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Abstract: Radix salviae miltiorrhizae (Danshen in Chinese), a classic traditional Chinese medicine
(TCM) herb, has been used for centuries to treat liver diseases. In this study, the preventive and
curative potential of Danshen aqueous extract on acute/chronic alcoholic liver disease (ALD) and
non-alcoholic fatty liver disease (NAFLD) was studied. The in vivo results indicated that Danshen
could alleviate hepatic inflammation, fatty degeneration, and haptic fibrogenesis in ALD and NAFLD
models. In the aspect of mechanism of action, the significant reduction in MDA levels in both
ALD and NAFLD models implies the decreased levels of oxidative stress by Danshen. However,
Danshen treatment could not activate the internal enzymatic antioxidant system in ALD and
NAFLD models. To further explore the hepatoprotective mechanism of Danshen, an in silico-based
network pharmacology approach was employed in the present study. The pharmacological network
analysis result revealed that six potential active ingredients such as tanshinone iia, salvianolic acid
b, and Danshensu may contribute to the hepatoprotective effects of Danshen on ALD and NAFLD.
The action mechanism may relate with regulating the intracellular molecular targets such as PPARα,
CYP1A2, and MMP2 for regulation of lipid metabolism, antioxidant and anti-fibrogenesis by these
potential active ingredients. Our studies suggest that the combination of network pharmacology
strategy with in vivo experimental study may provide a forceful tool for exploring the mechanism of
action of traditional Chinese medicine (TCM) herb and developing novel bioactive ingredients.
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1. Introduction

Liver disease is one of the most serious health problems worldwide, affecting more than 10% of
the world population [1,2]. Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD)
are two common types of liver diseases that represent a major health burden in industrialized countries.
ALD is caused by excessive alcohol consumption whereas NAFLD is related with obesity and metabolic
disorders, although nonalcoholic steatohepatitis (NASH) has been reported in lean individuals [3].
Both ALD and NAFLD may progress into fibrosis, cirrhosis, and eventually hepatocellular carcinoma
as a result of severe and prolonged liver damage [4]. The effect of current synthetic agents in treating
ALD and NAFLD is not satisfactory and most of them have undesirable side effects [5]. Thereby,
the development of novel agents that can improve the efficacy of ALD and NAFLD prevention and
treatment is urgently needed. In recent years, numerous medicinal herbs and phytochemicals have
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been investigated as complementary and alternative treatments for liver diseases including ALD and
NAFLD [2]. However, scientific validation of these herbal medicines’ efficacy is needed.

Danshen is the root part of Salvia miltiorrhiza Bunge. According to the TCM theory, Danshen
can unblock meridians, dispel stasis and promote regeneration without damaging healthy “Qi”.
It is widely indicated for liver disorders caused by blood stasis accumulation and obstruction [6].
The hepatoprotective effects of Danshen have been proved by several clinical trials in NAFLD and
hepatocarcinoma patients in recent years [7,8]. Furthermore, modern pharmacological studies also
revealed the hepatoprotective effect of Danshen and its active ingredients for liver diseases in vitro
and in vivo. For example, the total extracts of Danshen and its components such as tanshinol A,
tanshinone I, tanshinone II A, dihydrotanshinono I, neotanshinone A, cryptanshinono, salvianolic
acid A and salvianolic acid B were found to exhibit hepatoprotective effects in various hepatic cell
lines and animal models against viral hepatitis, paracetamol-induced hepatitis, hepatic fibrosis and
hepatocarcinoma [9–13]. Although Danshen has shown potential hepatoprotective effects in several
hepatic dysfunctions models, systematical research on its therapeutic effect and the underlying
mechanisms on ALD and NAFLD are still limited. Plenty of studies have shown that oxidative
stress plays an important role in mediating the pathogenesis of various liver diseases including
ALD and NAFLD. Oxidative stress in the liver could induce lipid peroxidation and subsequently
results in death of hepatocyte [14,15]. Nature has evolved multiple layers of antioxidant defense
in the liver. Small molecular antioxidants such as vitamins E and C offer the first line of defense to
scavenge reactive oxygen/nitrogen species (ROS/RNS) directly and thus prevent or delay the initiation
of various oxidative stresses. Besides this defense layer, antioxidant enzymes also serve as a major
defense to detoxify ROS/RNS into less reactive species. Substantial evidence have shown that Danshen
extracts could suppress oxidative stress by increasing the activity of superoxide dismutase (SOD),
glutathione peroxidase (GSH-Px) and catalase (CAT) as well as reducing reactive oxygen species (ROS)
and malondialdehyde (MDA) levels in mice diabetic renal tissue and rat paracetamol-induced liver
injury [16–18]. Thus, the aim of the present study was to investigate the potential antioxidant effects of
Danshen extract on ALD and NAFLD and explore the underlying mechanisms.

Over the past few decades, there has been a significant decline in the rate of novel phytochemicals
translated into effective drugs. Currently, the most important problem for novel drugs development is
a lack of therapeutic efficacy in clinical trials, which account for 33% of failures [19]. Thus, to maximize
drug efficacy in pharmaceutical development, network pharmacology has been recently introduced
to analyze the biological network of drug candidates in order to design a poly-target drug molecule.
Network pharmacology is a developing field based in systems pharmacology that looks at the effect of
drugs on both interactome and diseasome [20]. The drug-target network plays an important role in
understanding the mechanisms of action of approved and experimental drugs. In recent years, network
pharmacology has attracted much attention in the field of revealing the molecular mechanisms of
TCM herbs for complicated diseases. Zhang et al. explored an integrative platform of TCM network
pharmacology and its application on a herbal formula [21]. Li et al. also determined active compounds
and action mechanisms of Ge-Gen-Qin-Lian decoction for treatment of type 2 diabetes by using
network pharmacology method [22]. Many active chemical compositions of TCM target multiple
proteins in the biological network of human diseases. Molecular docking and text mining assays are
available for modeling interactions between small molecules and proteins [23,24]. Thus, research into
TCM based on network pharmacology, which is a holistic understanding of the molecular mechanisms
responsible for the pharmacological effects of herbal medicines, is well worth undertaking.

In the present research, we hypothesized that Danshen may exhibit both preventive and
curative effects against alcoholic and non-alcoholic hepatic injuries via relieving oxidative stress.
We investigated the biological effects of Danshen on acute/chronic ALD and NAFLD mice models.
Then, we utilized computational tools and resources to develop the pharmacological network of
Danshen for predicting the potential active ingredients and intracellular molecular targets. The in
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silico method combined with in vivo studies in this research may decipher the mystery of Danshen
and promote TCM-based drug discovery.

2. Results

2.1. The Hepatoprotective Effect of Danshen on Acute ALD

Treatment with Danshen can decrease the liver weight to body weight ratio. Compared with
the control group, alcohol administration slightly reduced body weight in mice, while Danshen
treatment had no significant effect on body weight (Figure 1A,B). Alcohol administration exacerbated
the development of liver injury in mice, as indicated by augmented liver weight to body weight
ratio and increased serum AST and ALT levels. Significantly decreased ALT and AST levels were
detected in acute ALD mice after Danshen treatment (Figure 1C,D). Mice liver morphology also
appeared normal, accompanied with lower liver damage scoring in the Danshen treatment group.
This further postulated that the liver histology results were consistent with the liver function test
(Figure 2). The biochemical results showed that Danshen could increase hepatic SOD level, but had no
significant influence on hepatic level of CAT or GSH-Px (Figure 1E–H). Our results also showed that
administration of alcohol to mice markedly increased MDA levels compared with the normal control
group. This result indicates that peroxidation progress of hepatic lipid occurred rapidly after formation
of fatty liver by acute alcohol consumption. When mice were orally administered with 0.28 g/kg
Danshen, the levels of MDA in hepatic tissues were significantly (p < 0.05) reduced by up to 31.6% of
ethanol control group. These results indicate that Danshen can protect against the alcohol-induced
hepatic lipid peroxidation process.
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(0.093 g/kg); DS-M for middle dose of Danshen treatment group (0.28 g/kg); DS-H for high dose of 
Danshen treatment group (0.84 g/kg). # p < 0.05, when compared with normal group; * p < 0.05, ** p < 
0.01, *** p < 0.001 when compared with model group). 
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(A) The normal group had a clear structure of the hepatic lobule, and there were no visible lesions; 
(B) In the model group, typical pathological characteristics such as inflammatory infiltration (arrows) 
can be detected; (C–E) Treatment with Danshen (0.093, 0.28, 0.84 g/kg) at 0.2 mL for nine days 
attenuated the inflammation in the liver; (F) Scoring of liver histology of acute ALD mice with 
Danshen treatment (Mean ± SD). DS-L for low dose of Danshen treatment group (0.093 g/kg); DS-M 
for middle dose of Danshen treatment group (0.28 g/kg); DS-H for high dose of Danshen treatment 
group (0.84 g/kg). # p < 0.05, compared with normal group * p < 0.05 when compared with model 
group. 
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of the mice under our experimental conditions as well as the liver weight to body weight ratio. 
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Figure 1. Liver weight to body weight ratio, body weight measurement, and biochemical assays
results after Danshen treatment in acute ALD. (A,B) The liver weight-to-body weight radio and body
weight changes; (C) serum ALT level; (D) serum AST level; (E–H) the production of MDA and the
activity of SOD, CAT, and GSH-Px in liver tissues. DS-L for low dose of Danshen treatment group
(0.093 g/kg); DS-M for middle dose of Danshen treatment group (0.28 g/kg); DS-H for high dose
of Danshen treatment group (0.84 g/kg). # p < 0.05, when compared with normal group; * p < 0.05,
** p < 0.01, *** p < 0.001 when compared with model group).
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Figure 2. H&E staining results after Danshen treatment in acute ALD (original magnification 100×).
(A) The normal group had a clear structure of the hepatic lobule, and there were no visible lesions; (B) In
the model group, typical pathological characteristics such as inflammatory infiltration (arrows) can be
detected; (C–E) Treatment with Danshen (0.093, 0.28, 0.84 g/kg) at 0.2 mL for nine days attenuated the
inflammation in the liver; (F) Scoring of liver histology of acute ALD mice with Danshen treatment
(Mean ± SD). DS-L for low dose of Danshen treatment group (0.093 g/kg); DS-M for middle dose of
Danshen treatment group (0.28 g/kg); DS-H for high dose of Danshen treatment group (0.84 g/kg).
# p < 0.05, compared with normal group * p < 0.05 when compared with model group.

2.2. The Hepatoprotective Effect of Danshen on Chronic ALD

Chronic alcohol consumption did not produce any significant (p < 0.05) changes in body weights
of the mice under our experimental conditions as well as the liver weight to body weight ratio. Reduced
serum AST and ALT levels after Danshen treatment indicated that Danshen dose-dependently reduced
liver injury induced by chronic alcohol consumption (Figure 3). Histological analysis was conducted.
As shown in Figure 4A, the hepatocytes and plate from hepatic tissue sample of the normal control



Int. J. Mol. Sci. 2017, 18, 620 5 of 18

group have intact structure, and the boundary between hepatocytes is clear. Insides of cellular
structures are clean without impurities and droplets. However, the hepatocytes of chronic ALD model
showed the infiltration of lymphocytes and vacuolar degenerations (Figure 4B). Co-administration of
Danshen attenuated the above histopathological changes. Scoring on liver damage gave conclusions
consistent with the serum AST and ALT test. Hepatic MDA level was significantly reduced in mice
treated with Danshen. Hepatic level of SOD was increased after Danshen treatment, but no significant
change in the hepatic level of CAT or GSH-Px was detected (Figure 3).
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Figure 3. Biochemical assays results of Danshen treatment on chronic ALD (original magnification
100×). (A) Serum ALT level; (B) serum AST level; (C–H) the production of MDA and the activity of
SOD, CAT, and GSH-Px in liver tissues. DS-L for low dose of Danshen treatment group (0.093 g/kg);
DS-M for middle dose of Danshen treatment group (0.28 g/kg); DS-H for high dose of Danshen
treatment group (0.84 g/kg). Compared with the normal group, # p < 0.05; compared with model
group, * p < 0.05, ** p < 0.01 and *** p < 0.001.
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revealed a more pronounced development of fibrosis in livers of the model group mice, compared to 
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Figure 4. H&E staining results after Danshen treatment in chronic ALD (original magnification 100×).
Treatment with Danshen for six weeks attenuated the inflammation and macrovacuolar degeneration
in chronic ALD mice mode. (A) The normal group had a clear structure of the hepatic lobule, and there
were no visible lesions; (B) In the model group, typical pathological characteristics such as inflammatory
infiltration (black arrow) and microvacuolar degeneration can be observed; (C–E) Treatment with
Danshen (0.093, 0.28, 0.84 g/kg) significantly attenuated the inflammation and vacuolar degeneration
in the liver; (F) Scoring of liver histology of chronic ALD mice with Danshen treatment (Mean ± SD).
DS-L for low dose of Danshen treatment group (0.093 g/kg); DS-M for middle dose of Danshen
treatment group (0.28 g/kg); DS-H for high dose of Danshen treatment group (0.84 g/kg). # p < 0.05,
compared with normal group * p < 0.05 when compared with model group.

2.3. The Hepatoprotective Effect of Danshen on NAFLD

Treatment of Danshen could significantly reduce the AST level in a dose-dependent manner, and
also slightly reduce the ALT level (Figure 5). Although AST is a more specific and sensitive indicator
for liver damage in NAFLD [25,26], the results still indicate the effect of Danshen in alleviating
NAFLD-induced liver damage. The H&E staining exhibited visible intracellular vacuolization that
marked lipid accumulation and obvious inflammatory infiltration in the model group. However,
the Danshen-treated group showed decreased levels of accumulated lipid droplets and inflammatory
infiltrates. Histological scoring results showed consistent with the conclusion of serum ALT and AST
levels (Figure 6). Hepatic MDA level was dose-dependently reduced while GSH-Px level was increased
in mice treated with Danshen. However, a minimal effect on hepatic SOD and CAT activity could be
detected after Danshen treatment (Figure 5). In addition, the PSR staining revealed a more pronounced
development of fibrosis in livers of the model group mice, compared to mice that received Danshen
(Figure 7).
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Figure 5. Biochemical results of Danshen treatment on mice model of NAFLD. (A) Serum ALT level;
(B) serum AST level; (C–H) the production of MDA and the activity of SOD, CAT, and GSH-Px in liver
tissues. DS-L for low dose of Danshen treatment group (0.093 g/kg); DS-M for middle dose of Danshen
treatment group (0.28 g/kg); DS-H for high dose of Danshen treatment group (0.84 g/kg). Compared
with Normal group, # p < 0.05; compared with model group, * p < 0.05, ** p < 0.01 and *** p < 0.001.
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Figure 6. H&E staining results after Danshen treatment in NAFLD (original magnification 100×).
Treatment with Danshen for six weeks attenuated the inflammation and macrovacuolar degeneration
in NAFLD. (A) The normal group had a clear structure of the hepatic lobule, and there were no visible
lesions; (B) In the model group, typical pathological characteristics such as inflammatory infiltration
(black arrow) and macrovacuolar degeneration can be observed; (C–E) Treatment with Danshen
(0.093, 0.28, 0.84 g/kg) for six weeks significantly attenuated the inflammation and macrovacuolar
degeneration in the liver; (F) Scoring of liver histology of NAFLD mice with Danshen treatment
(Mean ± SD). DS-L for low dose of Danshen treatment group (0.093 g/kg); DS-M for middle dose of
Danshen treatment group (0.28 g/kg); DS-H for high dose of Danshen treatment group (0.84 g/kg).
# p < 0.05, compared with normal group * p < 0.05 when compared with model group.
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Figure 7. Picrosirius red staining results after Danshen treatment in NAFLD (original magnification
100×). Treatment with Danshen attenuated the collagen deposition in NAFLD. (A) The normal group
showed little collagen deposition within hepatocytes; (B) in the model group, PSR staining showed
significant collagen deposition level within hepatocytes; (C–E) treatment with Danshen (0.093, 0.28,
0.84 g/kg) for six weeks significantly reduced collagen deposition levels in the liver; (F) scoring of
collagen deposition of NAFLD mice with Danshen treatment (Mean ± SD). DS-L for low dose of
Danshen treatment group (0.093 g/kg); DS-M for middle dose of Danshen treatment group (0.28 g/kg);
DS-H for high dose of Danshen treatment group (0.84 g/kg). # p < 0.05, compared with Normal group
* p < 0.05 when compared with model group.
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2.4. In Silico-Based Network Construction and Analysis

The active ingredients of Danshen were predicted through in silico-based pharmacology method.
To further illuminate the relationship between bioactive compounds and potential target genes,
a drug-target network was built through network analysis (Figure 8). The results showed that six
active compounds of Danshen were found to affect different potential targets, which may exhibit
hepatoprotective effects (Table S1). Among the six active compounds, Danshensu exhibits the largest
number of hepatoprotective target connections (10), followed by salvianolic acid a (8), and salvianolic
acid b (6). For the 29 potential targets, the network showed peroxisome proliferator-activated receptor
alpha (PPARα) had the largest number of compound interactions (tanshinone iia, salvianolic acid b
and Danshensu), followed by CYP1A2 (isoimperatorin and Oleanolic acid) and MMP-2 (tanshinone
iia and salvianolic acid a). The remaining 26 targets showed interactions with only one compound.
Those high-degree nodes in the network, which had more target–compound interactions, are likely
to play a more important role in treating ALD and NAFLD [27]. Information on 29 potential
hepatoprotective targets in Danshen can be found in the Supplementary Materials (Table S1); all the
data were manually collected from the TTD, PharmGKB, and CTD databases.
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Figure 8. Compound–target networks and corresponding compound structures. The Compound-target
network related to hepatoprotective effects in ALD and NALFD was shown in (A). The red octagons
are active compounds from Danshen and the blue squares represent potential hepatoprotective target
genes; the gray line represents the compound–target interaction; (B) The corresponding chemical
structures of the six potential hepatoprotective components from Danshen.
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3. Discussion

In the long history of TCM practice, Danshen has been shown to have multiple pharmacological
activities, including hepatoprotective effect. Although the chemistry composition of Danshen has
been extensively studied, the active ingredients and related mechanisms that contribute to its
hepatoprotective activity in ALD and NAFLD are far from clear. In the present study, we demonstrated
that Danshen might exhibit a preventive effect on acute and chronic ALD as well as NAFLD in a mouse
model. Danshen could significantly decrease the MDA level in both ALD and NAFLD models. MDA
is formed as a result of peroxidation of unsaturated fatty acids, which is the end product of lipid
peroxidation. Since the MDA level is considered an indicator of polyunsaturated fatty acid damage,
the decreased MDA level indicated attenuated oxidative damage in liver disease [28,29]. Previous
studies showed that the detoxification pathway by the internal anti-oxidative system should be the
result of an interacting network of multiple enzymes, with SOD catalyzing the first step and then CAT
and GSH-Px removing hydrogen peroxide [30,31]. Although our data indicated that Danshen could
increase the expression of SOD in ALD model and improve the activity of GSH-Px in NAFLD model,
the overexpression of a single antioxidant enzyme in the liver is not sufficient to activate the internal
anti-oxidative enzyme system and reduce the toxicity of superoxide [32]. Thus, Danshen seemed to
play its anti-oxidation role through some other mechanisms in ALD and NAFLD. This postulation is
partly consistent with our network pharmacological analysis results.

Peroxisome proliferator-activated receptor alpha (PPARα), which had the largest number of
compound interactions in our network study, was indicated as the key regulator of lipid peroxidation
in ALD and NAFLD. Tanshinone iia, salvianolic acid b, and Danshensu might be the potential active
compounds of Danshen to target PPARα and related signaling pathways. In previous studies, PPARα
may mediate NAFLD through a periostin-dependent pathway. It can regulate fatty acid oxidation by
activating the periostin-dependent JNK signaling pathway and further activate hepatosteatosis in vivo
and in vitro [33–35]. Activation of PPARα is also associated with increased mitochondrial glutathione
(GSH) in the liver and decreased levels of circulating fatty acyl-carnitines [36]. Furthermore, PPARα
plays a protective role to enhance mitochondrial function in response to chronic alcohol consumption
by adaptive transcriptional activation and we suggest that activation of this nuclear receptor may be of
therapeutic value in the treatment for ALD [37]. These studies indicated that PPARα may emerge as an
intracellular target of Danshen for preventing the development of ALD and NAFLD. Cytochrome P450,
family 1, subfamily A, polypeptide 2 (CYP1A2), a member of the cytochrome P450 mixed-function
oxidase system, may also be involved in the metabolism of xenobiotics such as ethanol in the liver.
Previous research has revealed that CYP1A2 plays an important role in alcohol-induced liver steatosis
by catalyzing many reactions involved in ethanol metabolism and synthesis of cholesterol, steroids, and
other lipids [38,39]. CYP1A2 could produce ROS to further promote oxidative stress and inflammation.
In the early stage of ALD, this enzyme can generate ROS in the liver as a consequence of alcohol
exposure. ROS will further produce excessive oxygen free radicals and lead to lipid peroxidation,
as well as oxidative stress damage [40–42]. Our in silico study results indicated that the active
ingredients in Danshen, such as isoimperatorin and oleanolic acid, may regulate the expression of
CYP1A2, CYP2B6, and CYP1B1, thus further attenuating oxidative damage in the liver. Furthermore,
like PPARα, CYP1A2 activity is also associated with intracellular GSH concentration [43]. GSH,
which is one of the most important cellular non-enzymatic antioxidants may be involved in the
hepatoprotective and antioxidant activity of Danshen in ALD and NAFLD. Our findings also suggest
that Danshen and its potential active compounds (tanshinone iia and salvianolic acid a) may be useful in
attenuating hepatic injury in CCl4-induced liver fibrosis in NAFLD model. Matrix metalloproteinase-2
(MMP2) may play a pivotal role in the anti-fibrosis effects of Danshen according to our network study.
MMP2 is important in the formation of hepatic fibrosis, degrading certain kinds of extra cellular
matrix (ECM) such as collagens and proteoglycans. Downregulation of MMP2 expression and the
TGF-β1/Smad signaling pathways can relieve liver fibrosis in rats [44]. MMP2 activity is also critical
for TGFβ2-induced matrix contraction, which may promote fibrosis in vitro [45]. Thus, MMP2 may be
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an important target for tissue repairing and preventing interstitial fibrosis in NAFLD. Generally, in the
current study, we found that Danshen may relieve hepatic inflammation, fatty liver, and fibrogenesis in
ALD and NAFLD mice without obvious side effects. Although our studies have shown that Danshen
extract and its potential active ingredients may alleviate liver diseases in mice models, these animal
models cannot predict the actual effect of Danshen on liver diseases in human patients. A randomized,
double-blinded, placebo-controlled clinical trial should be performed in a future study to critically
examine whether Danshen has a preventive and/or therapeutic effect on ALD and NAFLD patients.

An innovation of this study is combining in vivo studies with network pharmacology
research. For the multiple components/multiple targets interaction model of TCM herbal medicines,
conventional experimental research faces a situation of long-term investment to investigate the complex
interaction mechanisms. Thus, our network pharmacology study, which integrates the systems biology
and in silico technologies, may offer a direction for the mechanistic study of hepatoprotective effects of
TCM herbal medicines. The pharmacological network analysis results illustrated the potential active
ingredients and mechanism of action of Danshen in the management of ALD and NALFD. Therefore,
network pharmacology may be a forceful tool for exploring the potential mechanism of action of
TCM herbal medicines and developing novel active ingredients. A network pharmacology-based
approach combined with in vivo studies might be available for elucidating the relationship between
complex diseases such as liver diseases and TCM herbal medicine interventions. Notwithstanding
the advances in recent network pharmacology research, there are some crucial technical issues to
be addressed and improved for data collection on herbal medicines. First of all, the inventory of
herbal products remains incomplete and novel chemical structures are being discovered. Secondly,
previous researchers explored and provided only a small number of hepatoprotective target genes.
Last but not least, stringently assessing the relationships between compounds and corresponding
targets and obtaining accurate action modes such as activated drug–target interactions or inhibited
drug–target interactions are still a challenge for the present network pharmacology study [46,47].
To resolve these problems, herbal compound libraries should be established and further enriched
to better correlate compound functions with structures. Furthermore, experimental verification of
the potential hepatoprotective compounds after in silico screening is needed to validate the accurate
interactions between drugs and proteins based on theoretical predictions.

4. Materials and Methods

4.1. Reagents

Ethanol (99.9%, Thermo Scientific, Waltham, MA USA); carbon tetrachloride (CCl4) (99.9%,
Thermo Scientific); Liquid ethanol diet (Bio-Serv, Flemington, NJ, USA); Control liquid dextrose diet
(Bio-Serv); Choline-deficiency, amino acid-defined diet (CDAA) (Research Diets); Detection Kits for
alanine transaminase (ALT), aspartate transaminase (AST), malondialdehyde (MDA), superoxide
dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) (Jiancheng, Nanjing, China);
Direct Red 80 (Sigma-Aldrich, St. Louis, MO, USA); Picric acid (Sigma-Aldrich); Oil Red O
(Sigma-Aldrich); Danshen aqueous extracts was prepared by Vitagreen® (Hong Kong, China), the root
of Salvia miltiorrhiza Bunge was cut into small pieces and soaked for 2 h, then boiled for 1 h under
a medium-heat fire after first being boiled under a high-heat fire. After being filtered, the residue was
boiled again using the same method. All filtrate was collected, combined and then concentrated at
60 ◦C to a final concentration of 0.5 g/mL.

4.2. Animal Models and Treatments

For the alcohol-induced acute liver injury model, male C57BL/6J mice (four weeks of age) in
treatment group were given three doses of Danshen extracts (0.093, 0.28, 0.84 g/kg/day) via gavage for
nine days. Normal and Model groups of mice received equal volume (0.2 mL) of saline water. 6 h after
the last treatment, the model group and treatment group of mice received ethanol (6 g/kg via gavage).
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The normal group of mice received the same volume of isocaloric/isovolumetric maltodextrin solution.
This model was slightly modified from Enomoto et al. [48]. After 12 h of ethanol treatment, mice were
euthanized by cervical sacrificed, and serum and liver samples were collected. For the induction of
chronic ALD model, mice were initially fed the control liquid dextrose diet for three days to acclimate
them to the liquid diet. Afterward, the mice were fed either the liquid ethanol diet or the control liquid
dextrose diet for two weeks, as described by previous studies [49,50]. For the treatment group, mice
were given Danshen extracts at different dose (0.093, 0.28, 0.84 g/kg) via gavage daily throughout
the experiment. Normal and model groups of mice received equal volume (0.2 mL) of saline water.
Twelve hours after the last treatment, mice were euthanized by cervical sacrificed, and serum and
liver were collected. To induce chronic NAFLD model, we introduced the CDAA diet as described by
Fujita et al. [51]. A low dose of CCl4 (0.4 µL/g body weight, twice/week) was used as promoter of
fibrosis. Mice were fed with control chow or CDAA chow for six weeks in this study. Then, three doses
of Danshen (0.093, 0.28, 0.84 g/kg) were given to the treatment group through oral administration
every day. Normal and model groups of mice received an equal volume (0.2 mL) of saline. At the
end point, mice were euthanized by cervical dislocation; serum and liver were collected for further
analysis. All experimental protocols involving mice were approved by the Committee on the Use
of Live Animals in Teaching and Research (CULATR) of the University of Hong Kong. CULATR
number: 3637-15. Project Start Date: 27 March 2015. Animal license was approved by Department of
Health, Hong Kong Special Administrative Region Government. Animal license number: (13-671) in
DH/HA&P/8/2/3 Pt.54. Approved date: 13 December 2013.

4.3. Biochemical Assays

Serum samples were separated by centrifugation at 3000 rpm for 10 min and were kept at
−20 ◦C until analysis. The serum levels of ALT, AST were determined with commercial kits. All of
the procedures were carried out according to the manufacturers’ instructions. Liver tissue was
homogenized in lysis buffer, centrifuged at 10,000× g for 5 min at 4 ◦C, and the supernatants were
collected. The activity of GSH-Px, SOD, CAT and the production of MDA were measured according to
the manufacturers’ instructions.

4.4. Liver Histology

Formalin-fixed tissues were stained with hematoxylin and eosin (H&E) and analyzed by
microscopy. The liver damage score was measured by three individual examiners with the following
criteria, 0: no damage; 1–3: mild damage; 4–6: intermediate damage; 7–9: severe damage;
10: destruction of liver structure [52]. In addition, for assessing liver fibrosis, we also conducted
Sirius-Red staining in hepatic tissue biopsy. Scoring on the stained sections was made by three
individual examiners with the following criteria, 0: no signs of observed fibrosis. 1–3: no extension of
portal area fibrosis. 4–6: fibrosis occurring in the portal area with an intact lobule structure. 7–9: fibrosis
associated with a broken lobule structure, but no signs of cirrhosis. 10: fibrosis and the formation
of cirrhosis [53]. All the stained sections were observed and photographed under a microscope
(with 100× magnification).

4.5. Network Pharmacology Analysis

4.5.1. Molecular Database Construction

Chemical ingredients of Danshen were manually collected from related literature and two
phytochemical databases: Traditional Chinese Medicine Systems Pharmacology Database (TCMSP)
(Available online: http://lsp.nwsuaf.edu.cn/) and TCM Database@Taiwan (Available online:
http://sm.nwsuaf.edu.cn/lsp/tcmsp.php) [31–36].

http://lsp.nwsuaf.edu.cn/
http://sm.nwsuaf.edu.cn/lsp/tcmsp.php
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4.5.2. Pharmacokinetic ADME Evaluation

In this step, an in silico integrative model—ADME was used to select the ingredients with
favorable pharmacokinetics properties. The ADME system used in this study including PreOB (predict
oral bioavailability) and PreCaco-2 (predict Caco-2 permeability). Oral bioavailability (OB) is one
of the most vital pharmacokinetic properties of orally administered drugs as it plays an important
role for the efficiency of the drug delivery to the systemic circulation [54,55]. Here, a reliable in silico
screening model OBioavail 1.1 was employed in OB value calculation of the constituents in Danshen.
This model was constructed based on 805 structurally diverse drugs and drug-like molecules. Multiple
linear regression, partial least square and support vector machine methods were applied during this
model building, ending up with determination coefficient (R2) = 0.80 and standard error of estimate
(SEE) = 0.31 for test sets. [56,57]. In addition, for orally administered drugs, another pivotal problem
is their movement across the intestinal epithelial barrier, which determines the rate and extent of
human absorption and ultimately affects its bioavailability [58]. Thus, a preCaco-2 model was used
to predict the efficiency of drug absorption. The phytochemical information of the compounds with
their Caco-2 permeability properties were explored using the TCMSP database; detailed parameters
information, screening criteria, and calculations can be obtained from TCMSP website (Available
online: http://sm.nwsuaf.edu.cn/lsp/load_intro.php?id=29). Finally, compounds with OB ≥ 33%
and Caco2 ≥ 0.4 cm/s were regarded as candidate ingredients for further study. It is worth noting
that the OB value of salvianolic acid A and salvianolic acid B are lower than 33%, but both of them
are widely expected to exhibit hepatoprotective effects in vitro and in vivo [11,59–61]. Thus, these two
compounds were also regarded as candidate compounds for further analysis.

4.5.3. Identification of Associated Proteins and Genes

The integrative efficacy of the ingredients in Danshen was determined by analyzing the
compounds and targets interactions obtained from the Search Tool for Interactions of Chemicals and
Proteins (STITCH) database(Available online: http://stitch.embl.de/) [44], HIT (Herbal Ingredients’
Targets) Database (Available online: http://lifecenter.sgst.cn/hit/) [45] and omics-based Ligand-Target
Chemogenomic model (LTC) [46], respectively. Then, for better defining the role of Danshen
in hepatoprotective potentials, these targets were mapped to the Therapeutic Target Database
(TTD, Available online: http://bidd.nus.edu.sg/group/ttd/) [47], PharmGKB (Available online:
http://www.pharmgkb.org) [48], and the Comparative Toxicogenomics Database (CTD, Available
online: http://ctdbase.org/) [49] to eliminate the unrelated target protein and provide a more
complete and accuracy view on compound-hepatoprotective target associations. The targets with
hepatoprotective potentials were retrieved from TTD, PharmGKB and CTD database by using the
following search terms: liver disease, hepatic damage, alcoholic liver, non-alcoholic liver, fatty liver,
liver fibrosis, oxidative damage, steatosis, oxidative damage, and lipid metabolism.

4.5.4. Network Construction

To further probe the relationships between the compounds and targets associated with
hepatoprotective effects, the Compound–Target network plotting was generated by Cytoscape 3.4.0
(Available online: http://www.cytoscape.org/) [50]. In the graphical network plot, nodes represent
the compounds or proteins, and edges encode the compound–target interactions. In order to specify
the importance of a node and how this node influences the communication between two nodes, all the
properties of the network were analyzed using Network Analysis plugin. A flowchart to schematically
describe the network pharmacology process in this study is shown in Figure 9.

http://sm.nwsuaf.edu.cn/lsp/load_intro.php?id=29
http://stitch.embl.de/
http://lifecenter.sgst.cn/hit/
http://bidd.nus.edu.sg/group/ttd/
http://www.pharmgkb.org
http://ctdbase.org/
http://www.cytoscape.org/
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4.6. Statistical Analysis

All the data are presented as the mean ± SD and analyzed by one-way analysis of variance using
SPSS17 software (SPSS Inc., Chicago, IL, USA). p < 0.05 was considered statistically significant.

5. Conclusions

Our studies suggested that Danshen could alleviate hepatic inflammation, fatty degeneration,
and haptic fibrogenesis in ALD and NAFLD models. The combination of network pharmacology
strategy with in vivo experimental study may provide a forceful tool for exploring the mechanism of
action of traditional Chinese medicine herb and developing novel bioactive ingredients.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/3/620/s1.

Acknowledgments: The study was financially supported by grants from the research council of the University of
Hong Kong (Project Codes: 104003422, 104004092), the Research Grants Committee (RGC) of Hong Kong, HKSAR
(Project Codes: 766211, 17152116), Wong’s Donation on Modern Oncology of Chinese Medicine (Project code:
200006276), Gala Family Trust (Project Code: 200007008), Government-Matching Grant Scheme (Project Code:
207060411), and a donation from Vita Green Health Products Co., Ltd. (Project cord: 200007477). The authors
would like to express thanks to Keith Wong, Cindy Lee, and Alex Shek for their technical support.

www.mdpi.com/1422-0067/18/3/620/s1


Int. J. Mol. Sci. 2017, 18, 620 15 of 18

Author Contributions: Yibin Feng designed the experiments. Ming Hong performed the experiments and
primarily wrote the paper. Sha Li, Ning Wang, Hor-Yue Tan, Fan Cheung revised the paper. All authors analyzed
the data and assisted in writing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Uhl, P.; Fricker, G.; Haberkorn, U.; Mier, W. Current status in the therapy of liver diseases. Int. J. Mol. Sci.
2014, 15, 7500–7512. [CrossRef] [PubMed]

2. Hong, M.; Li, S.; Tan, H.Y.; Wang, N.; Tsao, S.W.; Feng, Y. Current status of herbal medicines in chronic liver
disease therapy: The biological effects, molecular targets and future prospects. Int. J. Mol. Sci. 2015, 16,
28705–28745. [CrossRef] [PubMed]

3. Loomba, R.; Sanyal, A.J. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 686–690.
[CrossRef] [PubMed]

4. Wang, J.; Li, P.; Jiang, Z.; Yang, Q.; Mi, Y.; Liu, Y.; Shi, R.; Zhou, Y.; Wang, J.; Lu, W.; et al. Diagnostic
value of alcoholic liver disease (ALD)/nonalcoholic fatty liver disease (NAFLD) index combined with
gamma-glutamyl transferase in differentiating ALD and NAFLD. Korean J. Intern. Med. 2016, 31, 479–487.
[CrossRef] [PubMed]

5. Gupta, N.K.; Lewis, J.H. Review article: The use of potentially hepatotoxic drugs in patients with liver
disease. Aliment. Pharmacol. Ther. 2008, 28, 1021–1041. [CrossRef] [PubMed]

6. Zhu, C.; Cao, H.; Zhou, X.; Dong, C.; Luo, J.; Zhang, C.; Liu, J.; Ling, Y. Meta-analysis of the clinical value of
danshen injection and huangqi injection in liver cirrhosis. Evid. Based Complement. Altern. Med. 2013, 2013,
842824. [CrossRef] [PubMed]

7. Wen, T.; Zheng, G.; Meng, X.; Chen, L. Evaluation of oral glucose tolerance test in the assessment of reserved
function of liver for patients with hepatocellular carcinoma. Hua Xi Yi Ke Da Xue Xue Bao 1997, 28, 197–200.
[PubMed]

8. Peng, H.; He, Y.; Zheng, G.; Zhang, W.; Yao, Z.; Xie, W. Meta-analysis of traditional herbal medicine in the
treatment of nonalcoholic fatty liver disease. Cell. Mol. Biol. 2016, 62, 88–95. [PubMed]

9. Yue, S.; Hu, B.; Wang, Z.; Yue, Z.; Wang, F.; Zhao, Y.; Yang, Z.; Shen, M. Salvia miltiorrhiza compounds protect
the liver from acute injury by regulation of p38 and NFκB signaling in Kupffer cells. Pharm. Biol. 2014, 52,
1278–1285. [CrossRef] [PubMed]

10. Parajuli, D.R.; Zhao, Y.Z.; Jin, H.; Chi, J.H.; Li, S.Y.; Kim, Y.C.; Sohn, D.H.; Lee, S.H. Anti-fibrotic effect of
PF2401-SF, a standardized fraction of Salvia miltiorrhiza, in thioacetamide-induced experimental rats liver
fibrosis. Arch. Pharm. Res. 2015, 38, 549–555. [CrossRef] [PubMed]

11. Li, M.; Lu, Y.; Hu, Y.; Zhai, X.; Xu, W.; Jing, H.; Tian, X.; Lin, Y.; Gao, D.; Yao, J. Salvianolic acid B protects
against acute ethanol-induced liver injury through SIRT1-mediated deacetylation of p53 in rats. Toxicol. Lett.
2014, 228, 67–74. [CrossRef] [PubMed]

12. Pan, T.L.; Wang, P.W.; Huang, C.H.; Leu, Y.L.; Wu, T.H.; Wu, Y.R.; You, J.S. Herbal formula, Scutellariae radix
and Rhei rhizoma attenuate dimethylnitrosamine-induced liver fibrosis in a rat model. Sci. Rep. 2015, 5, 11734.
[CrossRef] [PubMed]

13. Lee, W.Y.; Cheung, C.C.; Liu, K.W.; Fung, K.P.; Wong, J.; Lai, P.B.; Yeung, J.H. Cytotoxic effects of tanshinones
from Salvia miltiorrhiza on doxorubicin-resistant human liver cancer cells. J. Nat. Prod. 2010, 73, 854–859.
[CrossRef] [PubMed]

14. Hassan, H.M.; Guo, H.; Yousef, B.A.; Guerram, M.; Hamdi, A.M.; Zhang, L.; Jiang, Z. Role of Inflammatory
and Oxidative Stress, Cytochrome P450 2E1, and Bile Acid Disturbance in Rat Liver Injury Induced
by Isoniazid and Lipopolysaccharide Cotreatment. Antimicrob. Agents Chemother. 2016, 60, 5285–5293.
[CrossRef] [PubMed]

15. Koroglu, E.; Canbakan, B.; Atay, K.; Hatemi, I.; Tuncer, M.; Dobrucali, A. Role of oxidative stress and insulin
resistance in disease severity of non-alcoholic fatty liver disease. Turk. J. Gastroenterol. 2016, 27, 361–366.
[CrossRef] [PubMed]

16. Xu, L.; Shen, P.; Bi, Y.; Chen, J.; Xiao, Z.; Zhang, X.; Wang, Z. Danshen injection ameliorates STZ-induced
diabetic nephropathy in association with suppression of oxidative stress, pro-inflammatory factors and
fibrosis. Int. Immunopharmacol. 2016, 38, 385–394. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/ijms15057500
http://www.ncbi.nlm.nih.gov/pubmed/24786290
http://dx.doi.org/10.3390/ijms161226126
http://www.ncbi.nlm.nih.gov/pubmed/26633388
http://dx.doi.org/10.1038/nrgastro.2013.171
http://www.ncbi.nlm.nih.gov/pubmed/24042449
http://dx.doi.org/10.3904/kjim.2015.253
http://www.ncbi.nlm.nih.gov/pubmed/27025268
http://dx.doi.org/10.1111/j.1365-2036.2008.03822.x
http://www.ncbi.nlm.nih.gov/pubmed/18671777
http://dx.doi.org/10.1155/2013/842824
http://www.ncbi.nlm.nih.gov/pubmed/24069058
http://www.ncbi.nlm.nih.gov/pubmed/10683934
http://www.ncbi.nlm.nih.gov/pubmed/27188741
http://dx.doi.org/10.3109/13880209.2014.889720
http://www.ncbi.nlm.nih.gov/pubmed/25026357
http://dx.doi.org/10.1007/s12272-014-0425-2
http://www.ncbi.nlm.nih.gov/pubmed/25005065
http://dx.doi.org/10.1016/j.toxlet.2014.04.011
http://www.ncbi.nlm.nih.gov/pubmed/24769256
http://dx.doi.org/10.1038/srep11734
http://www.ncbi.nlm.nih.gov/pubmed/26133262
http://dx.doi.org/10.1021/np900792p
http://www.ncbi.nlm.nih.gov/pubmed/20455578
http://dx.doi.org/10.1128/AAC.00854-16
http://www.ncbi.nlm.nih.gov/pubmed/27324775
http://dx.doi.org/10.5152/tjg.2016.16106
http://www.ncbi.nlm.nih.gov/pubmed/27458852
http://dx.doi.org/10.1016/j.intimp.2016.06.024
http://www.ncbi.nlm.nih.gov/pubmed/27355131


Int. J. Mol. Sci. 2017, 18, 620 16 of 18

17. Yue, K.K.; Lee, K.W.; Chan, K.K.; Leung, K.S.; Leung, A.W.; Cheng, C.H. Danshen prevents the occurrence
of oxidative stress in the eye and aorta of diabetic rats without affecting the hyperglycemic state.
J. Ethnopharmacol. 2006, 106, 136–141. [CrossRef] [PubMed]

18. Zhou, X.; Cheung, C.M.; Yang, J.M.; Or, P.M.; Lee, W.Y.; Yeung, J.H. Danshen (Salvia miltiorrhiza) water
extract inhibits paracetamol-induced toxicity in primary rat hepatocytes via reducing CYP2E1 activity and
oxidative stress. J. Pharm. Pharmacol. 2015, 67, 980–989. [CrossRef] [PubMed]

19. Kola, I.; Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 2004, 3,
711–715. [CrossRef] [PubMed]

20. Chen, Y.; Kern, T.S.; Kiser, P.D.; Palczewski, K. Eyes on systems pharmacology. Pharmacol. Res. 2016, 114,
39–41. [CrossRef] [PubMed]

21. Liang, X.; Li, H.; Li, S. A novel network pharmacology approach to analyse traditional herbal formulae:
The Liu-Wei-Di-Huang pill as a case study. Mol. Biosyst. 2014, 10, 1014–1022. [CrossRef] [PubMed]

22. Li, H.; Zhao, L.; Zhang, B.; Jiang, Y.; Wang, X.; Guo, Y.; Liu, H.; Li, S.; Tong, X. A network pharmacology
approach to determine active compounds and action mechanisms of ge-gen-qin-lian decoction for treatment
of type 2 diabetes. Evid. Based Complement. Altern. Med. 2014, 2014, 495840. [CrossRef] [PubMed]

23. Ke, Z.; Zhang, X.; Cao, Z.; Ding, Y.; Li, N.; Cao, L.; Wang, T.; Zhang, C.; Ding, G.; Wang, Z.; et al.
Drug discovery of neurodegenerative disease through network pharmacology approach in herbs.
Biomed. Pharmacother. 2016, 78, 272–279. [CrossRef] [PubMed]

24. Wu, L.; Gao, X.; Cheng, Y.; Wang, Y.; Zhang, B.; Fan, X. Symptom-based traditional Chinese medicine slices
relationship network and its network pharmacology study. Zhongguo Zhong Yao Za Zhi 2011, 36, 2916–2919.

25. Borsoi Viana, M.S.; Takei, K.; Collarile Yamaguti, D.C.; Guz, B.; Strauss, E. Use of AST platelet ratio index
(APRI Score) as an alternative to liver biopsy for treatment indication in chronic hepatitis C. Ann. Hepatol.
2009, 8, 26–31. [PubMed]

26. Hallsworth, K.; Thoma, C.; Hollingsworth, K.G.; Cassidy, S.; Anstee, Q.M.; Day, C.P.; Trenell, M.I. Modified
high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver
disease: A randomized controlled trial. Clin. Sci. 2015, 129, 1097–1105. [CrossRef]

27. Danhof, M. Systems pharmacology—Towards the modeling of network interactions. Eur. J. Pharm. Sci. 2016,
94, 4–14. [CrossRef] [PubMed]

28. Guesmi, F.; Tyagi, A.K.; Bellamine, H.; Landoulsi, A. Antioxidant Machinery Related to Decreased
MDA Generation by Thymus Algeriensis Essential Oil-induced Liver and Kidney Regeneration.
Biomed. Environ. Sci. 2016, 29, 639–649. [PubMed]

29. Tullberg, C.; Larsson, K.; Carlsson, N.G.; Comi, I.; Scheers, N.; Vegarud, G.; Undeland, I. Formation of
reactive aldehydes (MDA, HHE, HNE) during the digestion of cod liver oil: Comparison of human and
porcine in vitro digestion models. Food Funct. 2016, 7, 1401–1412. [CrossRef] [PubMed]

30. Li, S.; Hong, M.; Tan, H.Y.; Wang, N.; Feng, Y. Insights into the Role and Interdependence of Oxidative Stress
and Inflammation in Liver Diseases. Oxid. Med. Cell Longev. 2016, 2016, 4234061. [CrossRef] [PubMed]

31. Ho, Y.S.; Magnenat, J.L.; Gargano, M.; Cao, J. The nature of antioxidant defense mechanisms: A lesson from
transgenic studies. Environ. Health Perspect. 1998, 106 (Suppl. S5), 1219–1228. [CrossRef] [PubMed]

32. Tepperman, J.M.; Dunsmuir, P. Transformed plants with elevated levels of chloroplastic SOD are not more
resistant to superoxide toxicity. Plant Mol. Biol. 1990, 14, 501–511. [CrossRef] [PubMed]

33. Batatinha, H.A.; Lima, E.A.; Teixeira, A.A.; Souza, C.O.; Biondo, L.A.; Silveira, L.S.; Lira, F.S.; Neto, J.C.
Association between aerobic exercise and rosiglitazone avoided the NAFLD and liver inflammation
exacerbated in PPAR-α knockout mice. J. Cell Physiol. 2016, 232, 1008–1019. [CrossRef] [PubMed]

34. Kostadinova, R.; Montagner, A.; Gouranton, E.; Fleury, S.; Guillou, H.; Dombrowicz, D.; Desreumaux, P.;
Wahli, W. GW501516-activated PPARβ/δ promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate
cell proliferation. Cell Biosci. 2012, 2, 34. [CrossRef] [PubMed]

35. Lu, Y.; Liu, X.; Jiao, Y.; Xiong, X.; Wang, E.; Wang, X.; Zhang, Z.; Zhang, H.; Pan, L.; Guan, Y.; et al. Periostin
promotes liver steatosis and hypertriglyceridemia through downregulation of PPARα. J. Clin. Investig. 2014,
124, 3501–3513. [CrossRef] [PubMed]

36. Patterson, A.D.; Shah, Y.M.; Matsubara, T.; Krausz, K.W.; Gonzalez, F.J. Peroxisome proliferator-activated
receptor α induction of uncoupling protein 2 protects against acetaminophen-induced liver toxicity.
Hepatology 2012, 56, 281–290. [CrossRef]

http://dx.doi.org/10.1016/j.jep.2005.12.026
http://www.ncbi.nlm.nih.gov/pubmed/16431051
http://dx.doi.org/10.1111/jphp.12381
http://www.ncbi.nlm.nih.gov/pubmed/25645193
http://dx.doi.org/10.1038/nrd1470
http://www.ncbi.nlm.nih.gov/pubmed/15286737
http://dx.doi.org/10.1016/j.phrs.2016.09.026
http://www.ncbi.nlm.nih.gov/pubmed/27720767
http://dx.doi.org/10.1039/c3mb70507b
http://www.ncbi.nlm.nih.gov/pubmed/24492828
http://dx.doi.org/10.1155/2014/495840
http://www.ncbi.nlm.nih.gov/pubmed/24527048
http://dx.doi.org/10.1016/j.biopha.2016.01.021
http://www.ncbi.nlm.nih.gov/pubmed/26898452
http://www.ncbi.nlm.nih.gov/pubmed/19221530
http://dx.doi.org/10.1042/CS20150308
http://dx.doi.org/10.1016/j.ejps.2016.04.027
http://www.ncbi.nlm.nih.gov/pubmed/27131606
http://www.ncbi.nlm.nih.gov/pubmed/27806746
http://dx.doi.org/10.1039/C5FO01332A
http://www.ncbi.nlm.nih.gov/pubmed/26838473
http://dx.doi.org/10.1155/2016/4234061
http://www.ncbi.nlm.nih.gov/pubmed/28070230
http://dx.doi.org/10.1289/ehp.98106s51219
http://www.ncbi.nlm.nih.gov/pubmed/9788901
http://dx.doi.org/10.1007/BF00027496
http://www.ncbi.nlm.nih.gov/pubmed/1966384
http://dx.doi.org/10.1002/jcp.25440
http://www.ncbi.nlm.nih.gov/pubmed/27216550
http://dx.doi.org/10.1186/2045-3701-2-34
http://www.ncbi.nlm.nih.gov/pubmed/23046570
http://dx.doi.org/10.1172/JCI74438
http://www.ncbi.nlm.nih.gov/pubmed/25003192
http://dx.doi.org/10.1002/hep.25645


Int. J. Mol. Sci. 2017, 18, 620 17 of 18

37. Li, H.H.; Tyburski, J.B.; Wang, Y.W.; Strawn, S.; Moon, B.H.; Kallakury, B.V.; Gonzalez, F.J.; Fornace, A.J., Jr.
Modulation of fatty acid and bile acid metabolism by peroxisome proliferator-activated receptor α protects
against alcoholic liver disease. Alcohol. Clin. Exp. Res. 2014, 38, 1520–1531. [CrossRef] [PubMed]

38. Ellefson, W.M.; Lakner, A.M.; Hamilton, A.; McKillop, I.H.; Bonkovsky, H.L.; Steuerwald, N.M.; Huet, Y.M.;
Schrum, L.W. Neonatal androgenization exacerbates alcohol-induced liver injury in adult rats, an effect
abrogated by estrogen. PLoS ONE 2011, 6, e29463. [CrossRef] [PubMed]

39. Lucas, D.; Berthou, F.; Dreano, Y.; Lozac'h, P.; Volant, A.; Menez, J.F. Comparison of levels of cytochromes
P-450, CYP1A2, CYP2E1, and their related monooxygenase activities in human surgical liver samples.
Alcohol. Clin. Exp. Res. 1993, 17, 900–905. [CrossRef] [PubMed]

40. Hussain, T.; Al-Attas, O.S.; Al-Daghri, N.M.; Mohammed, A.A.; De Rosas, E.; Ibrahim, S.; Vinodson, B.;
Ansari, M.G.; El-Din, K.I. Induction of CYP1A1, CYP1A2, CYP1B1, increased oxidative stress and
inflammation in the lung and liver tissues of rats exposed to incense smoke. Mol. Cell. Biochem. 2014,
391, 127–136. [CrossRef] [PubMed]

41. Brauze, D.; Rawluszko, A.A. The effect of aryl hydrocarbon receptor ligands on the expression of polymerase
(DNA directed) κ (Polκ), polymerase RNA II (DNA directed) polypeptide A (PolR2a), CYP1B1 and CYP1A1
genes in rat liver. Environ. Toxicol. Pharmacol. 2012, 34, 819–825. [CrossRef] [PubMed]

42. Kurzawski, M.; Dziedziejko, V.; Post, M.; Wojcicki, M.; Urasinska, E.; Mietkiewski, J.; Drozdzik, M. Expression
of genes involved in xenobiotic metabolism and transport in end-stage liver disease: Up-regulation of ABCC4
and CYP1B1. Pharmacol. Rep. 2012, 64, 927–939. [CrossRef]

43. Vibhuti, A.; Arif, E.; Mishra, A.; Deepak, D.; Singh, B.; Rahman, I.; Mohammad, G.; Pasha, M.A. CYP1A1,
CYP1A2 and CYBA gene polymorphisms associated with oxidative stress in COPD. Clin. Chim. Acta 2010,
411, 474–480. [CrossRef] [PubMed]

44. Li, X.M.; Peng, J.H.; Sun, Z.L.; Tian, H.J.; Duan, X.H.; Liu, L.; Ma, X.; Feng, Q.; Liu, P.; Hu, Y.Y. Chinese
medicine CGA formula ameliorates DMN-induced liver fibrosis in rats via inhibiting MMP2/9, TIMP1/2
and the TGF-β/Smad signaling pathways. Acta Pharmacol. Sin. 2016, 37, 783–793. [CrossRef] [PubMed]

45. Eldred, J.A.; Hodgkinson, L.M.; Dawes, L.J.; Reddan, J.R.; Edwards, D.R.; Wormstone, I.M. MMP2 activity is
critical for TGFβ2-induced matrix contraction—Implications for fibrosis. Investig. Ophthalmol. Vis. Sci. 2012,
53, 4085–4098. [CrossRef] [PubMed]

46. Calvert, S.; Tacutu, R.; Sharifi, S.; Teixeira, R.; Ghosh, P.; de Magalhaes, J.P. A network pharmacology
approach reveals new candidate caloric restriction mimetics in C. elegans. Aging Cell 2016, 15, 256–266.
[CrossRef] [PubMed]

47. Li, X.; Wu, L.; Liu, W.; Jin, Y.; Chen, Q.; Wang, L.; Fan, X.; Li, Z.; Cheng, Y. A network pharmacology study of
Chinese medicine QiShenYiQi to reveal its underlying multi-compound, multi-target, multi-pathway mode
of action. PLoS ONE 2014, 9, e95004. [CrossRef] [PubMed]

48. Enomoto, N.; Ikejima, K.; Yamashina, S.; Enomoto, A.; Nishiura, T.; Nishimura, T.; Brenner, D.A.;
Schemmer, P.; Bradford, B.U.; Rivera, C.A.; et al. Kupffer cell-derived prostaglandin E(2) is involved
in alcohol-induced fat accumulation in rat liver. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 279,
G100–G106. [PubMed]

49. Lieber, C.S.; de Carli, L.M. An experimental model of alcohol feeding and liver injury in the baboon.
J. Med. Primatol. 1974, 46, 263–264. [CrossRef]

50. Ambade, A.; Catalano, D.; Lim, A.; Kopoyan, A.; Shaffer, S.A.; Mandrekar, P. Inhibition of heat shock protein
90 alleviates steatosis and macrophage activation in murine alcoholic liver injury. J. Hepatol. 2014, 61, 903–911.
[CrossRef] [PubMed]

51. Fujita, K.; Nozaki, Y.; Yoneda, M.; Wada, K.; Takahashi, H.; Kirikoshi, H.; Inamori, M.; Saito, S.; Iwasaki, T.;
Terauchi, Y.; et al. Nitric oxide plays a crucial role in the development/progression of nonalcoholic
steatohepatitis in the choline-deficient, l-amino acid-defined diet-fed rat model. Alcohol. Clin. Exp. Res. 2010,
34 (Suppl. S1), S18–S24. [CrossRef] [PubMed]

52. Krastev, Z. Liver damage score—A new index for evaluation of the severity of chronic liver diseases.
Hepatogastroenterology 1998, 45, 160–169. [PubMed]

53. James, J.; Bosch, K.S.; Aronson, D.C.; Houtkooper, J.M. Sirius red histophotometry and spectrophotometry of
sections in the assessment of the collagen content of liver tissue and its application in growing rat liver. Liver
1990, 10, 1–5. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/acer.12424
http://www.ncbi.nlm.nih.gov/pubmed/24773203
http://dx.doi.org/10.1371/journal.pone.0029463
http://www.ncbi.nlm.nih.gov/pubmed/22206017
http://dx.doi.org/10.1111/j.1530-0277.1993.tb00861.x
http://www.ncbi.nlm.nih.gov/pubmed/8214432
http://dx.doi.org/10.1007/s11010-014-1995-5
http://www.ncbi.nlm.nih.gov/pubmed/24557852
http://dx.doi.org/10.1016/j.etap.2012.09.004
http://www.ncbi.nlm.nih.gov/pubmed/23026235
http://dx.doi.org/10.1016/S1734-1140(12)70888-5
http://dx.doi.org/10.1016/j.cca.2009.12.018
http://www.ncbi.nlm.nih.gov/pubmed/20080081
http://dx.doi.org/10.1038/aps.2016.35
http://www.ncbi.nlm.nih.gov/pubmed/27133300
http://dx.doi.org/10.1167/iovs.12-9457
http://www.ncbi.nlm.nih.gov/pubmed/22618590
http://dx.doi.org/10.1111/acel.12432
http://www.ncbi.nlm.nih.gov/pubmed/26676933
http://dx.doi.org/10.1371/journal.pone.0095004
http://www.ncbi.nlm.nih.gov/pubmed/24817581
http://www.ncbi.nlm.nih.gov/pubmed/10898751
http://dx.doi.org/10.1111/j.1753-4887.1988.tb05447.x
http://dx.doi.org/10.1016/j.jhep.2014.05.024
http://www.ncbi.nlm.nih.gov/pubmed/24859453
http://dx.doi.org/10.1111/j.1530-0277.2008.00756.x
http://www.ncbi.nlm.nih.gov/pubmed/18986378
http://www.ncbi.nlm.nih.gov/pubmed/9496507
http://dx.doi.org/10.1111/j.1600-0676.1990.tb00428.x
http://www.ncbi.nlm.nih.gov/pubmed/2308475


Int. J. Mol. Sci. 2017, 18, 620 18 of 18

54. Tian, S.; Li, Y.; Wang, J.; Zhang, J.; Hou, T. ADME evaluation in drug discovery. 9. Prediction of oral
bioavailability in humans based on molecular properties and structural fingerprints. Mol. Pharm. 2011, 8,
841–851. [CrossRef] [PubMed]

55. Saghir, S.A. Determination of ADME and bioavailability following intravenous, oral, and dermal routes of
exposure. Curr. Protoc. Toxicol. 2009. [CrossRef]

56. Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database
of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [CrossRef]
[PubMed]

57. Wang, X.; Xu, X.; Li, Y.; Li, X.; Tao, W.; Li, B.; Wang, Y.; Yang, L. Systems pharmacology uncovers Janus
functions of botanical drugs: Activation of host defense system and inhibition of influenza virus replication.
Integr. Biol. 2013, 5, 351–371. [CrossRef] [PubMed]

58. Pereira, C.; Araujo, F.; Barrias, C.C.; Granja, P.L.; Sarmento, B. Dissecting stromal-epithelial interactions in
a 3D in vitro cellularized intestinal model for permeability studies. Biomaterials 2015, 56, 36–45. [CrossRef]
[PubMed]

59. Zeng, W.; Shan, W.; Gao, L.; Gao, D.; Hu, Y.; Wang, G.; Zhang, N.; Li, Z.; Tian, X.; Xu, W.; et al. Inhibition of
HMGB1 release via salvianolic acid B-mediated SIRT1 up-regulation protects rats against non-alcoholic fatty
liver disease. Sci. Rep. 2015, 5, 16013. [CrossRef] [PubMed]

60. Hou, J.; Tian, J.; Jiang, W.; Gao, Y.; Fu, F. Therapeutic effects of SMND-309, a new metabolite of salvianolic
acid B, on experimental liver fibrosis. Eur. J. Pharmacol. 2011, 650, 390–395. [CrossRef] [PubMed]

61. Hu, Y.Y.; Liu, P.; Liu, C.; Xu, L.M.; Liu, C.H.; Zhu, D.Y.; Huang, M.F. Actions of salvianolic acid A on
CCl4-poisoned liver injury and fibrosis in rats. Zhongguo Yao Li Xue Bao 1997, 18, 478–480. [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/mp100444g
http://www.ncbi.nlm.nih.gov/pubmed/21548635
http://dx.doi.org/10.1002/0471140856.tx0508s41
http://dx.doi.org/10.1186/1758-2946-6-13
http://www.ncbi.nlm.nih.gov/pubmed/24735618
http://dx.doi.org/10.1039/C2IB20204B
http://www.ncbi.nlm.nih.gov/pubmed/23168537
http://dx.doi.org/10.1016/j.biomaterials.2015.03.054
http://www.ncbi.nlm.nih.gov/pubmed/25934277
http://dx.doi.org/10.1038/srep16013
http://www.ncbi.nlm.nih.gov/pubmed/26525891
http://dx.doi.org/10.1016/j.ejphar.2010.10.019
http://www.ncbi.nlm.nih.gov/pubmed/20969856
http://www.ncbi.nlm.nih.gov/pubmed/10322948
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	The Hepatoprotective Effect of Danshen on Acute ALD 
	The Hepatoprotective Effect of Danshen on Chronic ALD 
	The Hepatoprotective Effect of Danshen on NAFLD 
	In Silico-Based Network Construction and Analysis 

	Discussion 
	Materials and Methods 
	Reagents 
	Animal Models and Treatments 
	Biochemical Assays 
	Liver Histology 
	Network Pharmacology Analysis 
	Molecular Database Construction 
	Pharmacokinetic ADME Evaluation 
	Identification of Associated Proteins and Genes 
	Network Construction 

	Statistical Analysis 

	Conclusions 

