
Title Realization of Valley and Spin Pumps by Scattering at
Nonmagnetic Disorders

Author(s) An, X; Xiao, J; Tu, W; Yu, H; Fal’ko, VI; Yao, W

Citation Physical Review Letters, 2017, v. 118 n. 9, p. 096602:1-5

Issued Date 2017

URL http://hdl.handle.net/10722/240330

Rights

Physical Review Letters. Copyright © American Physical
Society.; This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International
License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/95556902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Realization of Valley and Spin Pumps by Scattering at Nonmagnetic Disorders

Xing-Tao An,1,2 Jiang Xiao,3,4,5 M.W.-Y. Tu,1 Hongyi Yu,1 Vladimir I. Fal’ko,6 and Wang Yao1,*
1Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong, China

2School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
3Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China

4Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
5Institute for Nanoelectronics Devices and Quantum Computing, Fudan University, Shanghai 200433, China
6National Graphene Institute, University of Manchester, Booth St E, Manchester M13 9PL, United Kingdom
(Received 10 September 2016; revised manuscript received 28 November 2016; published 1 March 2017)

The recent success in optical pumping of valley polarization in two-dimensional transition metal
dichalcogenides (TMDs) has greatly promoted the concept of valley-based informatics and electronics.
However, between the demonstrated valley polarization of transient electron-hole pair excitations and
practical valleytronic operations, there exist obvious gaps to fill, among which is the valley pump of long-
lived charge carriers. Here we discover that the quested valley pump of electrons or holes can be realized
simply by scattering at the ubiquitous nonmagnetic disorders, not relying on any specific material property.
The mechanism is rooted in the nature of the valley as a momentum space index: the intervalley
backscattering in general has a valley contrasted rate due to the distinct momentum transfers, causing a net
transfer of population from one valley to another. As examples, we numerically demonstrate the sizable
valley pump effects driven by charge current in nanoribbons of monolayer TMDs, where the spin-orbit
scattering by nonmagnetic disorders also realizes a spin pump for the spin-valley locked holes. Our finding
points to a new opportunity towards valley spintronics, turning disorders from a deleterious factor to a
resource of valley and spin polarization.

DOI: 10.1103/PhysRevLett.118.096602

The energy dispersion of electrons in crystalline solids
usually has degenerate minima located at well-separated
momentum space points, known as valleys. For low energy
electrons, the valleys span an internal quantum degree of
freedom, just like the spin. Similar to the potential use
of spin polarization in spintronics, information can be
represented by the valley polarization configurations, i.e.,
unequal population distribution among the degenerate
valleys. Schemes to induce or manipulate valley polariza-
tion for potential valleytronics have been explored in
various systems [1–12]. Unlike spintronic controls based
on generic properties of spin, these valley control schemes
rely on specific material properties such as valley-
dependent anisotropic dispersions [1,2], and carefully
engineered strains [3,4], edges [5], or defects [6–10].
Two-dimensional hexagonal crystals such as graphene

and monolayer transition metal dichalcogenides (TMDs)
have newly emerged as a promising semiconducting plat-
form for exploring valleytronic applications [13–21]. These
materials have a time reversal pair of valleys spanning a
pseudospin 1=2, which can acquire spinlike properties
that allow its manipulation similar to the spin controls.
These include the valley Hall effect [13,15–19], the valley
magnetic response [13,22–25], and the valley optical
selection rules [14,15]. The latter, in particular, has enabled
dynamic pumping of valley polarization of electron-hole
pairs by circular polarized light in two-dimensional TMDs
observed through the luminescence of these transient
excitations [26–29], and the lifting of valley degeneracy

via the valley-selective optical Stark effect [30]. These
valley controls, however, rely on inversion symmetry
breaking in the two-dimensional hexagonal lattices [31],
which has limited the generalization to more platforms.
Here we discover a general mechanism to the pump

valley based on its generic nature as a momentum space
index, rather than extrinsically acquired properties depen-
dent on host materials. Because of the distinct momentum
transfers on a finite Fermi surface, intervalley backscatter-
ing by nonmagnetic disorder can have a valley-contrasted
rate, which causes a net population transfer between the
valleys. In a quasione-dimensional geometry, the valley
current can be pumped out from both sides of a disordered
region when a charge current is driven through.
Remarkably the valley pump efficiency (i.e., per charge
transmission) is shown to increase with the density of sharp
disorders. For spin-valley coupled carriers, such a valley
pump can also realize a spin pump. In monolayer TMDs,
we numerically demonstrate the sizable valley pump of
electrons by spin-independent scattering in zigzag nano-
ribbons, and the spin pump of holes by spin-orbit scattering
in nanoribbons of various orientations. Our finding is an
illuminating example on the advantage of exploiting the
valley in future electronics, where the pseudospin control-
lability can directly arise from its momentum nature, in
addition to those extrinsically acquired spinlike properties.
Consider a quasione-dimensional system where the

energy dispersion has two well-separated valleys centered
at finite momenta K and −K. The disorder scattering for a
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carrier incident in valley τ (τ ¼ �K) can be characterized
by the valley-conserved transmission (Tτ;τ) and reflection
coefficients (Rτ;τ), and the valley-flip ones (Tτ;−τ and Rτ;−τ).
If valley τ hasNτ sub-bands at the Fermi energy, Tτ;τ (Tτ;−τ)
and Rτ;τ (Rτ;−τ), then refer to the overall valley-conserved
(valley-flip) transmission and reflection summed over
initial and final sub-bands of scattering.
The two valley-flip reflection coefficients RK;−K and

R−K;K are different in general, as they correspond to
intervalley scatterings with distinct momentum transfers,
as illustrated in Fig. 1. In the first Born approximation,
RK;−K and R−K;K correspond to different Fourier compo-
nents of the scattering potential at 2K þ 2qF and 2K − 2qF,
respectively, where qF is the Fermi wave vector. So large
qF is favored to have a larger difference between RK;−K
and R−K;K . The two valley-flip transmission coefficients
are always identical, i.e., TK;−K ¼ T−K;K , as these two
scattering channels are conjugates of each other (cf.,
Fig. 1). Thus, for a valley-unpolarized incident flux of N
electrons (N ¼ 2NK ¼ 2N−K), the population difference
between the K and −K valleys in the outgoing flux is
(counting both transmission and reflection)

PV ≡ 2ðR−K;K − RK;−KÞ: ð1Þ
The scattering by the ubiquitous nonmagnetic disorder
therefore provides a mechanism to the pump valley.

The pumped valley polarization is carried by both the
reflection and transmission flux. If the K and −K valleys
are time reversals of each other (as in the case of graphene
and TMDs), the two valley-conserved reflection coeffi-
cients RK;K and R−K;−K are also identical. For a valley-
unpolarized incident flux, the reflection flux then carries a
valley current of jV ¼ −ðR−K;K − RK;−KÞvF, while the
valley current in the transmission flux is jV ¼ ðTK;K−
T−K;−KÞvF, vF being the Fermi velocity. The valley
currents on the two sides can be related through the sum
rule NτK ¼ TτK;τK þ RτK;τK þ TτK;−τK þ RτK;−τK . For the
time reversal pair of valleys, this sum rule leads to

TK;K − T−K;−K ¼ −ðRK;−K − R−K;KÞ ¼ PV=2: ð2Þ
Namely, the valley current in the transmission flux has
the same magnitude but opposite direction to that in the
reflection flux [cf., Fig. 1(c)], and the net outward valley
flow from the disorder is PVvF.
A disordered region can thus be exploited as a valley

source when a charge current is driven through by bias
voltage or temperature gradient [Fig. 1(c)]. The charge
current, normalized by the thermodynamic driving force, is
jC ¼ TsumvF where Tsum≡TK;KþT−K;−KþTK;−KþT−K;K .
The ratio between the outward valley flow from the
disordered region and the charge current equals to
PV=Tsum, which characterizes the valley pump efficiency.
It counts the valley population difference pumped per
charge transmission.
If the incident flux has a valley polarization η, i.e.,

ð1þ ηÞN=2 electrons in valley K and ð1 − ηÞN=2 electrons
in −K, the overall effect of intervalley scattering then
depends on η. The outgoing flux (reflection plus trans-
mission) has an average valley polarization of ηþ Δη,
where

Δη ¼ 1

N
PV −

1

N
ΓVη: ð3Þ

ΓV ≡ 2ðR−K;K þ RK;−K þ T−K;K þ TK;−KÞ here character-
izes the valley depolarization by the intervalley scattering.
The overall effect of intervalley scattering includes two
counteracting terms: a valley pump term, and a depolari-
zation term that is proportional to the incident valley
polarization η. The competition between these two opposite
effects determines whether the disorder scattering increases
or decreases valley polarization of incident carriers.
As a remarkable feature of this valley pump mechanism,

the pump efficiency is expected to increase with the number
of sharp disorders in the scattering region, since each
disorder pumps valley polarization of the same sign when
the quantum interference between the multiple scatters can
be neglected [see Fig. 1(c)]. The increase of PV=Tsum with
the disorder number eventually saturates as suggested by
the valley depolarization term in Eq. (3).
We demonstrate this valley pump in nanoribbons of

monolayer TMDs. In these two-dimensional semiconduc-
tors, the conduction and valence band edges at the �K

FIG. 1. (a) Schematics of the momentum transfers (upper) of
the scattering channels (lower) for the electron incident in valley
−K. (b) Electron incident in valley K. The valley-flip reflection
coefficients R−K;K in (a) and RK;−K in (b) can differ because of the
distinct momentum transfers (solid curved arrows in the upper
panels), whereas the valley-flip transmission coefficients TK;−K
and T−K;K are always equal. For an incident flux with one
electron per valley, the disorder scattering thus transfers a net
population of R−K;K − RK;−K from valley −K to K. (c) When a
charge current (jc, purple arrow) is driven through, the valley
current (jV , green arrows) is pumped out from both sides of the
disorders. (d) Numerical demonstration of the valley pump uses
monolayer MoS2 nanoribbons with disorders randomly distrib-
uted over a rectangular scattering region, where the pumped
valley current is examined at the boundaries of the disordered
region.
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valleys are contributed predominantly by the three metal d
orbitals [32]: dz2 ; dxy; dx2−y2 . Our calculation is thus based
on the tight-binding model constructed with these three
orbitals [33],

H ¼
X

i

X

μ

εiμc
†
iμciμ þ

X

hi;ji

X

μν

tiμ;jνc
†
iμcjν: ð4Þ

Here c†iμ creates an electron on orbital μ at metal site i in
an orthogonal basis; the sums hi; ji run over all pairs of
nearest-neighbor metal sites, and tiμ;jν are the hopping
integrals based on symmetry consideration (without the
Slater-Koster two-center approximation) fitted from first
principles band structures [33]. This simplified model
describes well the low energy electrons and holes in the
�K valleys. Quantitative analysis can use more accurate
tight-binding models accounting non-nearest-neighbor
hopping [33] and more orbitals [34]. The spin-orbit
coupling, being weak in the conduction bands [32], is
neglected in discussing the valley pump of electrons.
The disorder potential is introduced by a position depen-

dent on-site energy, εiμ¼ εμþu
P

lexp½−ðjri−rlj2Þ=ð2d2Þ�,
where l runs over the disorders located at rl randomly chosen
from atomic sites in a region of length L on a zigzag
nanoribbon [cf., Fig. 1(d)]. All disorders are assumed with
the same Gaussian profile of length scale d ¼ a (a is the
lattice constant) and strength u ¼ −0.5 eV. The valley-
dependent scattering by the entire disordered region is
calculated using a recursive Green’s function technique
[35]. The band parameters εμ and tiμ;jν are taken from
Ref. [33]. The periodic boundary condition is used at the
ribbon edge to avoid the edge-state effects specific to this
example of TMD nanoribbons, so that we can focus on
generic aspects of the bulk valley pump that can be common
to other materials. The presence of such edge states only has
quantitative effects on the valley pump (cf., Supplemental
Material [36,37]).
Figure 2(b) shows the calculated valley-dependent trans-

mission and reflection for disorder scattering in a zigzag
MoS2 nanoribbon. As expected, TK;−K ¼ T−K;K and
RK;K ¼ R−K;−K . The two valley-flip reflection coefficients
RK;−K and R−K;K have a difference that increases with
incident energy, and the same amount of difference is found
between TK;K and T−K;−K , as dictated by Eq. (2).
Valley pump per charge transmission is a figure of merit

to quantify the efficiency of this pump scheme. As shown in
Figs. 2(c) and 2(d), with the increase of disorder density,
the overall charge transmission Tsum decreases while the
valley pump rate PV increases, both helping to enhance
the valley pump efficiency. The valley pump per charge
transmission PV=Tsum as a function of ni at a fixed Fermi
energy is shown in Fig. 2(f). The pump becomes more
efficient with the increase of disorder density. At ni ¼ 5%,
PV=Tsum ∼ 30%, meaning that equivalently three electrons
are pumped out in full valley polarization per ten electrons
transmitting through the disordered regions, which is a
significant pump efficiency. At fixed disorder density,

increasing the length L of the scattering region can also
enhance the pump efficiency, as shown in Fig. 2(g). The
valley pump efficiency has the expected saturation behavior
at large L, where the valley depolarization effect by the
intervalley scattering starts to balance with the valley pump
[cf., Eq. (3)].
Next we take into account the spin-orbit splitting in the

Bloch bands. At the time reversal pair of valleys, the spin
splitting must have opposite sign. This valley-dependent
spin splitting effectively introduces a coupling between the
spin and valley pseudospin. Therefore, even if the disorders
are nonmagnetic, as long as they can flip spins, it is possible
to pump spin. The idea can again be illustrated in the
TMD nanoribbons, where the valance band edge has a spin
splitting λ of hundreds of meV [32]. So for band edge holes,
the K (−K) valley only has spin up (down) in out-of-plane
direction; i.e., the spin index is locked to the valley index
[cf., Fig. 3(a)]. We focus on this spin-valley locked energy
window of λ, where the valley pump is a spin pump at the
same time.

FIG. 2. (a) Conduction sub-bands from the tight-binding model
without spin-orbit coupling. Ec denotes the band edge. (b) The
coefficients of intra and intervalley transmission and reflection by
the disordered region [cf., Fig. 1(d)], as functions of the Fermi
energy EF, plotting the numbers of electrons scattered into the
corresponding channels out of Nτ incident electrons in valley τ,
where Nτ is the number of sub-bands crossed by EF in valley τ.
(c) The valley pump rate PV ≡ 2ðR−K;K − RK;−KÞ, (d) the overall
transmission Tsum≡TK;KþT−K;−KþTK;−KþT−K;K , and (e) the
valley depolarization rate ΓV ≡ 2ðTK;−K þ T−K;K þ RK;−Kþ
R−K;KÞ. The length of the disordered region L ¼ 90a in (b)–(e),
and ni is the disorder density. (f) The valley pump efficiency (i.e.,
per charge transmitted) PV=Tsum as a function of ni, at L ¼ 90a.
(g)PV=Tsum as a function ofL, at ni ¼ 2%.EF − Ec ¼ 0.26 eV in
(f) and (g). The width of the zigzag nanoribbon isW ¼ 27.7a (a is
lattice constant). In all plots, the dots represent calculated values
averaged over 500 configurations of randomly generated disorder
distributions, with the fluctuations shown as the error bar.
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Our numerical calculations are performed with the spin-
orbit coupling added to the three-band tight-binding model
of monolayer TMDs [33],

H¼
X

i

X

μ

εμc
†
iμciμþλ

X

i

X

μ;ν

c†iμðLμ;ν ·SÞciν

þ
X

hi;ji

X

μν

tiμ;jνc
†
iμcjν− iα

X

hj;lid

X

μ

c†jμ½S× r̂lj�zclμ; ð5Þ

where the second term is the on-site interaction between
orbital angular momentumL and spin S, which accounts for
the strong spin-valley coupling in thevalence band [33].Lμ;ν
denotesmatrix element ofL between orbital μ and ν. For the
disorder, we consider here a nonmagnetic one consisting of
the spin-flip hopping between three nearest-neighbor metal
sites [Fig. 3(a) inset]. Such hopping is described by the last
term in Eq. (5), where r̂lj is the unit directional vector
pointing from site j to site l, hj; lid runs over the pairs of
nearest-neighbor sites at each disorder, and α ¼ 0.5 eV.
In monolayer TMDs with the D3h point group, the spin

(valley) pump is symmetry allowed for nanoribbons with
orientation other than the armchair. Figure 3(b) shows the
calculated spin-flip and spin-conserved reflection coeffi-
cients, at a disorder density ni ¼ 1%, in monolayer MoS2
nanoribbons of zigzag, (4,1) and (2,1) orientations,

respectively. The intervalley reflection vanishes when the
Fermi energy is between the edge of the first and the second
sub-bands. This is because the intervalley reflection within
the first sub-band is between a time reversal pair of states,
which vanishes for a nonmagnetic disorder potential that
preserves the time reversal symmetry [cf., Fig. 3(a)]. When
the two spin-flip reflection coefficients R↑;↓ and R↓;↑
become finite at higher energy, their magnitudes are
different, which leads to the spin pump.
Figure 3(c) shows PS=Tsum, the spin pump per charge

transmission, where PS ≡ 2ðR↑;↓ − R↓;↑Þ. Note that
Eqs. (1)–(3) can apply to the spin pump, with the valley
index replaced by the spin index. For this disorder potential,
both the reflection and the spin pump efficiency get stronger
in directions other than the zigzag. The orientation depend-
ence of the valley (spin) pump efficiency here is dominantly
determined by the anisotropy of the disorders [cf., Fig. 3(a)
inset], instead of the point group symmetry of the host lattice.
In all three nanoribbons of different orientations, the spin
pumpgetsmore efficientwith the increase of disorder density.
We note that these nanoribbon orientations correspond to a
distinct arrangement of the valleys with respect to the
transport direction. The general requirement for this valley
(spin) pump scheme to be applicable in the various materials
is to have valleys with finite separation in the direction of
transport, while their detail arrangement is not essential.
In summary, we have shown that the quested valley

pump of electrons and holes can be realized with the
ubiquitous nonmagnetic disorders. A new possibility for
pumping spin is also made possible by scattering at
nonmagnetic disorders in the presence of the spin-valley
coupling. A practical source of valley (spin) polarization
can thus be realized simply by passing charge current
through a disordered region. The net effect of the disorder
scattering is to turn a valley (spin) unpolarized incident
current into valley (spin) polarized transmission and
reflection. Valley and spin currents can then be extracted
at the boundary of the disordered region [cf., Fig. 1(d)]. The
spin pump effect is distinct in nature from spin generation
schemes exploiting spin-dependent tunneling at semicon-
ductor heterostructures [38–40], with the key difference
being that the scatters are exploited here as spin sources
(with net outward spin flow) instead of spin filters. It can be
implemented in multivalley materials using various disor-
ders that can cause intervalley spin flip.
It is interesting to compare this extraction scenario with

the literature of current induced spin polarization homo-
geneously generated in infinite systems due to Rashba or
Dresselhaus spin-orbit coupling [41]. The steady-state
polarization in the homogeneous system has its magnitude
limited by the ratio of the pump rate PV and the depolari-
zation rate ΓV [cf., Eq. (3) and Supplemental Material [36]],
which is typically small. In contrast, our valley (spin) pump
scheme suggests utilizing the transmission or reflection
current at the boundary of the disordered region, which has
a valley (spin) polarization given by the ratio of the valley

FIG. 3. (a) Valence band edges in monolayer TMDs with the
valley-dependent spin splitting of magnitude λ. Red and blue
denote spin up and down, respectively. Green line cuts of the two-
dimensional bands give the one-dimensional sub-bands of the
nanoribbons (with periodic boundary condition). The two curved
solid arrows denote the spin-flip reflections R↑;↓ and R↓;↑, which
correspond to distinct momentum transfers on a finite Fermi
surfacewith the spin-valley locking. The inset is the schematic of a
nonmagnetic disorder with spin-flip hopping between three
nearest-neighbor Mo sites. (b) Spin-conserved and spin-flip
reflection coefficients calculated for monolayer MoS2 nanorib-
bons of zigzag, (4,1) and (2,1) orientations, respectively, plotting
the numbers of holes scattered into the corresponding channels out
of N↑ð↓Þ incident holes in the spin ↑ð↓Þ state, where N↑ð↓Þ is the
number of spin ↑ð↓Þ sub-bands crossed by EF. The disorder
density ni ¼ 1%. (c) The spin pump efficiency PS=Tsum at several
disorder densities, where PS ≡ 2ðR↑;↓ − R↓;↑Þ. In (b) and (c), the
widths of zigzag, (4,1) and (2,1) nanoribbons are 27.7, 27.5, and
29.1a, respectively, and the lengths of the disordered regions are
90, 79.4, and 73.3a, respectively. The dots represent averages over
500 configurations of randomly generated disorder distributions,
with the fluctuations shown as the error bar.
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(spin) pump rate PV and the overall transmission Tsum
instead. Figures 2(c)–2(e) have shown that PV and ΓV
increase while Tsum decreases when the scattering is
enhanced. Thus the valley and spin extraction efficiency
at the boundary of the disordered region can be enhanced
by increasing the disorder density, while the polarization
established in a homogeneous system cannot. Moreover,
here valley (spin) current is directly extracted into the clean
regions on the two sides where valley (spin) lifetime is long
with the absence of intervalley scattering.
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