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Renormalization group approach to stability of two-dimensional interacting type-II Dirac fermions
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(Received 7 September 2016; revised manuscript received 20 April 2017; published 11 May 2017)

The type-II Weyl/Dirac fermions are a generalization of conventional or type-I Weyl/Dirac fermions,
whose conic spectrum is tilted such that the Fermi surface becomes lines in two dimensions, and surface in
three dimensions rather than discrete points of the conventional Weyl/Dirac fermions. The mass-independent
renormalization group calculations show that the tilting parameter decreases monotonically with respect to the
length scale, which leads to a transition from two-dimensional type-II Weyl/Dirac fermions to the type-I ones.
Because of the nontrivial Fermi surface, a photon gains a finite mass partially via the chiral anomaly, leading
to the strong screening effect of the Weyl/Dirac fermions. Consequently, anisotropic type-II Dirac semimetals
become stable against the Coulomb interaction. This work provides deep insight into the interplay between the
geometry of Fermi surface and the Coulomb interaction.

DOI: 10.1103/PhysRevB.95.195412

I. INTRODUCTION

Three-dimensional (3D) Weyl semimetals are topological
states of quantum matter and can be regarded as 3D analogues
of graphene [1,2]. Their conduction and valence bands with
linear dispersion touch each other at a finite number of points,
called the Weyl nodes, in the 3D Brillouin zone. These Weyl
nodes can be viewed as magnetic monopoles in momentum
space [3,4], which lead to various novel electromagnetic
responses such as the chiral anomaly [5–10], chiral magnetic
effect [11–18], and exotic magnetoresistance [19–22]. Very
recently, a new kind of Weyl/Dirac semimetals with the tilted
conic spectrum, named type-II Weyl/Dirac semimetals, have
been predicted in a series of materials [23–26], in which
the Fermi surface crossing the Weyl nodes is lines in two
dimensions [27] and surface in three dimensions [23] with a
finite density of states (DOS). Meanwhile, many experiments
have made great efforts to characterize type-II Weyl/Dirac
semimetals by angle-resolved photoemission spectroscopy
[28–30]. This nontrivial Fermi surface could lead to an
exotic magnetic-optical response [31–33] and unconventional
magnetic breakdown [34].

Coulomb interaction plays a crucial role in understanding
the properties and stability of the Fermi surface in both
two-dimensional (2D) [35] and 3D Dirac/Weyl semimetals
[36–38]. For type-I 2D Dirac semimetals, the vanishing DOS
at Fermi points does not screen the Coulomb interaction
sufficiently [35]. The renormalization group (RG) [39,40]
calculations show that the Coulomb interaction renormalizes
the effective velocity and makes it diverge logarithmically
[41,42]. One solution to this unphysical divergence is to
take into account the relativistic effect in the full quantum
electrodynamics level [43] such that the velocity of fermions
is renormalized up to the speed of light [44]. In this work, we
study 2D type-II Dirac semimetals that possess an extended
Fermi surface (two lines) and finite DOS even when the Fermi
surface crosses the Weyl nodes. It is natural to wonder how
this nontrivial geometry of Fermi lines interplays with both
the Coulomb interaction and the finite DOS.

*sshen@hku.hk

It has been shown that under the unscreened Coulomb
interaction, the tilting parameter is a monotonic decreasing
function of length scale such that the 2D type-II Dirac fermions
transit to the type-I ones. Because of the nontrivial Fermi
surface, a photon gains a finite mass partially via the chiral
anomaly, giving rise to a strong screening effect. Consequently,
anisotropic type-II Dirac fermions become stable against the
Coulomb interaction. In addition, the logarithmic divergence
of Fermi velocity is substantially suppressed. This work
sheds new light on the interaction effect of 2D type-II Dirac
semimetals.

II. MODEL FOR 2D TILTED DIRAC FERMIONS

In the present work, we shall focus on the 2D tilted
Dirac fermions that respect the inversion symmetry or
time reversal symmetry to prevent the band-gap open-
ing. Actually, the quasi-2D conducting organic compound
α − (BEDT − TTF)2I3 supports these tilted Dirac fermions
[45–47]. We start with the following Hamiltonian for 2D
type-II Dirac fermions, in which the conic spectrum is tilted
along the x axis (we set h̄ = 1) [27],

H0 = vxpxσ
1 + vypyσ

2 + wvxpx, (1)

where w refers to a tilting parameter for type-II Dirac fermions
with |w| > 1 and for type-I ones otherwise. vx and vy denote
for the velocity along the x and y axes, respectively. For
simplicity, we denote the ratio of two velocities by η = vx/vy .
σ i with i = 1,2 are the Pauli matrices. The energy dispersions
of Eq. (1) are of the form

E± = wvxpx ±
√

v2
xp

2
x + v2

yp
2
y. (2)

There are two Fermi lines at E± = 0 in the px − py plane,
described by py = ±w̃ηpx with w̃ = √

w2 − 1. ± refers to the
sign of slope of each Fermi line as shown in Fig. 1. Note that
the energy dispersion in Eq. (2) is only valid for a finite region
near each Weyl node, we thus introduce a momentum cutoff �

along the px axis. Since the Fermi surface is not pointlike, one
needs to expand the Hamiltonian in Eq. (1) around the Fermi
lines to capture the low-energy properties [39,40]. Namely,
we decompose the momentum into two parts: the momentum
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FIG. 1. The energy bands and Fermi surface of 2D type-II Dirac
fermions. The dark plane is the isoenergy surface crossing the Weyl
node located by the white intersection point. The red and blue lines
labeled by ± denote the Fermi lines.

parallel to the Fermi lines kF and the momentum perpendicular
to the Fermi lines p̃,

k±
F = (p‖, ± w̃ηp‖),

(3)
p̃± = (±w̃ηp⊥, − p⊥)

with J = 1 + w̃2η2 being the corresponding Jacobian. p‖ and
p⊥ are the x component of k±

F and y component of p̃±,
respectively, where the subscript ‖ (⊥) denotes for momentum
parallel (perpendicular) to the Fermi lines. In terms of k±

F and
p̃±, the Hamiltonian in Eq. (1) can be recast as

H0 = Hk±
F

+ Hp̃± , (4)

where Hk±
F

and Hp̃± only depend on p‖ and p⊥, respectively.
The corresponding Lagrangian for electrons can be directly
obtained from Hk±

F
and Hp̃± :

Le = �s=±�†
s

[
p0 − (

Hks
F

+ Hp̃s

)
p⊥

]
�s

= �
†
+(p⊥)[p0 − (ww̃η2 + w̃η2σ 1 − σ 2)vyp⊥]�+(p⊥)

+�
†
−(−p⊥)(−iσ 2)[p0 − (ww̃η2 − w̃η2σ 1

+ σ 2)vyp⊥](iσ 2)�−(−p⊥), (5)

where �s with s = ± denote for fermions on two different
Fermi lines and satisfy the relation �

†
±Hk±

F
�± = 0 due to zero

Fermi energy. After introducing a new spinor

�̄(p⊥) = (�†
−(−p⊥)(−iσ 2),�†

+)γ 0, (6)

the action can be recast as

S0 =
∫

dp0dp‖dp⊥
(2π )3

J (Le + Lγ + LI ), (7)

where Le, Lγ , and LI denote the Lagrangians for electrons,
photons, and the interaction between electrons and photons,
respectively. Their specific expressions are given as

Le = �̄[p0γ
0 − (ww̃η2γ 0 + w̃η2γ 1 − γ 2)vyp⊥]�,

Lγ =
∫

dpz

4π
φ
[
J (p2

‖ + p2
⊥) + p2

z

]
φ, (8)

LI = �̄(−eγ 0φ)�,

where γ μ with μ = 0, 1, 2 are the 4 × 4 Dirac gamma matrices
including the extra two degrees of freedom for the two Fermi
lines. φ refers to the field of photons. By use of the Hubbard-
Stratonovich transformation, one obtains both Lγ and LI from
the Coulomb interaction,

(�̄γ 0�)(−p)V (q)(�̄γ 0�)(p),

which describes both the inter- and the intra-Fermi line interac-
tions and satisfies the restriction given by the Fermi surface at

tree level. V (q) = e2/
√

q2
x + q2

y is the Fourier transformation

of a bare 2D Coulomb potential. Additionally, Lγ is actually

the nonrelativistic limit of the action − 1
4

∫
d4p

(2π)4 F
μνFμν in the

Feynman-’t Hooft gauge with Fμν being the electromagnetic
field strength tensor.

∫
dpz

2π
in Lγ comes from [42]

1

2
√

p2
x + p2

y

=
∫

dpz

2π

1

p2
x + p2

y + p2
z

, (9)

where we have set the speed of light c = 1 for simplicity. It
should be noted that when w̃ = 0, the Fermi surface at E± =
0 becomes a straight line and the Lagrangian for electrons
reduces to be

Le = �̄(p0γ
0 + γ 2vyp⊥)�, (10)

which is nothing but the famous Schwinger model for the
(1 + 1)D massless Dirac fermions [48]. Under this circum-
stance, the photon gains a finite mass due to the chiral
anomaly [49–51]. A finite photon mass usually leads to a strong
screening effect in the long-range Coulomb interaction. In fact,
the screening effect shall play a critical role in suppressing the
logarithmic divergence of Fermi velocity and stabilizing the
2D anisotropic type-II Dirac fermions.

III. THE SCREENING EFFECT FROM ANALYSIS OF
RANDOM PHASE APPROXIMATION

The finite DOS and the extended Fermi surface in the type-II
Weyl/Dirac semimetals remind us of the role of the screening
effect. By calculating the vacuum polarization diagram in
Fig. 2(b) (the detailed derivations are given in Appendix),
one finds

�00(p0, �p) = −i

∫
J tr(
0Ge0
0Ge0)

= 4e2

π

�2C−1(1 + w̃2η2)p2
⊥

(p0 + w2w̃2η4p⊥)2 − C−2p2
⊥

, (11)

where 
0 and Ge0 are the vertex and electron’s propagator,

respectively, and C = 1/
√

v2
y(w̃2η4 + 1). Several remarks on

195412-2
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FIG. 2. Relevant Feynman diagrams: (a)–(c) are the diagrams
without decoupling effect, whereas (d) and (e) are the corresponding
diagrams with decoupling effect.

�00(p0, �p) are in order here. First,

�00(0, �p) = 4e2

π

�2C−1(1 + w̃2η2)

w4w̃4η8 − C−2
(12)

is a momentum independent constant and relates to the
quadratic potential for photon mass. Second, a negative
quadratic potential usually indicates an instability of the
system [52]. In addition, in the limit of w̃ → 0, one finds

lim
w̃→0

�00(p0, �p)

2�2(w̃2η2 + 1)C = 2e2

πvy

v2
yp

2
⊥

p2
0 − v2

yp
2
⊥

, (13)

which is the same as the one of the Schwinger model that
is effectively induced by (1+1)D chiral anomaly [48,51]. In
the remainder of this paper, we shall focus on the case with
negative �00(0, �p).1

The extended Fermi surface makes the random phase
approximation (RPA) reasonable [39]. Following the standard
procedure, one finds the effective Coulomb potential within
the RPA:

Veff( �p) = V ( �p)/ε( �p), (14)

where the static dielectric function ε( �p) is given as

ε( �p) = 1 − V ( �p)�00(0, �p). (15)

According to ε( �p), for the long-range interaction with small
momentum p, the magnitude of dielectric function is much
larger than 1, which reduces the strength of the Coulomb
interaction. On the other hand, for the short-range interaction
with large momentum, the magnitude of the dielectric function
is almost 1, so the Coulomb interaction is almost not modified.
That is, the long-range interaction is screened due to the
extended Fermi surface, however the short-range one is not

1Under certain conditions, the static density-density response
function of type-II Dirac semimetals becomes positive, χnn > 0. The
corresponding electronic compressibility becomes negative and can
be detected experimentally [59].

screened. Since the renormalized effect upon the one-body op-
erator induced by the short-range interaction can be absorbed
by the chemical potential [39], the analysis above implies both
the Fermi velocities vx and vy , and the tilting parameter w are
intact under the screened Coulomb interaction.

IV. RENORMALIZATION GROUP ANALYSIS

Now we turn to consider the running effect of coupling
constants under the influence of the Coulomb interaction. We
employ the dimensional regularization and the modified mini-
mal subtraction (MS) scheme [52] to derive the corresponding
RG equations, with the help of Feynman’s rules obtained from
the Lagrangian in Eq. (8). The bare action is given as

Lbare = �̄
[
(Z�p0 − Zwww̃η2vyp⊥ − Zeeφ)γ 0

−Zw̃η2vy
w̃η2vyp⊥γ 1 + Zvy

vyp⊥γ 2
]
�, (16)

where Z’s are the renormalization coefficients. Because of the
U(1) symmetry, the Ward identity is valid, which implies the
relation Z� = Ze. The vacuum polarization diagram does not
diverge in Eq. (11), so no divergence is needed to be canceled
by Zφ . Thus its value is Zφ = 1. The relation between the bare
coupling constant e0 and the coupling constant e is given as

e0 = Z−1
� ZeZ

−1
φ e, (17)

which leads to e0 = e. It means that the coupling constant
e would not be renormalized. Then we use the dimensional
regularization to deal with the divergent one-loop self-energy
in Fig. 2(a) (see Appendix),

−i�(p) =
∫

J 
0Ge0
0Gγ 0, (18)

where the photon’s propagator Gγ 0 can be read directly
from the Lagrangian in Eq. (8). Note that we temporarily
ignore the screening effect stemming from finite DOS in the
photon’s propagator. There exists a natural momentum cutoff
� along the px direction, which characterizes the length
of Fermi lines and is irrelevant to the energy scale. Since
the procedure of renormalization is implemented upon the
momentum perpendicular to Fermi surface rather than the
parallel one, � plays no role in the renormalization.

By using the MS scheme, one can obtain the following RG
equations for the effective velocities and the tilting parameter.
The bare action is given as

L = �̄
[
(Z�p0 − Zwww̃η2vyp⊥)γ 0

−Zw̃η2vy
w̃η2vyp⊥γ 1 + Zvy

vyp⊥γ 2
]
�. (19)

By comparing the bare action with the renormalized one, one
gets a set of equations

�0 = Z
1/2
� �, (20)

vy0 = Zvy
Z−1

� vy, (21)

(w̃η2vy)0 = Zw̃η2vy
Z−1

� (w̃η2vy), (22)

w0 = ZwZ−1
w̃η2vy

Z−1
� w, (23)
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where Z� , Zw, Zw̃η2vy
, and Zvy

are given as

Z� = Zw = 1, (24)

Zw̃η2vy
= Zvy

= 1 − e2

8π2ε
F. (25)

After some standard derivations, one gets the corresponding
RG equations:

d ln vy

d ln κ
= d ln(w̃η2vy)

d ln κ
= −d ln w

d ln κ
= B, (26)

where κ is the renormalization scale, i.e., the larger κ , the
smaller the energy scale. The function B(w, vx, vy) is defined
by

B(w,vx,vy) = e2

4π2

√
1 + w̃2η2√

v2
y(1 + w̃2η4)

. (27)

From these RG equations in Eq. (26), one immediately
recognizes that t1 = ww̃η2vy , t2 = wvy and t3 = w̃η2 are
not renormalized, that is, independent of κ . w does run
with energy scale, which implies that both the tilting of the
cone and anisotropic ratio vy/vx would be renormalized.
The non-negative βvy

and βw̃ηvx
above imply a logarithmic

divergence of Fermi velocity, which is similar to graphene [53].
Recently, such a velocity enhancement has been experimen-
tally observed by Shubnikov–de Haas oscillations in graphene
[35,54] and by site-selective nuclear magnetic resonance in the
weakly tilted compound α-(BEDT-TTF)2I3 [47]. The negative
βw means that w is a decreasing function of length scale then
leads to a transition from type-II Dirac fermions to type-I ones.
It is consistent with the recent result in Ref. [43].

As shown above, a mass term for a photon is induced
by the chiral anomaly, m2

ph = −�00(0, �p). By setting small
external momentum (p⊥ � mph) and using the simplified
dressed photon propagator

Gγ = i

J (p2
‖ + p2

⊥) + p2
z + m2

ph

, (28)

it is straightforward to verify that the self-energy diagram
is proportional to ln(1 + C2/m2

ph), where C is the energy
cutoff. The reason Gγ is referred to as the simplified dressed
photon propagator is that, after integrating over pz, Gγ reduces
to be an approximation of the dressed photon propagator.
In the low-energy regime with C � mph, the divergent part
vanishes: −i� ∼ 0, which means that vx , vy , and w are barely
renormalized. There are two important consequences. First,
the logarithmic divergence of Fermi velocity is substantially
suppressed by the screening effect, which differs from the
mechanism in Ref. [43]. Second, 2D type-II anisotropic Dirac
fermions can be stabilized by the screening effect. It is the
key finding of this paper. It should be noted that the one-body
operators hardly receive quantum corrections from the dressed
Coulomb interaction, which coincides with our RPA analysis.

However, the aforementioned MS scheme is mass-
independent and does not see the mass thresholds. It is the mass
of photon in this case. This decoupling effect [see Figs. 2(d)
and 2(e)] is implemented by hand [55]: the heavy field (photon)
is present at an energy scale higher than the mass of a photon,

but it is integrated out at the low-energy scale, that is, the full
theory in Eq. (7) is valid for the whole energy scale, while the
effective field theoryLeff only holds for the low-energy region:

Leff = �̄[(a1p0 − a2ww̃η2vyp⊥)γ 0 − a3w̃η2vyp⊥γ 1

+ a4vyp⊥γ 2]� + e2b

m2
ph

(�̄�)2 + O
(
m−4

ph

)
, (29)

where the coefficients a1,2,3,4 and b are determined by
matching conditions [56]: at the energy scale mph, these two
theories in Eq. (7) with photon field and Leff without the
photon field should give rise to the same S-matrix elements for
light-particle scatterings. At the tree level, we have a1,2,3,4 = 1
and b = 1. Since the operators e2b(�̄�)2

/m2
ph + O(m−4

ph ) are
irrelevant, the corresponding RG equations for vx, vy, and w

equal to zero in the low-energy region. Although there exist
marginal channels with specific momentum exchange, their
effect on the one-body operator can be absorbed by the
chemical potential [39]. Furthermore, one-loop corrections
do not change the dimension of operator (�̄�)2, so this
operator remains irrelevant and the argument above is still
valid. Hence anisotropic type-II Dirac semimetals are stable
against Coulomb interaction. This anisotropy of the Dirac cone
can be accessed by a variety of experimental techniques, such
as electronic transport [57], magnetotransport [58], and nuclear
magnetic resonance [47].

V. CONCLUSIONS

In summary, there exists a phase transition from 2D type-II
Dirac fermions to the type-I ones under the unscreened
Coulomb interaction. Because of the interplay between the
nontrivial Fermi surface and the Coulomb interaction, the
logarithmic divergence of the Fermi velocity is suppressed
in this case. Additionally, the magnitude of the renormalized
tilting parameter w remains larger than 1, indicating that the
Fermi surface of 2D type-II anisotropic Dirac fermions is
stable against the Coulomb interaction. This anisotropy of
the tilted Weyl node can be detected by several experimental
techniques. The RG analysis here can be straightforwardly
transplanted to the 3D type-II Weyl semimetals.
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APPENDIX: SELF-ENERGY AND VACUUM
POLARIZATION

For simplicity, we first transform the Lagrangian into the
following form:

Le = �̄[(p0 − ww̃η2vyp⊥)γ 0 + rp⊥γ 1]�, (A1)

with

r =
√

v2
y(w̃2η4 + 1).
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The fermion’s Green’s function and the photon’s Green’s
function are of the form

Ge0 = i

p0γ 0 − ww̃η2γ 0 + rp⊥γ 1
, (A2)

Gγ 0 = i

(1 + w̃2η2)(p2
‖ + p2

⊥) + p2
3

. (A3)

And the corresponding one-loop self-energy reads

−i� = J

∫
d4q

(2π )4
(−ieγ 0)Ge0(q0,q⊥)(−ieγ 0)

×Gγ 0(q‖,q⊥ + p⊥,q3). (A4)

Making use of the Feynman parametrization

1

AB
=

∫ 1

0

dx

[xA + (1 − x)B]2
, (A5)

one rewrites the self-energy as follows:

− i� = −e2J

∫ 1

0
dx(x2(1 − x)α2K)−1/2

×
∫

d4l

(2π )4

l0γ
0/

√
1−x+r(l1/

√
K−xα2p⊥/K)γ 1

(
l2
0−l2

1−l2
2 − l2

3−	2
)2 ,

(A6)

where lμ with μ = 0,1,2,3 are given as

l2
0 = (1 − x)(q0 + nq⊥)2,

l2
1 = K

(
q⊥ + xα2

K
p⊥

)2

,

l2
2 = xα2q2

‖ l
2
3 , (A7)

l3 = xq2
3 ,

	 = α2p2
⊥x(1 − K−1α2x),

with

K = (1 − x)r2 + xα2,

α =
√

1 + w̃2η2,

n = −ww̃η2vy.

Since the denominator in the integrand in Eq. (A6) is an even
function of lμ with μ = 0,1,2,3, the terms odd in lμ in the
numerator make no contribution to the integral. We then make
a Wick’s rotation and perform integration over lμ by using the

dimensional regularization∫
ddk

(2π )d
1

(k2 + 	)m
= 
(m − d/2)

(4π )d/2	m−d/2
(m)
, (A8)

and we finally reach the self-energy

−i� = ie2

16π2
F (w,vx,vy)(rp⊥γ 1)

×


(
ε

2

)(
1

	
)ε/2

, (A9)

where the function F (w,vx,vy) is defined as

F (w,vx,vy) = 2
√

1 + w̃2η2/

√
v2

y(w̃2η4 + 1). (A10)

Carrying out a inverse transformation leads us to

− i� = ie2

16π2
F (w,vx,vy)(−w̃η2γ 1 + γ 2)

× vyp⊥


(
ε

2

)(
1

	
)ε/2

. (A11)

In the limit of ε → 0, one finds




(
ε

2

)
= 2

ε
− γ + O(ε2),

and (
1

	
)ε/2

= 1 − ε

2
ln 	 + O(ε2).

Thus the divergent part of self-energy −i� becomes

− i� → ie2p⊥
8π2ε

F (w,vx,vy)vy(−w̃η2γ 1 + γ 2). (A12)

The vacuum polarization diagram can be evaluated in a similar
manner:

i�00 = −J

∫
d4q

(2π )2
tr[(−ieγ 0)Ge(q0,q⊥)

× (−ieγ 0)Ge(q0 + p0,q⊥ + p⊥)]

= −iJ e2

π
√

r2

[
(p0 + np⊥)2 + r2p2

⊥
(p0 + np⊥)2 − r2p2

⊥
− 1

]
�2, (A13)

where � is the cutoff along the q3 direction and

A =
∫

d2l

(2π )2

l2
0 + l2

1(
l2
0 − l2

1 − 	)
2

= − i

4π
.

Note that we have used Feynman parametrization in the second
step and carried out Wick’s rotation in the last step.

[1] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys.
Rev. B 83, 205101 (2011).

[2] H. Weng, X. Dai, and Z. Fang, J. Phys.: Condens. Matter 28,
303001 (2016).

[3] D. Xiao, M. C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959
(2010).

[4] G. E. Volovik, The Universe in a Helium Droplet (Clarendon
Press, Oxford, UK, 2003).

[5] H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389
(1983).

[6] V. Aji, Phys. Rev. B 85, 241101 (2012).
[7] Z. Wang and S. C. Zhang, Phys. Rev. B 87, 161107 (2013).
[8] C.-X. Liu, P. Ye, and X.-L. Qi, Phys. Rev. B 87, 235306 (2013).
[9] P. Goswami and S. Tewari, Phys. Rev. B 88, 245107 (2013).

[10] S. A. Parameswaran, T. Grover, D. A. Abanin, D. A. Pesin, and
A. Vishwanath, Phys. Rev. X 4, 031035 (2014).

195412-5

https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1088/0953-8984/28/30/303001
https://doi.org/10.1088/0953-8984/28/30/303001
https://doi.org/10.1088/0953-8984/28/30/303001
https://doi.org/10.1088/0953-8984/28/30/303001
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1103/PhysRevB.85.241101
https://doi.org/10.1103/PhysRevB.85.241101
https://doi.org/10.1103/PhysRevB.85.241101
https://doi.org/10.1103/PhysRevB.85.241101
https://doi.org/10.1103/PhysRevB.87.161107
https://doi.org/10.1103/PhysRevB.87.161107
https://doi.org/10.1103/PhysRevB.87.161107
https://doi.org/10.1103/PhysRevB.87.161107
https://doi.org/10.1103/PhysRevB.87.235306
https://doi.org/10.1103/PhysRevB.87.235306
https://doi.org/10.1103/PhysRevB.87.235306
https://doi.org/10.1103/PhysRevB.87.235306
https://doi.org/10.1103/PhysRevB.88.245107
https://doi.org/10.1103/PhysRevB.88.245107
https://doi.org/10.1103/PhysRevB.88.245107
https://doi.org/10.1103/PhysRevB.88.245107
https://doi.org/10.1103/PhysRevX.4.031035
https://doi.org/10.1103/PhysRevX.4.031035
https://doi.org/10.1103/PhysRevX.4.031035
https://doi.org/10.1103/PhysRevX.4.031035


ZE-MIN HUANG, JIANHUI ZHOU, AND SHUN-QING SHEN PHYSICAL REVIEW B 95, 195412 (2017)

[11] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev.
D 78, 074033 (2008).

[12] A. G. Grushin, Phys. Rev. D 86, 045001 (2012).
[13] A. A. Zyuzin and A. A. Burkov, Phys. Rev. B 86, 115133 (2012).
[14] J. Zhou, H. Jiang, Q. Niu, and J. Shi, Chin. Phys. Lett. 30, 27101

(2013).
[15] M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 027201

(2013).
[16] M.-C. Chang and M.-F. Yang, Phys. Rev. B 91, 115203 (2015).
[17] J. Ma and D. A. Pesin, Phys. Rev. B 92, 235205 (2015).
[18] S. Zhong, J. E. Moore, and I. Souza, Phys. Rev. Lett. 116, 077201

(2016).
[19] D. T. Son and B. Z. Spivak, Phys. Rev. B 88, 104412 (2013).
[20] E. V. Gorbar, V. A. Miransky, and I. A. Shovkovy, Phys. Rev. B

89, 085126 (2014).
[21] A. A. Burkov, Phys. Rev. Lett. 113, 247203 (2014).
[22] H.-Z. Lu, S.-B. Zhang, and S.-Q. Shen, Phys. Rev. B 92, 045203

(2015).
[23] A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X.

Dai, and B. A. Bernevig, Nature (London) 527, 495 (2015).
[24] Y. Sun, S.-C. Wu, M. N. Ali, C. Felser, and B. Yan, Phys. Rev.

B 92, 161107 (2015).
[25] K. Koepernik, D. Kasinathan, D. V. Efremov, S. Khim, S.

Borisenko, B. Büchner, and J. van den Brink, Phys. Rev. B
93, 201101 (2016).

[26] G. Autès, D. Gresch, M. Troyer, A. A. Soluyanov, and O. V.
Yazyev, Phys. Rev. Lett. 117, 066402 (2016).

[27] M. O. Goerbig, J.-N. Fuchs, G. Montambaux, and F. Piéchon,
Phys. Rev. B 78, 045415 (2008).

[28] L. Huang, T. M. McCormick, M. Ochi, Z. Zhao, M.-T. Suzuki,
R. Arita, Y. Wu, D. Mou, H. Cao, J. Yan, N. Trivedi, and A.
Kaminski, Nat. Mater. 15, 1155 (2016).

[29] S.-Y. Xu, N. Alidoust, G. Chang, H. Lu, B. Singh, I.
Belopolski, D. Sanchez, X. Zhang, G. Bian, H. Zheng et al.,
arXiv:1603.07318 [cond-mat.mes-hall].

[30] C. Wang, Y. Zhang, J. Huang, S. Nie, G. Liu, A. Liang, Y. Zhang,
B. Shen, J. Liu, C. Hu, Y. Ding, D. Liu, Y. Hu, S. He, L. Zhao,
L. Yu, J. Hu, J. Wei, Z. Mao, Y. Shi, X. Jia, F. Zhang, S. Zhang,
F. Yang, Z. Wang, Q. Peng, H. Weng, X. Dai, Z. Fang, Z. Xu,
C. Chen, and X. J. Zhou, Phys. Rev. B 94, 241119 (2016).

[31] Z.-M. Yu, Y. Yao, and S. A. Yang, Phys. Rev. Lett. 117, 077202
(2016).

[32] S. Tchoumakov, M. Civelli, and M. O. Goerbig, Phys. Rev. Lett.
117, 086402 (2016).

[33] M. Udagawa and E. J. Bergholtz, Phys. Rev. Lett. 117, 086401
(2016).

[34] T. E. O’Brien, M. Diez, and C. W. J. Beenakker, Phys. Rev. Lett.
116, 236401 (2016).

[35] V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H.
Castro Neto, Rev. Mod. Phys. 84, 1067 (2012).

[36] A. A. Abrikosov and S. D. Beneslavskii, Zh. Eksp. Teor. Fiz.
59, 1280 (1971) [JETP 32, 699 (1971)].

[37] J. Zhou, H.-R. Chang, and D. Xiao, Phys. Rev. B 91, 035114
(2015).

[38] J. Hofmann and S. Das Sarma, Phys. Rev. B 91, 241108 (2015).
[39] R. Shankar, Rev. Mod. Phys. 66, 129 (1994).
[40] J. Polchinski, arXiv:hep-th/9210046.
[41] J. González, F. Guinea, and M. A. H. Vozmediano, Phys. Rev.

B 59, R2474 (1999).
[42] D. T. Son, Phys. Rev. B 75, 235423 (2007).
[43] H. Isobe and N. Nagaosa, Phys. Rev. Lett. 116, 116803 (2016).
[44] H. Isobe and N. Nagaosa, J. Phys. Soc. Jpn. 81, 113704 (2012).
[45] K. Bender, I. Hennig, D. Schweitzer, K. Dietz, H. Endres, and

H. J. Keller, Mol. Cryst. Liq. Cryst. 108, 359 (1984).
[46] S. Katayama, A. Kobayashi, and Y. Suzumura, J. Phys. Soc. Jpn.

75, 054705 (2006).
[47] M. Hirata, K. Ishikawa, K. Miyagawa, M. Tamura, C. Berthier,

D. Basko, A. Kobayashi, G. Matsuno, and K. Kanoda, Nat.
Commun. 7, 12666 (2016).

[48] J. Schwinger, Phys. Rev. 128, 2425 (1962).
[49] S. L. Adler, Phys. Rev. 177, 2426 (1969).
[50] J. S. Bell and R. Jackiw, Il Nuovo Cimento A 60, 47 (1969).
[51] R. Roskies and F. Schaposnik, Phys. Rev. D 23, 558 (1981).
[52] M. Srednicki, Quantum Field Theory (Cambridge University

Press, Cambridge, 2007).
[53] J. González, F. Guinea, and M. Vozmediano, Nucl. Phys. B 424,

595 (1994).
[54] D. Elias, R. Gorbachev, A. Mayorov, S. Morozov, A. Zhukov, P.

Blake, L. Ponomarenko, I. Grigorieva, K. Novoselov, F. Guinea
et al., Nat. Phys. 7, 701 (2011).

[55] T. Appelquist and J. Carazzone, Phys. Rev. D 11, 2856 (1975).
[56] A. Pich, arXiv:hep-ph/9806303.
[57] N. Tajima and K. Kajita, Sci. Technol. Adv. Mater. 10, 024308

(2009).
[58] T. Morinari, T. Himura, and T. Tohyama, J. Phys. Soc. Jpn. 78,

023704 (2009).
[59] J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett.

68, 674 (1992).

195412-6

https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.86.045001
https://doi.org/10.1103/PhysRevD.86.045001
https://doi.org/10.1103/PhysRevD.86.045001
https://doi.org/10.1103/PhysRevD.86.045001
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1088/0256-307X/30/2/027101
https://doi.org/10.1088/0256-307X/30/2/027101
https://doi.org/10.1088/0256-307X/30/2/027101
https://doi.org/10.1088/0256-307X/30/2/027101
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevB.91.115203
https://doi.org/10.1103/PhysRevB.91.115203
https://doi.org/10.1103/PhysRevB.91.115203
https://doi.org/10.1103/PhysRevB.91.115203
https://doi.org/10.1103/PhysRevB.92.235205
https://doi.org/10.1103/PhysRevB.92.235205
https://doi.org/10.1103/PhysRevB.92.235205
https://doi.org/10.1103/PhysRevB.92.235205
https://doi.org/10.1103/PhysRevLett.116.077201
https://doi.org/10.1103/PhysRevLett.116.077201
https://doi.org/10.1103/PhysRevLett.116.077201
https://doi.org/10.1103/PhysRevLett.116.077201
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevB.89.085126
https://doi.org/10.1103/PhysRevB.89.085126
https://doi.org/10.1103/PhysRevB.89.085126
https://doi.org/10.1103/PhysRevB.89.085126
https://doi.org/10.1103/PhysRevLett.113.247203
https://doi.org/10.1103/PhysRevLett.113.247203
https://doi.org/10.1103/PhysRevLett.113.247203
https://doi.org/10.1103/PhysRevLett.113.247203
https://doi.org/10.1103/PhysRevB.92.045203
https://doi.org/10.1103/PhysRevB.92.045203
https://doi.org/10.1103/PhysRevB.92.045203
https://doi.org/10.1103/PhysRevB.92.045203
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1103/PhysRevB.92.161107
https://doi.org/10.1103/PhysRevB.92.161107
https://doi.org/10.1103/PhysRevB.92.161107
https://doi.org/10.1103/PhysRevB.92.161107
https://doi.org/10.1103/PhysRevB.93.201101
https://doi.org/10.1103/PhysRevB.93.201101
https://doi.org/10.1103/PhysRevB.93.201101
https://doi.org/10.1103/PhysRevB.93.201101
https://doi.org/10.1103/PhysRevLett.117.066402
https://doi.org/10.1103/PhysRevLett.117.066402
https://doi.org/10.1103/PhysRevLett.117.066402
https://doi.org/10.1103/PhysRevLett.117.066402
https://doi.org/10.1103/PhysRevB.78.045415
https://doi.org/10.1103/PhysRevB.78.045415
https://doi.org/10.1103/PhysRevB.78.045415
https://doi.org/10.1103/PhysRevB.78.045415
https://doi.org/10.1038/nmat4685
https://doi.org/10.1038/nmat4685
https://doi.org/10.1038/nmat4685
https://doi.org/10.1038/nmat4685
http://arxiv.org/abs/arXiv:1603.07318
https://doi.org/10.1103/PhysRevB.94.241119
https://doi.org/10.1103/PhysRevB.94.241119
https://doi.org/10.1103/PhysRevB.94.241119
https://doi.org/10.1103/PhysRevB.94.241119
https://doi.org/10.1103/PhysRevLett.117.077202
https://doi.org/10.1103/PhysRevLett.117.077202
https://doi.org/10.1103/PhysRevLett.117.077202
https://doi.org/10.1103/PhysRevLett.117.077202
https://doi.org/10.1103/PhysRevLett.117.086402
https://doi.org/10.1103/PhysRevLett.117.086402
https://doi.org/10.1103/PhysRevLett.117.086402
https://doi.org/10.1103/PhysRevLett.117.086402
https://doi.org/10.1103/PhysRevLett.117.086401
https://doi.org/10.1103/PhysRevLett.117.086401
https://doi.org/10.1103/PhysRevLett.117.086401
https://doi.org/10.1103/PhysRevLett.117.086401
https://doi.org/10.1103/PhysRevLett.116.236401
https://doi.org/10.1103/PhysRevLett.116.236401
https://doi.org/10.1103/PhysRevLett.116.236401
https://doi.org/10.1103/PhysRevLett.116.236401
https://doi.org/10.1103/RevModPhys.84.1067
https://doi.org/10.1103/RevModPhys.84.1067
https://doi.org/10.1103/RevModPhys.84.1067
https://doi.org/10.1103/RevModPhys.84.1067
https://doi.org/10.1103/PhysRevB.91.035114
https://doi.org/10.1103/PhysRevB.91.035114
https://doi.org/10.1103/PhysRevB.91.035114
https://doi.org/10.1103/PhysRevB.91.035114
https://doi.org/10.1103/PhysRevB.91.241108
https://doi.org/10.1103/PhysRevB.91.241108
https://doi.org/10.1103/PhysRevB.91.241108
https://doi.org/10.1103/PhysRevB.91.241108
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1103/RevModPhys.66.129
http://arxiv.org/abs/arXiv:hep-th/9210046
https://doi.org/10.1103/PhysRevB.59.R2474
https://doi.org/10.1103/PhysRevB.59.R2474
https://doi.org/10.1103/PhysRevB.59.R2474
https://doi.org/10.1103/PhysRevB.59.R2474
https://doi.org/10.1103/PhysRevB.75.235423
https://doi.org/10.1103/PhysRevB.75.235423
https://doi.org/10.1103/PhysRevB.75.235423
https://doi.org/10.1103/PhysRevB.75.235423
https://doi.org/10.1103/PhysRevLett.116.116803
https://doi.org/10.1103/PhysRevLett.116.116803
https://doi.org/10.1103/PhysRevLett.116.116803
https://doi.org/10.1103/PhysRevLett.116.116803
https://doi.org/10.1143/JPSJ.81.113704
https://doi.org/10.1143/JPSJ.81.113704
https://doi.org/10.1143/JPSJ.81.113704
https://doi.org/10.1143/JPSJ.81.113704
https://doi.org/10.1080/00268948408078687
https://doi.org/10.1080/00268948408078687
https://doi.org/10.1080/00268948408078687
https://doi.org/10.1080/00268948408078687
https://doi.org/10.1143/JPSJ.75.054705
https://doi.org/10.1143/JPSJ.75.054705
https://doi.org/10.1143/JPSJ.75.054705
https://doi.org/10.1143/JPSJ.75.054705
https://doi.org/10.1038/ncomms12666
https://doi.org/10.1038/ncomms12666
https://doi.org/10.1038/ncomms12666
https://doi.org/10.1038/ncomms12666
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1007/BF02823296
https://doi.org/10.1007/BF02823296
https://doi.org/10.1007/BF02823296
https://doi.org/10.1103/PhysRevD.23.558
https://doi.org/10.1103/PhysRevD.23.558
https://doi.org/10.1103/PhysRevD.23.558
https://doi.org/10.1103/PhysRevD.23.558
https://doi.org/10.1016/0550-3213(94)90410-3
https://doi.org/10.1016/0550-3213(94)90410-3
https://doi.org/10.1016/0550-3213(94)90410-3
https://doi.org/10.1016/0550-3213(94)90410-3
https://doi.org/10.1038/nphys2049
https://doi.org/10.1038/nphys2049
https://doi.org/10.1038/nphys2049
https://doi.org/10.1038/nphys2049
https://doi.org/10.1103/PhysRevD.11.2856
https://doi.org/10.1103/PhysRevD.11.2856
https://doi.org/10.1103/PhysRevD.11.2856
https://doi.org/10.1103/PhysRevD.11.2856
http://arxiv.org/abs/arXiv:hep-ph/9806303
https://doi.org/10.1088/1468-6996/10/2/024308
https://doi.org/10.1088/1468-6996/10/2/024308
https://doi.org/10.1088/1468-6996/10/2/024308
https://doi.org/10.1088/1468-6996/10/2/024308
https://doi.org/10.1143/JPSJ.78.023704
https://doi.org/10.1143/JPSJ.78.023704
https://doi.org/10.1143/JPSJ.78.023704
https://doi.org/10.1143/JPSJ.78.023704
https://doi.org/10.1103/PhysRevLett.68.674
https://doi.org/10.1103/PhysRevLett.68.674
https://doi.org/10.1103/PhysRevLett.68.674
https://doi.org/10.1103/PhysRevLett.68.674



