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Large-scale Parallel Stratified Defeasible Reasoning

Ilias Tachmazidis1,2 and Grigoris Antoniou1,3 and Giorgos Flouris1 and Spyros Kotoulas4

and Lee McCluskey3

Abstract. We are recently experiencing an unprecedented explo-
sion of available data coming from the Web, sensors readings, sci-
entific databases, government authorities and more. Such datasets
could benefit from the introduction of rule sets encoding commonly
accepted rules or facts, application- or domain-specific rules, com-
monsense knowledge etc. This raises the question of whether, how,
and to what extent knowledge representation methods are capable of
handling huge amounts of data for these applications. In this paper,
we consider inconsistency-tolerant reasoning in the form of defea-
sible logic, and analyze how parallelization, using the MapReduce
framework, can be used to reason with defeasible rules over huge
datasets. We extend previous work by dealing with predicates of arbi-
trary arity, under the assumption of stratification. Moving from unary
to multi-arity predicates is a decisive step towards practical applica-
tions, e.g. reasoning with linked open (RDF) data. Our experimental
results demonstrate that defeasible reasoning with millions of data is
performant, and has the potential to scale to billions of facts.

1 Introduction

Currently, we experience a significant growth of the amount of avail-
able data originating from sensor readings, scientific databases, gov-
ernment authorities etc. Such data are mainly published on the Web,
providing easier knowledge exchange and interlinkage [16]. This
yields the need for large and interconnected data, as shown by the
Linked Open Data initiative [4].

The study of knowledge representation has been mainly targeted
on complex knowledge structures and reasoning methods for pro-
cessing such structures. This raises the question whether such rea-
soning methods can be applied on huge datasets. Reasoning should
be performed using rule sets that would allow the aggregation, visu-
alization, understanding and exploitation of given datasets and their
interconnections. Specifically, one should use rules able to encode
inference semantics, as well as commonsense and practical conclu-
sions in order to infer new and useful knowledge based on the data.
This is usually a formidable task when it comes to web-scale data:
for example, as described in [19] for 78,8 million statements crawled
from the Web, the number of inferred conclusions (RDFS closure)
consists of 1,5 billion triples.

In this work, we study nonmonotonic rule sets [2], [13] which are
suitable for encoding commonsense knowledge and reasoning. In ad-
dition, nonmonotonic rule sets provide supplementary advantages in
the case of poor quality data, as they can prevent triviality of infer-
ence. The occurrence of low quality data is common when they are
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fetched from different sources, which are not controlled by the data
engineer.

Over the last years, parallel reasoning has been studied extensively
e.g., in [15], [19], [9], [8], scaling reasoning up to 100 billion triples
[18]. These works address the problem by using parallel reasoning
techniques that allow simultaneous processing over distinct chunks
of data, with each chunk being assigned to a computer in the cloud.

Parallel reasoning can be based either on rule partitioning or on
data partitioning [10]. Rule partitioning assigns the computation of
each rule to a computer in the cloud. However, balanced work dis-
tribution in this case is difficult to achieve, as the computational bur-
den per rule (and node) depends on the structure of the rule set. On
the other hand, data partitioning assigns a subset of data to each
computer in the cloud. Data partitioning is more flexible, provid-
ing more fine-grained partitioning and allowing easier distribution
among nodes in a balanced manner.

Current parallelization approaches have focused on monotonic
reasoning, such as RDFS and OWL-horst, or have not been evalu-
ated in terms of scalability [14]. Our paper deals with nonmonotonic
rules and reasoning, and is therefore novel. Nonmonotonic reasoning
has been chosen because it allows to overcome triviality of reasoning
caused by inconsistent or incomplete data.

In particular, we consider defeasible rules and reasoning, and ex-
amine how nonmonotonic (defeasible) reasoning over huge datasets
can be performed using massively parallel computational techniques.
We adopt the MapReduce framework [5], which is widely used for
parallel processing of huge datasets5.

Our previous work [17] described how defeasible logic with unary
predicates can be implemented with MapReduce. In this paper we
address the problem for predicates of arbitrary arity. From the ap-
plicability perspective, this is a decisive step, as most real-world data
require multi-argument predicates. In particular, it opens the possibil-
ity of reasoning with semi-structured data, e.g. linked data expressed
in RDF, where binary predicates are needed to express properties.

From the technical perspective, multi-argument reasoning with
MapReduce turns out to be far more difficult. In [17] fired rules cal-
culation and reasoning are both performed in memory (separately on
each unique value), requiring a single MapReduce pass. On the other
hand, for the multi-argument case, fired rules calculation (based on
joins) and reasoning have to be performed separately, resulting in
multiple passes.

In fact, for reasons explained later, our solution works under the
requirement that the defeasible theory is stratified. Stratification is
a well-known concept used in many areas of knowledge representa-

5 At http://wiki.apache.org/hadoop/PoweredBy, one can see an extensive user
list of Hadoop (which is the open-source implementation, of MapReduce
framework that we have used); the list includes, among others, IBM, Ya-
hoo!, Facebook and Twitter.
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tion, in particular nonmonotonic reasoning, to allow for more effi-
cient reasoning. Regarding applicability, many linked open data do-
mains are stratified (including the well-known LUBM6 benchmark).

The paper is organized as follows. Section 2 briefly introduces
the MapReduce Framework and Defeasible Logic. An algorithm for
multi-argument defeasible logic is described in Section 3, while ex-
perimental results are presented in Section 4. We conclude in Sec-
tion 5.

2 Preliminaries

Our implementation is based on two basic components: (a) the
MapReduce Framework and (b) the Defeasible Logic. Here we de-
scribe briefly the basic notions.

2.1 MapReduce Framework

MapReduce is a framework for parallel processing over huge datasets
[5]. Processing is carried out in two phases, a map and a reduce
phase. For each phase, a set of user-defined map and reduce func-
tions are run in parallel. The former performs a user-defined opera-
tion over an arbitrary part of the input and partitions the data, while
the latter performs a user-defined operation on each partition.

MapReduce is designed to operate over key/value pairs. Specifi-
cally, each Map function receives a key/value pair and emits a set of
key/value pairs. All key/value pairs produced during the map phase
are grouped by their key and passed to reduce phase. During the re-
duce phase, a Reduce function is called for each unique key, pro-
cessing the corresponding set of values.

Probably the most well known MapReduce example is the word-
count example. In this example, we take as input a large number of
documents and the final result is the calculation of the number of oc-
currences of each word. The pseudo-code for the Map and Reduce
functions is depicted below.

map(Long key, String value):
// key: position in document (ignored)
// value: document line
for each word w in value
EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values : list of counts
int count = 0;
for each v in values
count += ParseInt(v);
Emit(key , count);

During map phase, each map operation gets as input a line of
a document. The Map function extracts words from each line and
emits that word w occurred once (”1”). Here we do not use the posi-
tion of each line in the document, thus the key in Map is ignored.
However, a word can be found more than once in a line. In this
case we emit a <w, 1> pair for each occurrence. Consider the line
”Hello world. Hello MapReduce.”. Instead of emitting a pair <Hello,
2>, our simple example emits <Hello, 1> twice (pairs for words
world and MapReduce are emitted as well). As mentioned above, the
MapReduce framework will group and sort pairs by their key. Specif-
ically for the word Hello, a pair <Hello, <1,1>> will be passed to

6 http://swat.cse.lehigh.edu/projects/lubm/

the Reduce function. The Reduce function has to sum up all occur-
rence values for each word emitting a pair containing the word and
the final number of occurrences. The final result for the word Hello
will be <Hello, 2>.

2.2 Defeasible Logic

A defeasible theory D is a triple (F,R,>) where F is a finite set of
facts (literals), R a finite set of rules, and > a superiority relation
(acyclic relation upon R).

A rule r consists (a) of its antecedent (or body) A(r) which is a
finite set of literals, (b) an arrow, and, (c) its consequent (or head)
C(r) which is a literal. There are three types of rules: strict rules,
defeasible rules and defeaters represented by a respective arrow →,
⇒ and �. Strict rules are rules in the classical sense: whenever the
premises are indisputable (e.g., facts) then so is the conclusion. De-
feasible rules are rules that can be defeated by contrary evidence. De-
featers are rules that cannot be used to draw any conclusions; their
only use is to prevent some conclusions.

Given a set R of rules, we denote the set of all strict rules in R
by Rs, and the set of strict and defeasible rules in R by Rsd. R[q]
denotes the set of rules in R with consequent q. If q is a literal, ∼q
denotes the complementary literal (if q is a positive literal p then ∼q
is ¬p; and if q is ¬p, then ∼q is p).

A conclusion of D is a tagged literal and can have one of the fol-
lowing four forms:

• +Δq, meaning that q is definitely provable in D.
• −Δq, meaning that we have proved that q is not definitely prov-

able in D.
• +∂q, meaning that q is defeasibly provable in D.
• −∂q, meaning that we have proved that q is not defeasibly prov-

able in D.

Provability is defined below. It is based on the concept of a deriva-
tion (or proof) in D = (F, R, >). A derivation is a finite sequence
P = P(1), ..., P(n) of tagged literals satisfying the conditions shown
below. The conditions are essentially inference rules phrased as con-
ditions on proofs. P(1..ı) denotes the initial part of the sequence P
of length i. For more details on provability and an explanation of the
intuition behind the conditions below, see [12].

+Δ: We may append P(ı + 1) = +Δq if either
q ∈ F or
∃r ∈ Rs[q] ∀α ∈ A(r): +Δα ∈ P(1..ı)

−Δ: We may append P(ı + 1) = −Δq if
q /∈ F and
∀r ∈ Rs[q] ∃α ∈ A(r): −Δα ∈ P(1..ı)

+∂: We may append P (ı + 1) = +∂q if either
(1) +Δq ∈ P(1..ı) or
(2) (2.1) ∃r ∈ Rsd[q] ∀α ∈ A(r): +∂α ∈ P(1..ı) and

(2.2) −Δ ∼q ∈ P(1..ı) and
(2.3) ∀s ∈ R[∼q] either

(2.3.1) ∃α ∈ A(s): −∂α ∈ P(1..ı) or
(2.3.2) ∃t ∈ Rsd[q] such that

∀α ∈ A(t): +∂α ∈ P(1..ı) and t > s

−∂: We may append P(ı + 1) = −∂q if
(1) −Δq ∈ P(1..ı) and
(2) (2.1) ∀r ∈ Rsd[q] ∃α ∈ A(r): −∂α ∈ P(1..ı) or
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(2.2) +Δ ∼q ∈ P(1..ı) or
(2.3) ∃s ∈ R[∼q] such that

(2.3.1) ∀α ∈ A(s): +∂α ∈ P(1..ı) and
(2.3.2) ∀t ∈ Rsd[q] either

∃α ∈ A(t): −∂α ∈ P(1..ı) or t ≯ s

3 Algorithm description

For reasons that will be explained later, defeasible reasoning over
rule sets with multi-argument predicates is based on the dependen-
cies between predicates which is encoded using the predicate depen-
dency graph. Thus, rule sets can be divided into two categories: strat-
ified and non-stratified. Intuitively, a stratified rule set can be repre-
sented as an acyclic hierarchy of dependencies between predicates,
while a non-stratified cannot. We address the problem for stratified
rule sets by providing a well-defined reasoning sequence, and explain
at the end of the section the challenges for non-stratified rule sets.

The dependencies between predicates can be represented using a
predicate dependency graph. For a given rule set, the predicate de-
pendency graph is a directed graph whose:

• vertices correspond to predicates. For each literal p, both p and ¬p
are represented by the positive predicate.

• edges are directed from a predicate that belongs to the body of
a rule, to a predicate that belongs to the head of the same rule.
Edges are used for all three rule types (strict rules, defeasible rules,
defeaters).

Stratified rule sets (correspondingly, non-stratified rule sets) are
rule sets whose predicate dependency graph is acyclic (correspond-
ingly, contains a cycle). Stratified theories are theories based on strat-
ified rule sets. Figure 1a depicts the predicate dependency graph of a
stratified rule set, while Figure 1b depicts the predicate dependency
graph of a non-stratified rule set. The superiority relation is not part
of the graph.

R TS U

Q V

W

(a) Stratified

X Y

Z P O

N

(b) Non-stratified

Figure 1: Predicate dependency graph

As an example of a stratified rule set, consider the following:

r1: R(X,Z), S(Z,Y)⇒ Q(X,Y).
r2: T(X,Z), U(Z,Y)⇒¬Q(X,Y).
r3: Q(X,Y), V(Y,Z)⇒W(X,Z).

r1 > r2.

The predicate dependency graph for the above rule set is depicted
in Figure 1a. The predicate graph can be used to determine strata
for the different predicates. In particular, predicates (nodes) with no
outgoing edges are assigned the maximum stratum, which is equal to
the maximum depth of the directed acyclic graph (i.e., the size of the
maximum path that can be defined through its edges), say k. Then,
all predicates that are connected with a predicate of stratum k are
assigned stratum k−1, and the process continues recursively until all

predicates have been assigned some stratum. Note that predicates are
reassigned to a lower stratum in case of multiple dependencies. The
dashed horizontal lines in Figure 1a are used to separate the various
strata, which, in our example, are as follows:

Stratum 2: W
Stratum 1: Q, V

Stratum 0: R, S, T, U

Stratified theories are often called decisive in the literature [3].

Proposition 1. [3] If D is stratified, then for each literal p:
(a) either D � +Δp or D � −Δp
(b) either D � +∂p or D � −∂p

Thus, there are three possible states for each literal p in a stratified
theory: (a) +Δp and +∂p, (b) −Δp and +∂p and (c) −Δp and
−∂p.

Reasoning is based on facts. According to defeasible logic algo-
rithm, facts are +Δ and every literal that is +Δ, is +∂ too. Having
+Δ and +∂ in our initial knowledge base, it is convenient to store
and perform reasoning only for +Δ and +∂ predicates.

This representation of knowledge allows us to reason and store
provability information regarding various facts more efficiently. In
particular, if a literal is not found as a +Δ (correspondingly, +∂)
then it is −Δ (correspondingly, −∂). In addition, stratified defeasi-
ble theories have the property that if we have computed all the +Δ
and +∂ conclusions up to a certain stratum, and a rule whose body
contains facts of said stratum does not currently fire, then this rule
will also be inapplicable in subsequent passes; this provides a well-
defined reasoning sequence, namely considering rules from lower to
higher strata.

3.1 Reasoning overview

During reasoning we will use the representation (<fact, (+Δ,+∂)>)
to store our inferred facts. We begin by transforming the given facts,
in a single MapReduce pass, into (<fact, (+Δ,+∂)>).

Now let’s consider for example the facts R(a,b), S(b,b), T(a,e),
U(e,b) and V(b,c). The initial pass on these facts using the aforemen-
tioned rule set will create the following output:

<R(a,b), (+Δ,+∂)> <S(b,b), (+Δ,+∂)>
<T(a,e), (+Δ,+∂)> <U(e,b), (+Δ,+∂)>
<V(b,c), (+Δ,+∂)>

No reasoning needs to be performed for the lowest stratum (stra-
tum 0) since these predicates (R,S,T,U) do not belong to the head
of any rule. As is obvious by the definition of +∂, −∂, defeasi-
ble logic introduces uncertainty regarding inference, because certain
facts/rules may ”block” the firing of other rules. This can be pre-
vented if we reason for each stratum separately, starting from the
lowest stratum and continuing to higher strata. This is the reason
why for a hierarchy of N strata we have to perform N − 1 times the
procedure described below. In order to perform defeasible reasoning
we have to run two passes for each stratum. The first pass computes
which rules can fire. The second pass performs the actual reasoning
and computes for each literal if it is definitely or defeasibly provable.
The reasons for both decisions (reasoning sequence and two passes
per stratum) are explained in the end of the next subsection.

3.2 Pass #1: Fired rules calculation

During the first pass, we calculate the inference of fired rules based
on techniques used for basic and multi-way join as described in [7]
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and [1]. Here we elaborate our approach for basic joins and explain
at the end of the subsection how it can be generalized for multi-way
joins.

Basic join is performed on common argument values. Consider the
following rule:

r1: R(X,Z), S(Z,Y)⇒ Q(X,Y).

The key observation is that relations R and S can be joined on their
common argument Z. Based on this observation, during Map op-
eration we emit pairs of the form <Z,(X,R)> for predicate R and
<Z,(Y,S)> for predicate S. The idea is to join R and S only for liter-
als that have the same value on argument Z. During Reduce opera-
tion we combine R and S producing Q.

In our example, the facts R(a,b) and S(b,b) will cause Map to emit
<b,(a,R)> and <b,(b,S)>. MapReduce framework groups and sorts
intermediate pairs passing <b,<(a,R),(b,S)>> to Reduce opera-
tion. Finally, at Reduce we combine given values and infer Q(a,b).

To support defeasible logic rules which have blocking rules, this
approach must be extended. We must record all fired rules prior
to any conclusion inference, whereas for monotonic logics this
is not necessary, and conclusion derivation can be performed im-
mediately. The reason why this is so is explained at the end of
the subsection. Pseudo-code for Map and Reduce functions, for
a basic join, is depicted below. Map function reads input of the
form <literal, (+Δ,+∂)> or <literal, (+∂)> and emits pairs of
the form <matchingArgumentValue, (nonMatchingArgumentValue,
Predicate, +Δ, +∂)> or <matchingArgumentValue, (nonMatchin-
gArgumentValue, Predicate, +∂)> respectively.

map(Long key, String value):
// key: position in document (irrelevant)
// value: document line (derived conclusion)
For every common argumentValue in value
EmitIntermediate(argumentValue, value);

reduce(String key, Iterator values):
// key: matching argument
// value: literals for matching
For every argument value match in values
If Strict rule fired with +Δ premises then
Emit(firedLiteral, "[¬,] +Δ, +∂, ruleID");
else
Emit(firedLiteral, "[¬,] +∂, ruleID");

Now consider again the stratified rule set described in the begin-
ning of the section, for which the initial pass will produce the fol-
lowing output:

<R(a,b), (+Δ,+∂)> <S(b,b), (+Δ,+∂)>
<T(a,e), (+Δ,+∂)> <U(e,b), (+Δ,+∂)>
<V(b,c), (+Δ,+∂)>

We perform reasoning for stratum 1, so we will use as premises
all the available information for predicates of stratum 0. The Map
function will emit the following pairs:

<b, (a,R,+Δ,+∂)> <b, (b,S,+Δ,+∂)>
<e, (a,T,+Δ,+∂)> <e, (b,U,+Δ,+∂)>
<b, (c,V,+Δ,+∂)>

The MapReduce framework will perform grouping/sorting result-
ing in the following intermediate pairs:

<b, <(a,R,+Δ,+∂), (b,S,+Δ,+∂), (c,V,+Δ,+∂)>>
<e, <(a,T,+Δ,+∂), (b,U,+Δ,+∂)>>

During reduce we combine premises in order to emit the firedLit-
eral which consists of the fired rule head predicate and the non-
MatchingArgumentValue of the premises. However, inference de-
pends on the type of the rule. In general, for all three rule types (strict
rules, defeasible rules and defeaters) if a rule fires then we emit as
output <firedLiteral, ([¬,]+∂,ruleID)> ([¬,] denotes that ”¬” is op-
tional and appended only if the firedLiteral is negative). However,
there is a special case for strict rules. This special case covers the
required information for +Δ conclusions inference. If all premises
are +Δ then we emit as output <firedLiteral, ([¬,]+Δ,+∂,ruleID)>
instead of <firedLiteral, ([¬,]+∂, ruleID)>.

For example during the reduce phase the reducer with key:

b will emit <Q(a,b), (+∂, r1)>
e will emit <Q(a,b), (¬,+∂, r2)>

As we see here, Q(a,b) and ¬Q(a,b) are computed by different re-
ducers which do not communicate with each other. Thus, none of
the two reducers have all the available information in order to per-
form defeasible reasoning. Therefore, we need a second pass for the
reasoning.

Let us illustrate why reasoning has to be performed for each stra-
tum separately, requiring stratified rule sets. Consider again our run-
ning example. During the reduce phase we cannot join Q(a,b) with
V(b,c) because we do not have a final conclusion on Q(a,b). Thus,
we will not perform reasoning for W(a,c) during the second pass,
which leads to data loss. However, if another rule (say r4) supporting
¬W(a,c) had also fired, then during the second pass, we would have
mistakenly inferred ¬W(a,c), leading our knowledge base to incon-
sistency.

In case of multi-way joins we compute the head of the rule
(firedLiteral) by performing joins in one or more MapReduce passes
as explained in [7] and [1]. As above, for each fired rule, we must
take into consideration the type of the rule and whether all the
premises are +Δ or not. Finally, the format of the output remains
the same (<firedLiteral, ([¬,]+Δ,+∂,ruleID)> or <firedLiteral,
([¬,]+∂, ruleID)>).

3.3 Pass #2: Defeasible reasoning

We proceed with the second pass. Once fired rules are calculated,
a second MapReduce pass performs reasoning for each literal sepa-
rately. We should take into consideration that each literal being pro-
cessed could already exist in our knowledge base (due to the initial
pass). In this case, we perform a duplicate elimination by not emit-
ting pairs for existing conclusions. The pseudo-code for Map and
Reduce functions, for stratified rule sets, is depicted below.

map(Long key, String value) :
// key: position in document (irrelevant)
// value: inferred knowledge/fired rules
String p = extractLiteral(value);
String knowledge = extractKnowledge(value);
EmitIntermediate(p, knowledge);

reduce(String p, Iterator values) :
// p: a literal
// values : inferred knowledge/fired rules
For each value in values
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markKnowledge(value);
For literal in {p, ¬p} check
If literal is already +Δ then
Return;
Else if Strict rule with +Δ premises then
Emit(literal, "+Δ, +∂");

Else If literal is +∂ after reasoning then
Emit(literal, "+∂");

After both initial pass and fired rules calculation (first pass), our
knowledge will consist of:

<R(a,b), (+Δ,+∂)> <S(b,b), (+Δ,+∂)>
<T(a,e), (+Δ,+∂)> <U(e,b), (+Δ,+∂)>
<V(b,c), (+Δ,+∂)> <Q(a,b), (+∂, r1)>
<¬Q(a,b), (+∂, r2)>

During the Map operation we must first extract from value the
literal and the inferred knowledge or the fired rule using extractLit-
eral() and extractKnowledge() respectively. For each literal p, both p
and ¬p are sent to the same reducer. The ”¬” in knowledge distin-
guishes p from ¬p. The Map function will emit the following pairs:

<R(a,b), (+Δ,+∂)> <S(b,b), (+Δ,+∂)>
<T(a,e), (+Δ,+∂)> <U(e,b), (+Δ,+∂)>
<V(b,c), (+Δ,+∂)> <Q(a,b), (+∂, r1)>
<Q(a,b), (¬, +∂, r2)>

MapReduce framework will perform grouping/sorting resulting in
the following intermediate pairs:

<R(a,b), (+Δ,+∂)> <S(b,b), (+Δ,+∂)>
<T(a,e), (+Δ,+∂)> <U(e,b), (+Δ,+∂)>
<V(b,c), (+Δ,+∂)> <Q(a,b), <(+∂, r1), ( ¬,+∂, r2)>>

For the Reduce, the key contains the literal and the values contain
all the available information for that literal (known knowledge, fired
rules). We traverse over values marking known knowledge and fired
rules using the markKnowledge() function. Subsequently, we use this
information in order to perform reasoning for each literal.

During the reduce phase the reducer with key:

R(a,b), S(b,b), T(a,e), U(e,b), S(b,c), V(b,c) will not emit anything
Q(a,b) will emit <Q(a,b), (+∂)>

Literals R(a,b), S(b,b), T(a,e), U(e,b), S(b,c) and V(b,c) are known
knowledge. For known knowledge a potential duplicate elimination
must be performed. We reason simultaneously both for Q(a,b) and
¬Q(a,b). As ¬Q(a,b) is −∂, it does not need to be recorded. Note
that duplicate elimination affects the parallelization. This issue is dis-
cussed in Section 4.

In case of a highly skewed dataset, first pass may calculate more
than once that a certain literal is supported by the same rule. This re-
sults, during the second pass, in literals with highly skewed amounts
of corresponding knowledge, decreasing the overall parallelization.
We address this issue by partially eliminating identical knowledge
between map and reduce phases, in an intermediate phase known as
the combiner.

3.4 Final remarks

As we see, the approach for multi-argument predicates turns out to be
far more difficult, requiring multiple passes compared to the single-
pass approach of [17]. Moreover the total number of MapReduce

passes is independent of the size of the given input. As mentioned
in subsection 3.2, performing reasoning for each stratum separately
eliminates data loss and inconsistency, thus out approach is sound
and complete since we fully comply with the defeasible logic prov-
ability. Eventually, our knowledge base consists of +Δ and +∂ lit-
erals.

The situation for non-stratified rule sets is more complex. Reason-
ing can be based on the algorithm described in [11], performing rea-
soning until no new conclusion is derived. However, the total num-
ber of required passes is generally unpredictable, depending both on
the given rule set and the data distribution. Additionally, an efficient
mechanism for ”∀r ∈ Rs[q] ∃α ∈ A(r): −Δα ∈ P(1..ı)” (in −Δ
provability) and ”∀r ∈ Rsd[q] ∃α ∈ A(r): −∂α ∈ P(1..ı)” (in 2.1
of −∂ provability) computation is yet to be defined because all the
available information for the literal must be processed by a single
node (since nodes do not communicate with each other), causing ei-
ther main memory insufficiency or skewed load balancing decreasing
the parallelization. Finally, we have to reason for and store every pos-
sible conclusion (+Δ,−Δ,+∂,−∂), producing a significantly larger
stored knowledge base.

4 Experimental results

We have implemented our method using Hadoop, and provide exper-
imental results on a cluster, as described below. We have evaluated
our system in terms of its ability to handle large data files, its scal-
ability with the number of compute nodes and its scalability with
regard to the number of rules in each stratum.

Dataset. The literature in parallel reasoning has traditionally fo-
cused on Semantic Web data and monotonic rulesets (e.g. as in [18]).
As such, they would not be appropriate for evaluating our system
(which supports nonmonotonic logics as well). In the absence of
an available benchmark that includes defeasible rules, we based our
experiments on manually generated datasets. The generated dataset
consists of a set of +Δ literals. Each literal is represented either
as ”predicate(argumentValue) +Δ” or as ”predicate(argumentValue,
argumentValue) +Δ”. In order to simulate a real-world dataset, we
used statistics on semantic web data. As described in [9] and [6], se-
mantic web data are highly skewed following zipf distribution. Thus,
we used a zipf distribution generator in order to create a dataset re-
sembling real-world datasets. For our experiments, we generated a
total of 500 million facts corresponding to 10 GB of data.

Rule set. To the best of our knowledge, there exists no stan-
dard defeasible logic rule set to evaluate our approach. For evalua-
tion purposes, taking into consideration rule sets appearing in [11],
we created an artificial rule set named blocking(n). In blocking(n)

there are n/2 rules of the form ”Qi(X), Ri(X,Y) ⇒ Qi+1(Y)” and
n/2 of the form ”Qi(X), Si(X,Y) ⇒ ¬Qi+1(Y)”. Rules supporting
Qi+1(Y) are superior to rules supporting ¬Qi+1(Y), resulting n/2 su-
periority relations. For experimental results we used blocking(n) for
n = {2, 4, 8, 16}.

Platform. We have experimented on a cluster of virtual machines
on an IBM Cloud, running IBM Hadoop Cluster v1.3, which is com-
patible with Apache Hadoop v20.2. Each node was equipped with
a single CPU core, 1GB of main memory and 55GB of hard disk
space. We have scaled the number of nodes from 1 to 16, using a
single master node.

Results. Figure 2 shows the scaling properties of our system for 2,
4, 8 and 16 rules7. We observe the following: (i) even in our modest

7 Our experiments were limited to 8 rules for a cluster of 1, 2 or 4 nodes, due
to insufficient hard disk space.
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setup, the runtime is very short, considering the size of the knowledge
base, (ii) our system scales linearly with the number of rules, (iii)
our system scales linearly with the number of nodes, i.e., the runtime
halves when we double the number of nodes.
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Figure 2: Runtime in minutes for various numbers of rules and nodes.
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Figure 3: Time in seconds for each map during the second pass

The above show that our system is indeed capable of achieving
high performance and scales very well, both with regard to the num-
ber of nodes and the number of rules. Nevertheless, to further in-
vestigate how our system would perform beyond this, it is critical
to examine the load-balancing properties of our algorithm, a major
scalability barrier in parallel applications in this domain [9]. Figure 3
shows the load balance between different map tasks during the sec-
ond pass for 16 nodes on 8 rules. In principle, an application performs
badly when a single task dominates the runtime, since all other tasks
would need to wait for it to finish. In our experiments, it is obvi-
ous that no such task exists. As described above, during the second
pass we filter out literals at Map, which results in a minor work load
imbalance (see Figure 3). Finally, our findings show that for highly
skewed datasets, the partial elimination of identical knowledge (see
Section 3.3), which is often referred to as duplicate elimination, re-
tains the parallelization of our approach for Reduce as well.

It is also worth noting that the communication model of Hadoop
is not widely affected by the number of nodes in the cluster. Map
operations only use local data (implying very little communication
costs). Reduce operations use hash-partitioning to distribute data
across nodes based on the keys assigned by the reduce phase. As
a result, there is very little locality between data in the Map and the
Reduce phase regardless of the number of compute nodes.

5 CONCLUSION

In this paper we extended previous work described in [17] by propos-
ing a method to perform reasoning for multi-argument predicates un-
der the assumption of stratification. Multi-argument predicates com-
plicate significantly the implementation (compared to the one pre-
sented in [17] for single-argument predicates), because they require

multiple passes. We presented how reasoning can be implemented
using the MapReduce framework and provided an experimental eval-
uation. The results demonstrate that our approach can address rea-
soning over hundreds of millions of facts.

We consider this to be another step in the research effort towards
supporting scalable parallel inconsistency-relevant reasoning. This
is important to allow inconsistency-relevant reasoning with huge
datasets, that are becoming all the more common (e.g., through the
Linked Open Data initiative [4]), as well as to prevent triviality of
inference in case of low quality data. Thus, our results could find ap-
plications in the context of aggregating, understanding or exploiting
the full semantical information of such huge datasets, through their
association with customized inference semantics and commonsense
reasoning.

Another potential area that may benefit from this work is AI Plan-
ning. Given the nonmonotonic nature of planning, in our future work
we plan to apply the techniques developed here to help stratify large
action databases, in order to leverage massively parallel computation
to speed up goal achievement and hence plan construction.
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