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Abstract

This paper addresses the problem of designing fixed-ordpubteedback controllers and tuning
parameters for reducing the instability of linear timeanant (LTI) systems. Specifically, continuous-
time (CT) and discrete-time (DT) LTI systems are considevdubse coefficients are rational functions
of design parameters that are searched for in a given sgmibaic set. Two instability measures are
considered, the first defined as the spectral abscissa (&) eathe spectral radius (DT case), and the
second defined as the sum of the real parts of the unstableveiges (CT case) or the product of the
magnitudes of the unstable eigenvalues (DT case). Two mufficonditions are given for establishing
either the non-existence or the existence of design paeam#état reduce the considered instability
measure under a desired value. These conditions requi@ve a semidefinite program (SDP), which
is a convex optimization problem, and to find the roots of ativariiate polynomial, which is a difficult
problem in general. To overcome this difficulty, a technichesed on linear algebra operations is
exploited, which easily provides the sought roots in comrmases by taking into account the structure
of the polynomial under consideration. Also, it is showntttiteese conditions are also necessary by
increasing enough the size of the SDP under some mild asgumaptastly, it is explained how the
proposed methodology can be used to search for design pantigat minimize a given cost function

while reducing the instability.

I. INTRODUCTION

Instability measures play a key role in control systems. [Hdrsystems, a commonly used

instability measure is the spectral abscissa (CT case) erspiectral radius (DT case). This
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instability measure, which will be referred to as spectrabsure (SM), is important for several
reasons, for instance because tells whether the systenyngpastically stable and reveals the
speed of the least stable modes. Hence, the problem of reglilce SM is of fundamental
importance. However, problems such as the design of fixddrayutput feedback controllers or
tuning parameters for achieving such a goal are notoriodificult to solve. Indeed, by using
classic stability conditions based on Lyapunov functiond dnear matrix inequalities (LMIs)
[3], one generally faces the problem of establishing fekisilof bilinear matrix inequalities
(BMiIs) due to the product of the coefficients of the Lyapunomdtion with the coefficients of
the controller or the tuning parameters, which unfortulyate’olve non-convex optimization. For
the case of static output feedback controllers, an apprbashd on the use of Hermite matrices
is proposed in [15], where LMI relaxations based on the thedrmoments are derived.

Another instability measure of interest for linear systamshe sum of the real parts of the
unstable eigenvalues (CT case) or the product of the matgstof the unstable eigenvalues
(DT case). This instability measure, that in the DT case mAkmnas Mahler measure [19], will
be referred to as entropy measure (EM) being strictly rdlatethe entropy of LTI systems,
see [2], [23] for details. The EM is important because allosvge to establish whether a
stabilizing controller can be designed in a number of séesatharacterized by the presence
of communication constraints. Indeed, this is shown in tbatexts of quantized feedback
stabilization [12], data rate constrained mean squardliggdtility [21], data rate constrained
observability and stabilizability [27], stabilization thisector bound uncertainty [13], signal-to-
noise ratio (SNR) constrained feedback stabilizationgdl stabilization with multirate sampling
[5]. See Section II-B for details, and see also [18], [20]dthver applications of the EM. However,
similarly to the case of the SM, design problems for redudimg EM generally involve non-
convex optimization.

This paper proposes a novel framework for addressing theeainentioned problems, namely
the design of fixed-order output feedback controllers améhtyiparameters for reducing the SM
and EM. Specifically, CT and DT LTI systems are consideredysehcoefficients are rational
functions of design parameters that are searched for in engdemi-algebraic set. First, two
sufficient conditions are given for establishing either tlo@-existence or the existence of design
parameters that reduce the considered instability measuter a desired value. These conditions
require to solve an SDP, which is a convex optimization pohland to find the roots of a

multivariate polynomial, which is a difficult problem in geral. To overcome this difficulty, a

DRAFT



technique based on linear algebra operations is exploiteith easily provides the sought roots
in common cases by taking into account the structure of thgnpmial under consideration.
These conditions are obtained by introducing eigenvaluabooations and modified stability
tables, and by exploiting polynomials that can be expressesums of squares of polynomials
(SOS). Second, it is shown that these conditions are alsessary by increasing enough the
size of the SDP under some mild assumptions on the semi+algebet. Such assumptions
concern the polynomial inequalities used to define the sdgebraic set, and are shown to be
automatically satisfied in typical cases. Third, it is expéal how the proposed methodology can
be used to search for design parameters that minimize a go®nfunction while reducing the
instability.

This paper extends the preliminary conference version [@ickvdoes not consider the case
of DT systems, the SM measure, and the minimization of a go@st function. It is worth
mentioning that the SM and EM are studied in [7], [8], [10],iethaddress the determination of
worst-cases values of these measures in the contexts aftaincgystems and nonlinear systems.

The paper is organized as follows. Section Il introducesespreliminaries. Section Il derives
the sufficient conditions. Section IV investigates the ssitg of these conditions. Section V
discusses the specializations and extensions. Sectionrédepts some illustrative examples.

Lastly, Section VII concludes the paper with some final rédaar

[1. PRELIMINARIES

This section provides the problem formulation, the motoatand some information about

SOS polynomials.

A. Problem Formulation

The notation used in the paper is as follows. The symBoand C denote the spaces of real
numbers and complex numbers. We denote witnd / the null matrix and the identity matrix
of size specified by the context. The transpose is denoted’byhe expressionst > 0 and
A > 0, where A is a real symmetric matrix, denote a positive definite madnixi a positive
semidefinite matrix. The quantitieB(a), S(a), and |a| are the real part, imaginary part, and
magnitude ofa € C. The adjoint, determinant, image, null space, spectrum, teace of a
matrix A are denoted bydj(A), det(A), img(A), ker(A), spec(A), andtrace(A). The function
sgn(a), with @ € R, denotes the sign function, i.e.,if « > 0, 0 if a = 0, and—1 if a < 0.
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The expression$a| and [a] denote the largest integer not greater tham R and the smallest
integer not smaller than € R. The notationdeg(p(v)) denotes the degree of the polynomial
p(v). We say that an eigenvalue is unstable if it has positive peal (CT case) or magnitude
greater thanl (DT case). We say that a matrix is asymptotically stable lifital eigenvalues
have negative real part (CT case) or magnitude less tH@T case). We say that an univariate
polynomial is asymptotically stable if all its roots havega@ve real part (CT case) or magnitude
less thanl (DT case).

Let us consider the parametric LTI system

o(x(t)) = A(v)z(t) (1)
wheret € R is the time,z € R is the state((-) is the operator

x(t) (CT case)
o(x = 2
(=(t) z(t+1) (DT case) @)

v € R™ is the vector of design parameters, and R™ — R"*" is a rational matrix function

that we express as
/inunl(v)
aden(v)

where A,,.,, : R™ — R™" and ay,.,, : R™ — R are matrix polynomials.

Av) =

3)

In the sequel, the vector of design parameters will be sedrébr into the semi-algebraic set
V={veR": ww)>0Vi=1,...,n4} 4)

wherew;(v), i = 1,...,n,, are polynomials. Semi-algebraic sets, in fact, can reprtes large
class of sets, in particular sets that are connected ormigobed, convex or non-convex, bounded
or unbounded.

In order to ensure that(v) does exist for all the admissible values of the design patensie

we introduce the well-posedness condition
|agen(v)] > ¢ Yo eV (5)

where( € R, { > 0, is a chosen threshold. Let us observe that the well-possdoendition
(5) introduces a minor restriction on the problem addresasdhe threshold can be chosen
arbitrary small. We define the set

Z={veR™: (5) holdg. (6)
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We consider the following two instability measures of a xatk’ € R™*". The first is the
spectral abscissa (CT case) or the spectral radius (DT .c@k& measure is referred to as

spectral measure (SM), and is denoted by

psu(X) =4 7 ()
max | (X)] (DT case)

The second instability measure is the sum of the real partiseofinstable eigenvalues (CT case)
or the product of the magnitude of the unstable eigenvalDdsdase). This measure, that in
the DT case is known as Mahler measure [19], is referred tonats®my measure (EM) being

strictly related to the entropy of LTI systems [2], [23], aisddenoted by

zn: max {0, R (N\;(X))} (CT case)

pen(X) =9 (8)
[[max{1,x(X)]} (DT case)
i=1

For brevity of presentation, we denote all these measuréstive common function

LX) = sy (X) (SM case) ©)
pem(X) (EM case)

Let us introduce the constant

4

—oo (CT & SM case)
0 (DT & SM case)

Lo = (10)
0 (CT & EM case)
1 (DT & EM case)
For a giveny € R, ¢ > uyo, let us define the set
U={veR™: ulAw)) < y}. (11)
The problem addressed in this paper is formulated as follows
Problem 1:Establish whether the set of sought design parameters
S=vnznu (22)

is non-empty and, if yes, find a vectorin this set.
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B. Motivation

Problem 1 includes important problems in control systenmeseHfter we present two of them,
namely the design of stabilizing fixed-order output feedbamntrollers and the design of tuning
parameters for reducing the entropy. It turns out that tipeeblems are difficult to solve being

non-convex optimization problems.

1) Design of stabilizing fixed-order output feedback controlers: One of the problems
included in Problem 1 is the design of stabilizing fixed-ordetput feedback controllers. Indeed,
let us denote the plant as

0(2pa(t)) = AplaTpla(t) + Bpiau(t)
y(t) = Cpapia(t) + Dyrau(t)

wherex,,,(t) € R is the plant statey(t) € R" is the input,y(t) € R™ is the output, and

(13)

Ay € RMWwiaXmpla B € RMiaxm O, € RWw*™ie and D, € R™*™ are given matrices.
Then, let us denote the fixed-order output feedback costrak
0(2eon(t)) = Acon(V)Zcon(t) + Beon(v)y(t)
u(t) = Ceon(V)Teon(t) + Deon(v)y(t)
wherez,,,(t) € R" is the controller statey € R™ is the vector of design parameters, and
Apon(v) € RreonXeon B (v) € R Cpp(v) € R™*Meor and D, (v) € R™*™ are matrix

(14)

polynomials that define the desired structure of the coetrohatrices. Also, let us impose that

the closed-loop system is well-posed by constrainingith
|det(E(v))] = ¢ (15)

where
E(w) =1 — Deon(v)Dpa (16)
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and¢ € R, ¢ > 0, is a chosen threshold. It follows that the closed-loopesysbbtained from

(13)—(14) can be expressed as in (1) where
()
- ( Teon(t) )

( det(B(v)) Apta + Byiaadj(E(v) Deon(v) i an

Bcon(v) (det(E(U))I + Dplaadj (E(U))Dcon(v)) Cpla

Bpiaadj(E(v))Ceon(v)
det(E(v))Acon (V) + Beon(v) Dpigadj(E(v))Ceon(v)

Agen (V) = det(E(v)).
Problem 1 boils down to the search fo{and, hence, the controller (14)) such that the closed-

loop system is asymptotically stable by simply choosing

p(-) = psn() (18)

and

(19)

0 (CT & SM case)
1 (DT & SM case)

This situation is considered in Examples 2 and 3 in Section VI

2) Design of tuning parameters for reducing the entropy: Another problem included in
Problem 1 is the design of tuning parameters for reducingetiteopy. Indeed, let us consider
the case where in the system (1) represents a vector of tuning parametatscén be selected
in order to achieve a desired performance. In particular,ténget is to select such that the

EM is smaller than a certain value. Problem 1 boils down tdvsauproblem by simply choosing

p(-) = peum(-) (20)

This situation is considered in Example 4 in Section VI.

Reducing the entropy is important in a number of scenari@sacterized by the presence of
communication constraints. Hereafter we mention some @fth

a) Quantized feedback stabilization as explained in Theorem 2.2 of [12], the coarsest

guantizer that quadratically stabilizes a single input Bytem is logarithmic, and the
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optimal logarithmic base is given by the ratio between the EMus one and the EM
plus one.

b) Data rate constrained mean square stabilizability as explained in Theorem 2.1 of [21]
for the case of DT stochastic systems with noise, a necessagition for stabilizability
in the mean square sense is that the logarithm of the EM islanthbn the data rate of
the channel.

c) Data rate constrained observability and stabilizability. as explained in Propositions 3.1—
3.2 of [27] for the case of DT systems, a necessary condiibagymptotical observability
and asymptotical stabilizability is that the logarithm b6BtEM is smaller than the data
rate of the channel.

d) Stabilization with sector bound uncertainty: as explained in Theorem 2.1 of [13] for
the case of DT single input systems, there exists a quadlgt&tabilizing state feedback
controller in the presence of sector bound uncertainty d anly if the sector bound is
smaller than the inverse of the EM.

e) SNR constrained feedback stabilizationas explained in Theorem II.1 of [4] for the case
of single input CT systems, there exists a stabilizing staéelback controller such that
the power of the sent signal is not larger than a desired vakmrd only if the EM is not
larger than a half of the ratio between such a value and theepepectral density of the
noise.

f) Stabilization with multirate sampling: as explained in Theorems 4.1-4.2 in [5] for
the case of CT systems with multirate sampling, there edstgabilizing state feedback

controller if and only if the EM is not greater than the totatwork capacity.

C. SOS Polynomials

Here we provide some information about SOS polynomials,feseénstance [6] for details

and references. Let us start by introducing the followin@init&on.

Definition 1: A polynomial p : R™ — R is said to be SOS if there exist polynomials:
R™ —R,i=1,...,k, such that

p(v) = Zpi(v)z. (22)
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SOS polynomials have gained a lot of interest in last yeardswo main reasons. First, SOS
polynomials can be used to express (and, hence, recogrorefagative polynomials. Second,
establishing whether a polynomial is SOS amounts to solair@nvex optimization problem.
Indeed, a necessary and sufficient condition for establisihethep(v) is SOS can be obtained
via an LMI feasibility test.

In fact, letd be a non-negative integer such tdag(p(v)) < 2d. Then,p(v) can be expressed
as

p(v) = b(v) Pb(v) (22)

whereb(v) € R°™4 is a vector containing all monomials of degree less than aaktp d in
v, o(m,d) is the number of such monomials given by

(m+d)!
mld!

and P € Ro(mdxe(md) js 3 symmetric matrix. The representation (22) is known anGmatrix

o(m,d) = (23)

method and as square matrix representation (SMR). It falldvatp(v) is SOS if and only if
there exists” = P’ such that
P>0
{ (24)

(22) holds
The condition (24) is an LMI subject to a linear equality. Tinember of free decision variables
in this condition is given by the number of independent estof P minus the number of linear

constraints imposed by (22), and turns out to be

r(m, 2d) — %U(m, d) (o(m, d) + 1) — o(m, 2d). (25)

[1l. PROPOSEDMETHODOLOGY. SUFFICIENCY

The first step of the proposed methodology consists of partitg the setZ into two subsets
in order to tackle separately the cases whegg(v) is either positive or negative. To this end,
let us define the set

©={-1,1}. (26)

For 0 € © we define the polynomial

f(v) = bagen(v) = ¢ (27)
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where( has been introduced in the well-posedness condition (5)célewe partitionZ in (6)

as

z=Jz (28)

6cO
where

Z={veR™: f(v)>0}. (29)

The second step of the proposed methodology consists ofirtgfanfamily of matrices for
recasting both SM and EM into a common instability measureparticular the SM. To this
end, the eigenvalues of such matrices have to be the sumsg$&) or the products (DT case)
of the possible subsets of the eigenvalues of a given matrix R"*". Hence, let us define the
set

. { {1} (SM case) (30)

{1,...,n} (EM case)
Fork € K, let Q,(X) be a matrix that satisfies the property
k
{Z Ao, (X), a € 7;} (CT case)
spec(Q(X)) = Z:l (31)
{H Ao (X), a € 7;} (DT case)
i=1

where7, is the set ofk-tuples in{1,...,n}, i.e.,

ﬁ = {(alu"'7ak>: ai€{17"'7n}

andai<ai+1 \V/’Lzl,,k‘—l}

(32)

One way to build,(X) is described in [1] and is as follows. L&t € R*** be the submatrix
of X built with the rows indexed by (i) and the columns indexed by j). Moreover, letZ be
the submatrix ofX built similarly to Y by removing fromz(i) and z(j) the common entries.
Lastly, letz be the difference between the sums of the positions of thermmmentries inz(j)
and inz(i). Then, the(i, j)-th entry of 2, (X) is given by, in the CT case,
trace(Y) if i =
((X)),; =% (~1)°Z else if Z has sizel x 1 (33)
0 else

and, in the DT case,
(Qk(X))i,j = det(Y"). (34)
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Some comments abot, (X ) are as follows:

1) the size ofQ),(X) is ¢x x ¢k, Wherecy, is the binomial coefficient

n!
Cr = m7 (35)
2) some special cases 0f.(X) are
N(X)=X (36)
and

{ trace(X) (CT case)
2, (X) = (37)

det(X) (DT case)

3) Qx(X) is linear in the CT case, and polynomial of degfee the DT case;
4) in the SM case, only2,(X) is needed sinc& = {1}.

The next lemma clarifies hof,(X) can be used to study the instability measu(&).

Lemma 1:0ne hasu(X) < ¢ if and only if

psm (%(X)) < Vk € K. (38)

Proof. Let us start by supposing tha{X) is the SM. Thenu(X) < v is equivalent to (38)
sinceXC = {1} and2;(X) = X. Next, let us continue by supposing thatX) is the EM. One
hasu(X) < ¢ if and only if the sum of the real parts of the unstable eigkresmof X (CT case)
or the product of the magnitudes of the unstable eigenvaities (DT case) is smaller than.
This holds if and only if the sum of the real parts of any sulidetigenvalues ofX (CT case)
or the product of the magnitudes of any subsets of eigensalti&’ (DT case) is smaller than
1. SinceX is real, the spectrum is symmetric with respect to the reil. &his implies that the
previous condition holds if and only if the sum of any subgetigenvalues ofX (CT case) or the

product of any subsets of eigenvaluesX0{DT case) is smaller than. Therefore, (38) holds.]

The third step of the proposed methodology consists of dutcing a family of polynomials
that are asymptotically stable if and only if the vector okida parameters belongs to the set
U in (11). To this end, let us define the matrix polynomial

Q(ka(Anum('U)) - waden(v)l) (CT Case)

Gk <U) - 6)Qk(/élmm"b(v)) (DT CaSE) (39)
(G
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whered and« have been introduced in (27) and (11). Observe thgt) is well-defined also

in the DT case since > uy and iy > 0. Let A € C, and define the polynomial

det(A — Gi(v)) (CT case)
g\, v) = (40)
det(Nak_ (v)I — Gi(v)) (DT case)

The following lemma explains how the polynomial A\, v) can be used to investigate Problem

Lemma 2:Let v € Z. One has € U if and only if the polynomialy,. (), v) is asymptotically
stable (in the variabl@) for all £ € IC with

0 = sgn (agen(v)) . (42)

Proof. From (3), (15) and Lemma 1 it follows thate ¢/ holds if and only if
Anum
s (Qk ( <U))) <y VkeKk.
aden<v)

Let us start by considering the CT case. Sifigg X ) is linear in this case, it follows that the

previous condition holds if and only if

s (Qk (eAnum(U))) < ‘aden(v)‘w Vk e K

with 6 given by (41). This holds if and only if7,(v) is asymptotically stable for alt € K.
Since g (A, v) is the characteristic polynomial @& (v), this holds if and only ifg, (), v) is
asymptotically stable (in the variablg for all £ € K.

Next, let us continue by considering the DT case. SifigeX) is polynomial of degreé: in

this case, it follows that € ¢/ holds if and only if

s (s (0Apum(©))) < |agen(v)|"0 VE € K

with 6 given by (41). This holds if and only i€;(v)|ag..(v)| 7 is asymptotically stable for
all k € K. Sinceg(\,v) is the product oflas.,(v)|** times the characteristic polynomial of
Gr(v)|agen(v)| 7%, this holds if and only ifg,()\, v) is asymptotically stable (in the variablg
forall k € K. O
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The fourth step of the proposed methodology consists of simgoasymptotic stability on the

family of polynomialsg, (A, v) by introducing suitable stability tables. To this end, Istaxpress

gr(A\,v) as
Ck
gk()‘v U) = Z hck—ij(U))‘j (42)
j=0
where ho (v), ..., he r(v) € R are its coefficients. In the CT case, we introduce a modified

Routh-Hurwitz table by defining the quantities
( . c
mO’ij(’U) = h2j,k(v) VJ = 0, ey LiJ

. cp — 1
myjk(v) = hojrk(v) Vi=0,..., L k J

mz’,j,k(v) = M;i—1,0,k (U)mi—2,j+1,k<v)

(43)

—mi—Q,O,kz(U)mi—l,j-FlJf(U)

W:2,...,ck—1Vj:0,...,rk;ZJ

mck,O,kz('U) = mck—Q,l,k(U)~

In particular,m; ; ,(v) is the entry of the table in théth row andj-th column. This table is
modified with respect to the standard Routh-Hurwitz tab],[[24] because no division is made
when obtaining the entries of one row from those of the previtwo rows, except for the last
row. This ensures that the entries of the modified table algnpmials inv. In the DT case,

we introduce a modified Jury table by defining the quantities

(o) = ha(v) Vi=0,...,¢

mi (V) = he—jr(v) Yi=0,... ¢

mzi,j,k(v) = m2i—2,j,k:('U)in—l,ck-l—l—i,k(U)
_m2i—1,j,k(U)m2i—2,ck+1—i,k(v) (44)

Wzl,...,ck VjZO,...,Ck—’i

m2z+1,j,k(v) = m2i,ck—i—j,k(v) Vi=1,...,c

L ijO,...,ck—i.

In particular,my; ;x(v) is the entry of the table in thgi-th row andj-th column. This table is

modified with respect to the standard Jury table [17] becaosdivision is made when obtaining
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the entries of one row from those of the previous two rows.Athe CT case, this ensures that

the entries of the modified table are polynomialirLet us define the set

1,2,...,¢c (CT case)
7, — { k) (45)
{0,2,...,2¢,} (DT case)

The following lemma explains how one can impose asymptaébibty on g, (A, v) by using

the constructed tables.

Lemma 3:The polynomialg, (A, v) is asymptotically stable (in the variablg if and only if

mw,k(v) >0 Viel,. (46)

Proof. Let us start by considering the CT case. Let us observe ltieagntrym; ;. (v) satisfies

mije) =mige) [ muos) Vi=0,... ¢ -1

1=i—1,i—3,...
1>1

and

My 0,6(V) = My 0k(V) H my0k(V)

1=i—3,i—5,...
1>1

wherem; ; x(v) is the entry in the-th row andj-th column of the standard Routh-Hurwitz table.

This implies thatg, (), v) is asymptotically stable (in the variablg if and only if
mi70’k(’(]) >0 Vi e Ik,

and this conditions holds if and only if (46) holds.
Next, let us continue by considering the DT case. Let us olestrat the entrymy; ;. (v)

satisfies

Mo j (V) = M j 1 (V) H Moy 0,k (V)

wheremy; j ,(v) is the entry in the2i-th row andj-th column of the standard Jury table. This

implies thatg, (), v) is asymptotically stable (in the variablg if and only if
mLQ,k(’U) >0 Vi e Ik,

and this conditions holds if and only if (46) holds. O
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The fifth step of the proposed methodology consists of inteat a certificate, based on con-
vex optimization, for establishing that a polynomial is rmggative whenever some polynomials
are. To this end, we exploit the Positivstellensatz, seéntance [22], [25]. Let us define such

a certificate as follows.

Definition 2: Let p,¢; : R™ — R, ¢ = 1,...,n,, be polynomials, and be a non-negative

integer. Let us define

Q) ={q(v) Vi=1,...,n,}. 47)
We denote with
incone(p(v), Q(v),d) (48)
the condition
3 polynomialsr;(v), i = 1,...,n,:
ri(v) is SOSVi =1,...,n,
(49)
s(v) is SOS
deg(gi(v)ri(v)) < 2(do + d)
wheres(v) is the polynomial
s(v) = p(v) — Z gi(v)ri(v) (50)
i=1
andd, is the integer
dy = E max {deg(p(v)), deg(qi(v)), ..., deg(qy, (v))}—‘ . (51)
U

Definition 2 introduces the conditicmcone(p(v), Q(v), d) which establishes the existence of
SOS polynomials;(v) with degree bounded byeg(q;(v)r;(v)) < 2(dy + d) such that the poly-
nomial s(v) in (50) is SOS. From (21)—(24) it follows that the conditiorone(p(v), Q(v), d)
is equivalent to establish feasibility of a finite system &flls with finite dimensions.

The following lemma summarizes how the conditimione(p(v), Q(v), d) can be used.

Lemma 4:The conditionincone(p(v), Q(v), d) implies that

p(v) >0 Yo e R"™: ¢(v) >0Vi=1,...,n,. (52)
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Proof. Let us suppose thaticone(p(v), Q(v), d) holds. This implies that;(v) ands(v) are SOS

and, consequently, non-negative. lzet R™ be such that
G(0)>0Vi=1,...,n,

From (50) it follows that
0 < s(v)

= 2 - Y a@)nio)

< p(9),

i.e., p(v) is non-negative. Therefore, (52) holds. O

The sixth step of the proposed methodology consists of daefian SDP for investigating
Problem 1. The goal is to maximize one of the entry of the fidtimn of the modified Routh-
Hurwitz table (CT case) or the modified Jury table (DT caserdhe set of vector of design
parameters that make positive the remaining entries in dbismn. In fact, if the result of
this maximization is positive, one can say that the maximafethis maximization makes all
entries of the first column of these tables positive sincerttaximizer is a feasible point of
the maximization. On the other hand, if the result of this mmazation is non-positive, one can
say that there does not exist any vector of design paramitatrsnakes all entries of the first
column of these tables positive since the chosen entry iativegover the feasible set or the
feasible set is empty.

In order to achieve this goal, let us denote with, € Z,._.., and k. € K the indicesi and
k that identify the chosen entry to be maximized. Also,det R, ¢ > 0, be a chosen lower

bound for the remaining entries. Let us introduce the setobfrpmials

M) = {mior(v) —e Y(i,k) € T, x K :

(53)
(i, k) # (icostu kcost)} .
Also, let us define the set of polynomials
Qv) = {f(v)} UM(v) UW(v) (54)

where f(v) is given by (27),M(v) is defined in (53), and

W) ={w;(v) Yi=1,...,n4}. (55)
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Let v € R, and let us define the polynomial

p('U) = fy - micost707kcost (U) (56)

Let d be a non-negative integer, and let us define the optimizatioblem

v* = inf «
veER (57)

s.t. incone(p(v), Q(v), d).
The optimization problem (57) is an SDP since the cost foncis linear and the constraint is
equivalent to a finite system of LMIs with finite dimensions.
The following theorem provides a sufficient condition fotadsishing the non-existence of a

vector of design parameters that solves Problem 1.

Theorem 1:Let ¢ = 0, wheree is used in (53). The sef in (12) is empty if, for alld € ©,

there exists a non-negative integésuch that

7 <0. (58)

Proof. Let us start by considering fixed in ©. Let us suppose that there exists a non-negative
integerd such that (58) holds with = 0. Let us define

F={veR™: ¢(v)>0 Vi=1,...,n,}.
First, let us suppose that is non-empty. From Lemma 4 it follows that
micoshoykcost (U) S 0 \v/,U E ‘F

From Lemma 3 it follows thay, ... (A, v) cannot be asymptotically stable for anyn the setF.
This means tha (A, v) cannot be asymptotically stable for anythat belongs), satisfies
f(v) >0, and makegy,. (), v) asymptotically stable for alt € K\ {k..s:}. From Lemma 2 this
implies that there does not exist anye V N Z N .

Second, let us suppose thatis empty. The fact thaF is empty implies that there does not
exist anyv that belongs), satisfiesf(v) > 0, and makegy, (A, v) asymptotically stable for all
kel if ¢, >1,orforallk € I\ {keos: } If k.., = 1. As in the previous case, this implies

that there does not exist anye VN Z NU.
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Next, let us continue by considering that (58) holds foréadt ©. From the previous part of

the proof and (28) it follows that the sétis empty. O

The condition of Theorem 1 certifies that the sets empty. In particular, for a fixed value
of § € O, (58) guarantees that N Z N is empty.

For any choser® € © and non-negative integet, the condition provided by Theorem 1
requires to solve the SDP (57) and to check whether the found non-positive. Let us
observe that this includes the case whete= —cc.

As it will be shown in Section 1V, the condition provided by @drem 1 is not only sufficient
but also necessary for a sufficiently largéoy introducing some assumptions on Problem 1.
Next, let us suppose that is finite for somed € O (if not, theny* = —oo for all 6 € ©, and
Theorem 1 certifies the non-existence of a vector of desiganpeters in the regiox). Let us
denote withr}(v) and s*(v) the optimal values of the polynomials(v) and s(v) in the SDP
(57) introduced via Definition 2, and let us observe thdv) and s*(v) are SOS polynomials.

The following theorem provides a sufficient condition fotadsishing the existence of a vector
of design parameters that solves Problem 1.

Theorem 2:The setS is non-empty if there exist € ©, a non-negative integet, ¢ > 0 and
v* € R™ such that

gy > 0 Vi=1,...,n
(v*) g (59)
G ri(v*) = 0 Vi=1,...,n,

Moreover,v* € S.
Proof. Let us consider such, d, € andv* in the sequel of this proof. From the third and fourth
conditions in (59) it follows that

0 = s*(v")

Ng

= ry* - micostyoykcost (U*) - Z ql </U*)T;/k (U*)
i=1
*

= ’y - micost,o,kcost (/U*)

which implies from the first constraint in (59) that

miCOSt707kCOSt (U*) > 0
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From the second constraint in (59) and- 0 it follows that
mLO,k(’U*) >0 V(l, k‘) eI, x K.

The second constraint in (59) also implies that
wi(v*) > 0Vi=1,...,n,
fw) =0,
i.e.,v* € VN Z. Hence, Lemma 3 implies that the polynomig(\, v*) is asymptotically stable

(in the variable)) for all & € K. Let us observe that (41) is satisfied with= v* sincev* € VN Z.

Hence, from Lemma 2 it follows that* € U, i.e.,v* € S. O

Theorem 2 certifies that the s&tis non-empty, and provides a vector of design parameters
v* in such a set. In particular, this vector belongsta1 Z N U.

For any choserd € © and non-negative integef, the condition of Theorem 2 requires to
solve the SDP (57) and to check whether there exists R™ such that (59) holds.

The search fon* € R™ satisfying (59) can be addressed via linear algebra opesatnce
that the SDP (57) has been solved. Specifically, one detesire candidates for that satisfy
the fourth constraint in (59), i.e., the zerossdfv). This operation can be done with the method
proposed in [11] for solving systems of polynomial equasi@s explained hereafter:

1) once that the SDP (57) has been solved, one obtains fronSEHe solver a positive
semidefinite Gram matrix of*(v), i.e., a symmetric matrix>* > 0 such thats*(v) =
b(v)'S*b(v), whereb(v) is a vector of monomials im;

2) sinceS* > 0, one has that*(v) = 0 if and only if b(v) € ker(S*). Hence, the problem
of finding the zeros of*(v) is equivalent to the problem of finding vectors of monomials
in ker(S*);

3) the problem of finding vectors of monomials kar(S*) can be addressed by pivoting
operations that reduce the problem to finding the roots of lgnpmial in a single
variable whenever the dimension kdér(S*) is smaller than a certain value as shown in
[11]. Alternatively, this step can be solved by computingofésky factorizations, column

echelon forms, and Schur decompositions as explained in [14

The following example clarifies the above procedure for ieiieing the zeros of*(v).
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Example 1 Let us suppose that
s*(v) = (3 —vd — 203)* + (1 — 2v1vy — v} + vd)2

A positive semidefinite Gram matri%* of s*(v) can be obtained from an SDP solver as explained
in Section II-C. By using the SDP solver specified at the baigim of Section VI, the found*

provides
—0.355 0.330 —0.085

—0.236 0.252 0.205
0.403 0.361 0.083
—0.238 0.190 0.402
0.223 0.311 —-0.174
—0.385 0.427 —0.426
—-0.294 0.136 0.596
0.182 0.265 —0.307
—0.161 0.334 —0.106
0.507 0.427 0.332

ker(S*) = img(S;), S; =

whereb(v) is chosen a$(v) = (1, vy, vo, v], V109, V3, V3, V3vy, v1v3, v3) . Following the method
proposed in [11], one builds an equivalent representatibrkes(S*) by means of pivoting

operations, in particular

1.000  0.000  0.000

1.656 0.117 —0.790
0.000  1.000  0.000

2.269 0.086 —1.382
—0.612 0.642 0.658

0.000  0.000  1.000

3.000 0.000 —2.000
—1.072 0.494 1.032

0.510 0.233  0.192

0.776  1.284 —0.685

ker(5%) = img(S3), S =

1The number of LMI scalar variables 8, and the computational time is less tharsecond.
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From the last row ofS; one has that any such thath(v) € ker(S*) must satisfy
0.776 + 1.284v, — 0.685v3 — v = 0.

By simply computing the roots of this equation i, and by reading the value af; in the
vector S;(1,v,,v3)" built for each one of these roots, one obtains that the zefos (o) are

included in the set

0.346 0.818 1.327
—1216 |\ 1108 |\ —0576

Lastly, one simply substitutes the vectors of this set kit@), concluding that all of them are

zeros ofs*(v). O

See also Section VI where the search for € R™ satisfying (59) is illustrated in other
numerical examples. Once the candidatesufohave been determined, one just checks whether
any of them satisfies the other constraints in (59).

As it will be shown in Section 1V, the condition provided by @drem 2 is not only sufficient

but also necessary for a sufficiently largéy introducing some assumptions on Problem 1.

IV. PROPOSEDMETHODOLOGY. NECESSITY

In this section we analyze the conservatism of the suffictentitions provided by Theorems

1 and 2. Let us start by introducing the following assumption

Assumption 1The setV is non-empty and compact. Moreover, the polynomial&), i =
1,...,n., in (4) have even degree and their highest degree forms fmeemmon root except

zero. 0
It is important to observe that Assumption 1 introduces miastrictions. Indeed, the set of

admissible controllers parametersias to be non-empty. Moreover, for numerical computation

and practical implementation of the controller, it is rezeole to require that this set is compact.
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Lastly, the requirement that the polynomials(v) have even degree and their highest degree

forms have no common root except zero is automaticallyfeadi$or typical sets such as spheres,

V={veR": vv<1}

and multi-interval sets,

V={veR™: [vy,vf], i=1,....,m}

(K
{wl(v) = (v; —v)(v—u)

Next, we introduce a change on the construction of the SDIP g57ollows.

Change C1 Any polynomial ¢;(v) with odd degree in the saR(v) in (54) is replaced in
such a set by

G(v) — @(v)z(v) (60)
wherez(v) is any affine linear function such that
z(v) >0 Yve. (61)

O

Let us observe that Change C1 has the effect of making all ghgnpmialsg;(v) in the
set Q(v) having even degree, without changing the setvdbr which all these polynomials
are non-negative (sincg is included in such a set). Also, let us observe that the afiirear
function z(v) always exists sinc® is compact.

The following result analyzes the necessity of the condifpwovided by Theorem 1 under
Assumption 1.

Theorem 3:Let us suppose that Assumption 1 holds, and let us modify ¢h&@&v) in (54)
according to Change C1. Let= 0. The setS is empty only if, for all§ € ©, there exists a
non-negative integed such that (58) holds.
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Proof. Let us suppose that the s8tis empty. Letd € ©. From Lemma 2 it follows that, for
all v € V, the polynomialg, (A, v) is not asymptotically stable for soniec K or (41) does not
hold. From Lemma 3 one has that, for alk V, (46) or (41) does not hold. Lef be the set
introduced in the proof of Theorem 1. First, let us considher tase whereg- is non-empty. It
follows that
Miieger0.ke0s: (V) <0V €VN Z.

From Assumption 1, Change C1, and Putinar's Positivsteien[22], it follows that

ri(v) is SOSVi=1,...,n,

Yy >0 Jr;(v) :

s(v) is SOS
Since the degrees of the polynomiajsv) in (49) arbitrarily increase by increasing it follows
thatvy* < 0 for a sufficiently larged.

Second, let us consider the case whéres empty. Without loss of generality, let us suppose

that the polynomialsuv;(v), i = 1,...,n,, are the firstn,, polynomials in the listy;(v), i =

1,...,n, Le.,

It follows that

where
F={weR": ¢{)>0 Vi=n,+1,...,n,}.

Since F is empty andV is non-empty, it follows that
YoeV Jdi=n,+1,...,n,: qi(v) <O0.
Hence, exploiting again Putinar’s PositivstellensatZoliiows that

ri(v) is SOSVi =1,...,n,
s(v) is SOS

Yy <0 3Jry(v) -

Theorem 3 states that the sufficient condition provided bgofeém 1, which certifies that the
setS is empty, is also necessary for a sufficiently largeat least when Assumption 1 holds

and the se©Q(v) in (54) is modified according to Change C1.
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The following result analyzes the necessity of the condifjwovided by Theorem 2 under

Assumption 1.

Theorem 4:Let us suppose that Assumption 1 holds, and let us modify ¢h@&v) in (54)
according to Change C1. The s8tis non-empty only if there exisft € ©, a non-negative
integerd, ¢ > 0 andv* € R™ such that (59) holds. Moreover; € S.

Proof. Let us suppose that the s8tis non-empty, and let € S. From Lemma 2 it follows
that the polynomial, (A, v) is asymptotically stable for alt € IC with ¢ given by (41). From

Lemma 3 one has that (46) holds. Hence, there existd) such that
F#0

whereF is the set introduced in the proof of Theorem 1. Let us comsdeh are in the sequel

of this proof. SinceF is compact due to Assumption 1, we can define

¥ = AKX 1,0 et (V)

and leto be the maximizer in this optimization problem, i.e.,

v € F
;3/ - mimst,O,kcost (17>
It follows that
v > 0.

Let us observe that

incone(p(v), Q(v),d) = ~v>7

which implies
v =75 Vd>0.

From Assumption 1, Change C1, and Putinar’s Positivstefiem[22], it follows that there exists

a non-negative integet such that
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Let us consider such @in the sequel of this proof. Sincg(v) andr}(v) are SOS polynomials,

it follows that
0 < s%()

Tiq
= ,}/* - miCOSt707kCOSt (ﬁ) - Z qz(ﬁ)rj ({})
i=1

= =3 aw@ri)

i=1

< 0
sinceq;(v) > 0. This implies that
()i (v) = 0 Vi=1,...,n,
s*(v) = 0.
Therefore, (59) holds with* = v, andv € S. O

Theorem 4 states that the sufficient condition provided bgofeém 2, which certifies that the
setS is non-empty and provides a vector of design parametens such a set, is also necessary
for a sufficiently larged at least when Assumption 1 holds and the @ét) in (54) is modified
according to Change C1.

V. REMARKS, SIMPLIFICATIONS, AND EXTENSIONS

This section provides some remarks about the methodologgoged in Sections Il and 1V,

and investigates some simplifications and extensions efast.

A. Remarks

The first remark concerns the integers; and k.., introduced in the definition of the set
M(v) in (53) and in the polynomiab(v) in (56). These integers can be freely selected in the
setsZ; ., and K, and have the role of identifying the entry of the first coluofrthe modified
Routh-Hurwitz table (CT case) or Jury table (DT case) to ba&imaed over the set of vector
of design parameters that make positive the remainingeantn this column. A criterion for
selectingi.,; and k.,s; can be the maximization of the degree of the polynomial in (56).
This criterion is based on the fact that, by maximizing thgrde ofp(v), one can reduce the

degree ofs(v) in (50) for multipliersr;(v) of the same degree.
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The second remark is about the scataintroduced in the setM(v) in (53). The role of
this scalar is to define a chosen lower bound for the entrigheofirst column of the modified
Routh-Hurwitz table (CT case) or Jury table (DT case), ireotd impose that they are positive.
In Theorems 1 and 3, this scalar does not need to be seleaszksk 0 is the only possibility.
In Theorems 2 and 4, has to be positive, and can be chosen as small as the competesign
in order to minimize the conservatism.

The third remark is about the difference between the CT andc&8es. In the DT case, the
computational burden of the SDP (57) is larger than in the @§edbecause the polynomials in
the setQ(v) have higher degree. This is due to the stability tables usetidndling the CT and
DT cases. Another reason is that the matrix polynoMiglX) in (31) is linear inX in the CT

case, and polynomial of degréein the DT case.

B. Simplifications

The first simplification concernd(v) in the system (1) and its expression in (3). Indeed, the
methodology proposed in Sections Ill and 1V can be simplifredny of the following situations:

1) A(v) is a matrix polynomial, i.e.qge,(v) = 1;

2) A(wv) is a rational matrix function and,.,(v) is positive for allv € V.
In the context of fixed-order output feedback controllersigle, the situations just mentioned
occur whenever one of the following situations occurs:

1) the plant (13) or the controller (14) are strictly proges,, D, = 0 or D.y,(v) = 0;

2) the determinant of/(v) in (16) is positive for allv € V.
In such situations, one does not need to investigate the whsee a,4.,(v) is negative. This
means that the SDP (57) needs to be solved onlyferl in Theorems 1-4. Hence, provided
that

Agen (V) > ¢ Yo €V, (62)

the methodology proposed in Sections Il and IV can be siimepliby introducing the following

change.
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Change C2 The set®0 in (26) andQ(v) in (54) are replaced by

{ o = {1)
(63)
Qv) = M(v)UW().

The second simplification is about the polynomiais, .(v) included in the setM (v) in (53)

and in the polynomiap(v) in (56). Let us observe that:

1) one does not need to include in the getv) or in the polynomialp(v) the polynomials
mi 0. (v) that are positive for alb € V), such as positive constants. Indeeds searched
for such thatm,x(v) is positive overV. This leads to a reduction of the number of
multipliers r;(v) in the conditionincone(p(v), Q(v),d) and, hence, to a reduction of the
number of LMI scalar variables in the SDP (57);

2) if at least one of the polynomials, , . (v), i € Z,, andk € K, is known to be non-positive
for all v € V, then the condition (58) is automatically satisfied, andsee) N Z N/ is
empty.

C. Extensions

In the previous sections we have addressed Problem 1, wimich @ finding a vector of
design parameters in the s8t It turns out that the proposed methodology can be extermled t
find a vector of design parameters in the Sethat minimizes a given cost function. Indeed, let

us formulate the problem as follows.

Problem 2:For giveny € R, ¢ > 1, and polynomiak : R™ — R, solve

¢ = inf ¢(v). (64)

veS

In Problem 2,¢(v) is a given cost function that one aims at minimizing over tee& For
instance, ifc(v) is chosen a$’v, one aims at determining the vector of design parameters wit

the smallest Euclidean norm that satisfies the requiredti@nts. Problem 2 can be addressed
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by introducing the following change.

Change C3 The setM(v) in (53) is replaced by
M(v) = {mionr(v) —e V(i,k) € Ty x K}, (65)

the polynomialp(v) in (56) by

p(v) = c(v) =7, (66)
and the SDP (57) by
v = sup vy
vER (67)

s.t. incone(p(v), Q(v), d).

In short, Change C3 redefines the set of polynomi@dl®) by including the polynomial
Miieyer 0.k0s: (V) 1N the setM(v) that was previously absent, the polynomiéd) since now we
aim at minimizinge(v) rather than maximizing;,, ., o.x...,(v), and the SDP (57) sinceis now

a lower bound and must be maximized. It follows that, for anyp-negative integed,

v <. (68)

Moreover, under Assumption 4; converges t@*. The proof is analogous to those of Theorems
1-4 and is omitted for brevity.

VI. EXAMPLES

In this section we present some illustrative examples ofptioposed methodology. The SDP
(57) is solved with the toolbox SeDuMi [26] for Matlab on arsfard computer with Windows
10, Intel Core i7, 3.4 GHz, 8 GB RAM. The degree of the polyrainmultipliers r;(v) are
bounded according to the last constraint in (49) with= 0 unless specified otherwise. The
numbersi.,,; andk..,; are chosen as explained in the first remark in Section V-A. Sdadare

is chosen as = 0.1 unless specified otherwise.
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A. Example 2

In this example we consider, in the CT case, the design ofta statput feedback controller

with structural constraints for stabilizing the plant (38ith

( 1 -3 3 0 0
Apla = 2.5 0 6 s Bpla = 11
—0.5 25 0 0 1
1 01 0 0
Cpla - ) Dpla - .
\ -1 1 1 01

We consider the following two scenarios.

1) Scenario 1:Here the sought static output feedback controller is cha@sem (14) with

Acon<v) = (Z), Bcon(“) = (Z)

Ccon(v) - (2)7 Dcon<v) - ( . ! )
(%) 0

wherev = (vy,v9)" is the vector of design parameters. The closed-loop sys&nbe expressed
as in (1)—(3) withA,...,(v) and Age,(v) given by (17).

The problem consists of finding a vectoiin the setS in (12), whereV = [-3,3]?, Z is as
in (6) with ¢ = 0.1, U is as in (11) withy) = —0.5, and u(-) is the SM.

First of all, let us observe that this plant is unstable, irtipalar
{ spec(A,,) = {—1.313 £ j1.339, 3.625)

1(Apa)) = 3.625.
From (16)—(17) one has

;

1 -3 3
Anum(v): 2.5"‘1)1 -+ U2 0 6-'-1)1 + Vo
—0.5 + V2 2.5 V2

\ Agen(v) =1.
The setZ in (5) is Z = R?.

Let us observe that, since (62) holds, the methodology @m®gan Sections Il and IV can
be simplified with Change C2 in (63). Therefore, in the seqfethis scenario we consider
© = {1}.
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We express as in (4) by choosing,, = 2 andw;(v) = 9 —v? for all i = 1,2. The setQ(v)
in (63) is
Q(v) = {—2.5 — vy, —10.125 — 6.75v; + 4.5v5,9 — v?,9 — v3

and the polynomiap(v) in (56) is
p(v) = v —20.75 — 5.50; — vy + 0.5v1v5 — 0.503.

Solving the SDP (57) we find* = —oco with ¢ = 0. The polynomials-;(v) have degred, the
number of LMI scalar variables i§, and the computational time is less tharsecond. From
Theorem 1 this implies that there does not exist any sougtticsbutput feedback controller,
i.e., the setS is empty.

This result is verified by Figure 1 which shows the SM of theseldrloop system over the set

V. As it can be seen from Figure 1, the SM is always greater thandeed it is always positive.

4
o\
O or
35 PSS e et cus st e et Lusususues SRR ene
e S A e O OO SIS
A AR ARSI,
o T T S SRS,
TSN S us! ST 8
3 T e O I I SRRt
AT 8!
8
25 3
—~
—~
>
S~—
~—,
1.5
3

Fig. 1. Example 2, Scenario 1: SM of the closed-loop systear tve sef). As it can be seen, the SM is always positive in
this case.
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2) Scenario 2:Here we repeat the previous search by considering the meséman additional
design parameter in the sought static output feedback atarirspecifically we consider that

the matrixD.,,(v) has the form

U2 U3
wherev = (v, v, v3)" is the vector of design parameters constrained ia [—3, 3]3.
It follows that

Agen(v) = 1 — v3
and, hence, the s&f in (5) is
Z={veR’: v;€(-00,09/U[l.1,00)}.

Solving the SDP (57) we fing* = 26.358 with ¢ = —1. The polynomials-;(v) have degree
in the rang€0, 2], the number of LMI scalar variables 72, and the computational time is less
than1 second.

At this point, we look forv* € R? satisfying (59). As explained after Theorem 2, this can
be done by looking for the zeros af(v), which can be addressed by looking for vector of

monomialsb(v) in ker(S*). It turns out that

12.406 2.637 —0.892 —4.194
* 2.863 —1.096 —3.264

S* = * * 2.503  0.004
* * * 5.643
1 0.054
U1 0.161
Vs ' 0.161

b(v) = , ker(S™) =img

U3 0.104
v? 0.482

By simply scaling, one obtains that the only possible casgidorv* given by

v* = (3.000, 3.000, 1.949)".
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We verify that this candidate satisfies (59). Hence, we eaielthatv* € S. Indeed,
det(E(v*)) = —0.949
spec(A(v*)) = {—4.151,—1.060 £ j3.136}
p(A(v*)) = —1.060.

B. Example 3

In this example we consider, in the DT case, the design of &dider output feedback

controller with structural constraints for stabilizingetiplant (13) with

(7)o

Chia = ( 1 —1), D, = 0.
We look for a first-order output feedback controller with aean the origin, which can be
expressed as in (14) with
Acon(v) =0, Beop(v) =1
Coon(V) =v1, Deon(v) = v9
wherev = (vy,v2)" is the vector of design parameters. The closed-loop sys&nbe expressed
as in (1)—(3) withA,,,,,(v) and Az, (v) given by (17).
The problem consists of finding a vectoiin the setS in (12), whereV = [-3,3]?, Z is as
in (6) with ¢ = 0.1, « is as in (11) withy) = 0.9, and (+) is the SM.
First of all, let us observe that this plant is unstable, irtipalar

spec(Ay,) = {0.382,2.618}
{ H(Apa) = 2618,

Let us observe that, since the plant is strictly proper, tbeed-loop system is well-posed for
all v € V, in particularas.,(v) = 1. Hence, the methodology proposed in Sections Ill and IV
can be simplified with Change C2 in (63). Therefore, in theuségf this example we consider
© = {1}.

Solving the SDP (57) we find* = 0.002. The polynomials-;(v) have degree in the range
[4,6], the number of LMI scalar variables &2, and the computational time is less than

second.
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At this point, we look forv* € R? satisfying (59). As explained after Theorem 2, this can

be done by looking for the zeros af(v), which can be addressed by looking for vector of
monomialsb(v) in ker(S*). It turns out that

0.291 6.319 1.12

o | » 2207 2531
* * 4.644
1 0.371
V1 —0.182
b(v) vy |, ker(S*)=img| 0.384
V2 0.089

By simply scaling, one obtains that the only possible casgidor v* given by

v* = (—0.490,1.035)".
We verify that this candidate satisfies (59). Hence, we eaielthatv* € S. Indeed,
spec(A(v*)) = {0.584 + j0.523,0.797}
w(A(w*)) = 0.797.

Figure 2 shows the s& found by brute force. As it can be seen, this set is quite small
this case.

C. Example 4

In this example we consider, in the CT case, the design ohtuparameters for reducing the
EM. Specifically, we consider the system (1) with

2 3 U1
A('U) = 1-— V2 -2 —1
-3 1+ (%] 1

wherev = (vy,v9,v3)" is the vector of design parameters. We consider the follgwino
scenarios.
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Fig. 2. Example 3: sef. As it can be seen, the sétis quite small in this case.

1) Scenario 1:Here the problem consists of findimgn the setS in (12), where) = [-3, 33,
Z is as in (6) with( = 0.1,  is as in (11) withy) = 2, and u(-) is the EM.

First of all, let us observe that the EM of the plant can bedaiipan the required value,
indeed forv = (0,0,0)" one has

spec(A(0)) = {-3.220,2.110 + j1.066}
n(A0) = 4.220.

Let us observe that, sincé(v) is a matrix polynomial, one hasg;.,,(v) = 1 in (17). Hence,
the methodology proposed in Sections Ill and IV can be sifegliwith Change C2 in (63).
Therefore, in the sequel of this example we consiées {1}.

Solving the SDP (57) we fing* = 66.000. The polynomials-;(v) have degree in the range
0, 2], the number of LMI scalar variables id, and the computational time is less thasecond.

At this point, we look forv* € R3 satisfying (59). As explained after Theorem 2, this can

be done by looking for the zeros af(v), which can be addressed by looking for vector of
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monomialsb(v) in ker(S*). It turns out that

43.449 —0.817 —0.935 0.965
* 1.046  0.347 —0.487

S* = * * 0.874 —0.237
* * * 0.939
1 0.044
U1 0.132
Vs _ 0.132

b(v) = , ker(S*) =img

U3 —0.132
V2 0.397

By simply scaling, one obtains that the only possible casgidorv* given by
v* = (3.000, 3.000, —3.000)".

We verify that this candidate satisfies (59). Hence, we eaielthatv* € S. Indeed,
spec(A(v*)) = {—0.641,0.820 + 53.658}
w(A(v*)) = 1.641.
Figure 3 shows the s&& found by brute force. As it can be seen, this set is non-comvex

this case. The fact that the s8tis non-convex can also be proved by observing that
v = (=1.1,3,-0.7) = pu(A@W)) =1.982 <

v® = (3,3,-24) = p(A@w®)) =1.965 < ¢

(1) (2)
o® = % S u(AWD) = 2.273 £ 4.

2) Scenario 2:Here we consider the problem of minimizing the Euclideanmof v under
the constraints considered in the previous scenario. Troislgm can be addressed with Problem
2 by choosinge(v) = v'v in (64). Hence, we make Change C3 in (65)—(66) and we solve the
SDP (67) withd = 2. The polynomials-;(v) have degree in the rang 4], the number of LMI
scalar variables i832, and the computational time is less thaseconds. At this point, we look
for v* € R3 satisfying the fourth constraint in (59). We find that theyopbssible candidate for
v*is

v* = (—1.141,3.000, —0.427)’.
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Fig. 3. Example 4, Scenario 1: st As it can be seen, the sétis non-convex in this case.

The found vector of design parameters belongs$ tédndeed,

spec(A(v*))
p(A(v))

{—0.997, —0.003, 2.000}
2.000.

Moreover, one hag(v*) = 10.484, while the vector of design parameters found in the previous

scenario achieves(v*) = 27.

VII.

CONCLUSIONS

Two sufficient conditions have been given for establishiithee the non-existence or the

existence of designing parameters that reduce the SM andfENI gystems. These conditions

require to solve an SDP, which is a convex optimization pohland to find the roots of a

multivariate polynomial, which is a difficult problem in geral. To overcome this difficulty,

a technique based on linear algebra operations has beeaoitegplwhich easily provides the

sought roots in common cases by taking into account the tatei®f the polynomial under

consideration. Also, it has been shown that these conditame not only sufficient but also

necessary by increasing enough the size of the SDP undermsdthassumptions. Lastly, it has
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been explained how the proposed methodology can be usednthder design parameters that
minimize a given cost function while reducing the instdili

Unfortunately, the computational burden of the proposethowology quickly grows with the
dimensions of the problem. This seems unavoidable in oaachieve conditions that are not
only sufficient but also necessary through convex optinonat

Several directions can be explored in future work. One o$s¢heoncerns the possibility of
imposing that the eigenvalues of the system lie into a deégiegion. Another direction could
attempt to achieve robust control design whenever the jdaaffected by uncertainties. Lastly,
another direction could explore the extension of the predosethodology to the use of stability

criteria based on Lyapunov functions.
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