∗ given by

v∗ = (3.000, 3.000,−3.000)′.

We verify that this candidate satisfies (59). Hence, we conclude thatv∗ ∈ S. Indeed,






spec(A(v∗)) = {−0.641, 0.820± j3.658}

µ(A(v∗)) = 1.641.

Figure 3 shows the setS found by brute force. As it can be seen, this set is non-convexin

this case. The fact that the setS is non-convex can also be proved by observing that






















v(1) = (−1.1, 3,−0.7)′ ⇒ µ(A(v(1))) = 1.982 < ψ

v(2) = (3, 3,−2.4)′ ⇒ µ(A(v(2))) = 1.965 < ψ

v(3) =
v(1) + v(2)

2
⇒ µ(A(v(3))) = 2.273 6< ψ.

2) Scenario 2:Here we consider the problem of minimizing the Euclidean norm of v under

the constraints considered in the previous scenario. This problem can be addressed with Problem

2 by choosingc(v) = v′v in (64). Hence, we make Change C3 in (65)–(66) and we solve the

SDP (67) withd = 2. The polynomialsri(v) have degree in the range[2, 4], the number of LMI

scalar variables is332, and the computational time is less than2 seconds. At this point, we look

for v∗ ∈ R3 satisfying the fourth constraint in (59). We find that the only possible candidate for

v∗ is

v∗ = (−1.141, 3.000,−0.427)′.
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Fig. 3. Example 4, Scenario 1: setS . As it can be seen, the setS is non-convex in this case.

The found vector of design parameters belongs toS. Indeed,






spec(A(v∗)) = {−0.997,−0.003, 2.000}

µ(A(v∗)) = 2.000.

Moreover, one hasc(v∗) = 10.484, while the vector of design parameters found in the previous

scenario achievesc(v∗) = 27.

VII. CONCLUSIONS

Two sufficient conditions have been given for establishing either the non-existence or the

existence of designing parameters that reduce the SM and EM of LTI systems. These conditions

require to solve an SDP, which is a convex optimization problem, and to find the roots of a

multivariate polynomial, which is a difficult problem in general. To overcome this difficulty,

a technique based on linear algebra operations has been exploited, which easily provides the

sought roots in common cases by taking into account the structure of the polynomial under

consideration. Also, it has been shown that these conditions are not only sufficient but also

necessary by increasing enough the size of the SDP under somemild assumptions. Lastly, it has
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been explained how the proposed methodology can be used to search for design parameters that

minimize a given cost function while reducing the instability.

Unfortunately, the computational burden of the proposed methodology quickly grows with the

dimensions of the problem. This seems unavoidable in order to achieve conditions that are not

only sufficient but also necessary through convex optimization.

Several directions can be explored in future work. One of these concerns the possibility of

imposing that the eigenvalues of the system lie into a desired region. Another direction could

attempt to achieve robust control design whenever the plantis affected by uncertainties. Lastly,

another direction could explore the extension of the proposed methodology to the use of stability

criteria based on Lyapunov functions.
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