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In this paper, a new linear magnetic gear with multiple gear ratios is proposed. Unlike the conventional linear magnetic 

gears, the proposed one purposely utilizes the aluminum-nickel-cobalt (AlNiCo) permanent magnets (PMs) as the excitation 

source. Due to the relatively low coercivity, AlNiCo PMs can be magnetized or demagnetized by applying an appropriate 

DC current pulse into the magnetizing winding. Thus, the pole-pair numbers of PMs on two movers can be varied 

accordingly so that different gear ratios can be achieved. Firstly, the mathematical modeling of the hysteresis loop of 

AlNiCo PMs is established. Then, the proposed linear magnetic gear with adjustable gear ratios is presented. Instead of 

the traditional surface-mounted PM configuration, the proposed machine installs the PMs using the surface-inset and 

consequent-pole configuration. Hence, the adverse influence during the magnetizing or demagnetizing process can be 

minimized. Since the magnetizing windings are placed in the movers, no position control is required for the magnetizing 

or demagnetizing process. By applying finite element analysis, the electromagnetic performances of the proposed linear 

magnetic gear with adjustable gear ratios are evaluated. Finally, the proposed linear magnetic gear is applied for direct-

drive wave energy extraction. Owing to the capability of adjustable gear ratios, the wave energy converter can be operated 

in resonance with the waves at different sea states so that the maximized power can be captured. 

 

Index Terms—Permanent magnet, linear magnetic gear, variable gear ratio, direct-drive, wave energy. 

 

I. INTRODUCTION 

Owing to the increasing concern on the energy utilization as well as environmental protection, as one of the most 

promising candidates to relieve these problems, the magnetic gear has become a hot research topic since the past 

decades. Compared with the mechanical gear, the magnetic gear makes use of the magnetic field interaction which has 

no physical contacts between gear teeth. Consequently, it exhibits various distinct features, namely less mechanical 
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wear and tear, high efficiency, less maintenance and silent operation. Throughout the years, various magnetic gears 

have been proposed and designed, such as the magnetic worm gears [1], the external-meshed magnetic gears with 

parallel axes [2], the magnetic bevel gears [3], the coaxial magnetic gears [4-6], the planetary magnetic gears [7, 8], 

the linear magnetic gears [9, 10], the trans-rotary magnetic gears [11], the axial-flux magnetic gears [12, 13], as well 

as the transverse-flux magnetic gears [14]. Owing to the fact that the flux density of permanent magnets (PMs) is 

uncontrollable, the pole-pair numbers of magnetic fields produced by PMs are unchangeable so that the gear ratios are 

also fixed. The single gear ratio of magnetic gears is ill-suited for many industrial applications, including electric 

vehicle propulsion and renewable power generation. 

In order to solve the problem, the magnetic gears with adjustable gear ratios are suggested: Shah et al. proposed a 

variable speed magnetic gear using rotational control rotor [15], while Husain et al. utilized a set of armature winding 

to replace the PMs on one of the rotors [16]. By adopting the pole changing technique, the gear ratio can then be varied. 

Since the slip rings are required for current conduction in the wound rotor, it degrades the reliability of the whole 

system. To remove the slip rings and to improve the situation, a continuously variable speed vernier magnetic gear is 

proposed [17]. In particular, the armature winding is placed in the stationary part so that the frequency of the AC supply 

can be adjusted. According to this arrangement, the speed ratio can be varied while the torque ratio is unchanged. 

Atallah et al. proposed a magnetic power split device to achieve a magnetic continuously variable transmission function 

[18]. The 3-phase winding, which was implemented in the outer side of the magnetic gear, was equipped within the 

stator. This magnetic gear consists of one stator with armature winding and three rotors, namely the control rotor, the 

input rotor and the output rotor. By feeding a variable frequency current into the armature winding, the speed of the 

control rotor can be adjusted so that the gear ratio of the input rotor and the output rotor can be adjusted accordingly. 

However, the three rotors result in a three-airgap topology, which increases the structure complexity and reduces the 

machine reliability. Recently, a machine called “memory machine”, which utilizes the aluminum-nickel-cobalt 

(AlNiCo) material as the excitation source, has been proposed. Upon the employment of AlNiCo PMs, the flux density 

of the memory machine can be online magnetized or demagnetized. By solely using a temporary current pulse, the 

AlNiCo PMs can be easily magnetized, demagnetized and reversely magnetized. Therefore, the PM pole-pair number 

of the memory machine can be adjusted flexibly, and this technique is also known as pole-dropping and pole-reversing 

[19]. By borrowing this concept, a magnetic gear with multiple gear ratios was proposed [20]. The AlNiCo PMs can 
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be purposely magnetized or demagnetized so that the pole-pair numbers of PMs on the two rotors of the magnetic gears 

can be changed. Hence, the gear ratio can be adjusted consequently. 

The purpose of this paper is to combine the linear magnetic gear topology and the flux-mnemonic technique to form 

a new linear magnetic gear topology with multiple gear ratios. In particular, by incorporating the AlNiCo PMs and the 

magnetizing winding set into the linear magnetic gear, the linear magnetic gear with adjustable gear ratios can be 

accomplished. 

II. DESIGN 

The linear magnetic gear consists of one stationary field modulation segments and two moving parts with different 

mechanical speeds to realize the force transmission. The key of the linear magnetic gears relies on the interaction 

between the two different pole-pair numbers of PMs of the two movers. In order to develop a steady thrust for force 

transmission, the pole-pair numbers of PMs in the two movers should satisfy the relationship as follows: 

102 NNN         (1) 

where N0 is the number of field modulation segments, N1 and N2 are the pole-pair numbers of PMs on the two movers 

respectively. Therefore, the gear ratio Gr is governed by: 
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where v1 and v2 are the velocity of mover 1 and mover 2, respectively. 

In order to regulate the gear ratios, the pole-pair numbers of PMs in the two movers should be changed in accordance 

with (2). Since the number of field modulation segments is kept fixed, the pole-pair numbers of PMs in the two movers 

should be adjusted simultaneously to meet the relationship of (1) so that the force transmission can be realized. For the 

PM with high coercivity, such as Neodymium-Iron-Boron (NdFeB), it is very impractical to perform the on-line 

magnetization or demagnetization. Thus, the AlNiCo PMs with the relatively lower coercivity are selected to achieve 

the variable gear ratios for the proposed linear magnetic gears. 
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Fig. 1. Hysteresis loop of AlNiCo PMs. 

 

  
Fig. 2. Pole-changing processes.  

 

A. Modeling of AlNiCo PMs 

Fig. 1 shows the hysteresis loop of AlNiCo PMs, where its demagnetization curve is different from that of NdFeB 

PMs. In particular, the demagnetization curve of AlNiCo PMs is a straight line in the second quadrant and has a much 

lower coercivity. As shown in Fig.1, when there is no demagnetization magnetomotive force (MMF), its operating 

point is Br1 that indicates its remanent value. The air gap in a machine is equivalent to the demagnetization effect and 

the operating point will move to point P. When a demagnetization MMF is exerted, the operating point will drop to 

point Q. At this situation, when the demagnetization MMF is removed, the operating point will trace out the recoil line 

toward to Br2, located below Br1. When the demagnetization MMF goes negative further to –Fd, namely the operating 

point S, the AlNiCo PMs can be totally demagnetized by removing this demagnetization MMF. Similarly, the AlNiCo 

PMs can be fully forward magnetized in the first quadrant, fully reverse magnetized in the third quadrant and fully 
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reverse demagnetized in the fourth quadrant, as shown in Fig. 2. Throughout these processes, the AlNiCo PM pole-

pair numbers can be changed by the injection of an appropriate DC current pulse. 

For modelling the hysteresis loop of AlNiCo, a parallelogram hysteresis model (PHM) that was used in the analysis 

of hysteresis motors is presented in [21]. As shown in the Fig. 3, the major and minor magnetization loops for the 

hysteresis material are represented by a parallelogram of constant width equal to twice of the coercive intensity Hc. 

Meanwhile, Hm is the positive saturation point of intensity. The operating point moves around one of the hysteresis 

loops. 

   

Fig. 3. Parallelogram hysteresis model of AlNiCo PMs. 

 

The PHM can be expressed by the following linear equations:  
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which correspond to the right boundary line, the set of parallel lines in the middle and the left boundary line, 

respectively. Hence, during the magnetization process, (3) and (4) are used. On the other hand, during the 

demagnetization process, (3) and (5) are instead applied to calculate the flux density. With these equations, the 

performances of magnetizing or demagnetizing for AlNiCo PMs can be readily computed. By coupling the PHM model 

into the FEM analysis to change the magnet pole-pair numbers, the magnetic gear ratios can be varied accordingly. 

The process of varying magnetic gear ratios in linear magnetic gears is similar to that in rotational magnetic gears [22]. 

 

B. Proposed Linear Magnetic Gear 
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Fig. 4. A coaxial magnetic gear with variable gear ratios. 

 

Recently, a coaxial magnetic gear with multiple gear ratios was proposed [20]. By utilizing the AlNiCo material and 

a set of magnetizing winding, the pole-pair numbers of PMs can be online changed and the basic relationship of (1) 

can be satisfied in the meantime. Therefore, the magnetic gear ratio is adjustable. As shown in Fig. 4, the magnetic 

variable gear consists of the outer rotor with surface-mounted arrangement of AlNiCo PMs, the modulation segments 

with double-deck magnetizing windings and the inner rotor with surface-mounted arrangement of AlNiCo PMs. Since 

the magnetizing windings locate in the stationary part, position control should be used to magnetize or demagnetize 

the AlNiCo PMs to regulate the gear ratio. This unfavorably increases the control difficulty and system complexity. 

By borrowing the aforementioned concept, a linear magnetic gear with multiple gear ratios is proposed. As illustrated 

in Fig. 5(a), the magnetizing windings are placed in the movers rather than in the modulation segments. The 

magnetizing winding in the mover 1 is employed for magnetizing or demagnetizing PMs in the mover 1 and the 

magnetizing winding in the mover 2 is employed for magnetizing or demagnetizing PMs in the mover 2, respectively. 

As shown in Fig. 5(b), an H-bridge circuit is used for driving each magnetizing winding, where Lm and Rm are the 

inductance and resistance of a magnetizing coil, respectively. This H-bridge circuit can control the current amplitude 

and direction for magnetizing/demagnetizing AlNiCo PMs. In addition, the PM arrangement adopts the surface-inset 

consequent-pole topology.  

Since there is no commutating issue in the linear motion, the magnetizing windings can be wound underneath the 

PM, where one individual magnetizing coil is used for one individual PM pole. Thus, the position control can be 

omitted. Furthermore, by using the surface-inset consequent-pole topology. Compared with our previously developed 

rotational magnetic gear with variable gear ratios which adopts the surface-mounted PMs [22], the effective air-gap 
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length for magnetizing/demagnetizing a piece of magnet is reduced. Therefore, the required MMF of the proposed 

linear magnetic gear is lowered than that of the surface-mounted one. Consequently, Fig. 6 shows the flux line when 

the PM experiences the magnetizing or demagnetization operation. It can be observed that at different positions, the 

targeted PM pole can be magnetized with little influence on other PM poles. Therefore, it is feasible for magnetizing 

or demagnetizing PM poles simultaneously. 

Compared with the previous magnetic variable gears, the proposed one enjoys the definite merits as summarized 

below: 

 The proposed structure allocates the magnetizing windings in the movers rather than in the stationary ring so that the 

manufacture process is much easier.  

 One magnetizing winding is applied for magnetizing or demagnetizing one PM pole. The control algorithm is very 

straightforward while no position information is needed. Hence, the control complexity of the magnetizing or 

demagnetizing process is reduced. 

 By using the surface-inset consequent-pole topology for the PM allocation, the permeance of the magnetizing or 

demagnetizing circuit is significantly improved. Hence, the required MMF and the copper loss can be reduced. 

 Under the process of magnetizing or demagnetizing PMs, the influence on neighborhood PMs is minimized. 

Therefore, the overall reliability is improved. 
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(b) 

Fig. 5. Proposed linear magnetic gear with variable gear ratios. (a) Machine configuration. (b) 

Magnetizing/demagnetizing DC circuit. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 6. PM magnetization or demagnetization at different positions. (a) Position of maximum permeance. (b) Position 

of minimum permeance. (c) Position of the permeance between maximum and minimum values. 

 

Compared to the rotational counterpart, the magnetic structure of the linear machines is unbalanced due to the finite 

length of the stator or mover, which is called the end-effect phenomenon. This end-effect phenomenon may cause an 
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increased pulsation force and unbalanced phase inductance. Since the proposed magnetic gear does not have armature 

winding, only the pulsation force is resulted. In order to mitigate this force component, several techniques can be 

employed, such as adjusting the stator length [23, 25], adding auxiliary poles [24] or chamfering the edges of the short 

part [25]. 

In addition, the cogging force due to the interaction between the stationary field modulation segments and PMs may 

also cause the thrust pulsation during operation. In order to suppress the cogging force, several techniques applied to 

the rotational PM machines can also be used, such as slot or magnet skewing [26], variation of magnet shape [27], and 

selecting an appropriate combination of poles and slots [28]. Furthermore, due to the magnetic field modulation effect, 

the cogging force in magnetic gears are caused by both the fundamental components and the modulated effective 

harmonic components [29]. In this design, the suitable stator length approach is selected for mitigating the cogging 

force component due to the end effect, and the appropriate slot-pole combination is also adopted to suppress the cogging 

force component due to the interaction between the field modulation segments and the PMs. For further suppression, 

the PM shape will be optimized to reduce those useless harmonic components to further decrease the cogging force. 

III. ANALYSIS 

In this paper, a linear magnetic gear with 8 adjustable gear ratios is designed and analyzed. The key design data is 

listed in Table I. The finite element method (FEM) is applied for electromagnetic calculation and performance 

evaluation. 

Since the performances of those gear ratios whose products equal to 1 are nearly identical, only the gear ratios that 

are greater than 1 are analyzed. The waveforms of air-gap flux density and force transmission capability under the gear 

ratio of 14:3 are shown in Fig. 7 and Fig. 8, respectively. The results confirm that the pole-pair numbers of air-gap 

magnetic fields adjacent to the mover 1 and mover 2 are 3 and 14, respectively. The pull-out forces of the mover 1 and 

mover 2 are 85.7 N and 401 N, respectively, and these results agree with the gear ratio of 14:3. Similarly, all the 

performances under the gear ratios of 13:4, 12:5 and 11:6 are presented from Fig. 9 to Fig. 14. The pole-pair numbers 

of air-gap magnetic fields adjacent to the mover 1 and mover 2 are altered from 13 to 11 and from 4 to 6, respectively. 

The pull-out forces of the mover 1 and mover 2 under these gear ratios are 371.5 N and 114.2 N for 13:4; 343.8 N and 

142.7 N for 12:5; as well as 314.2 N and 170.6 N for 11:6, respectively. These results confirm that the pole-pair 

numbers of PMs on the two movers are changed accordingly and the adjustable gear ratios are achievable. 
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TABLE I. KEY DATA OF PROPOSED LINEAR MAGNETIC GEAR 

Items Values 

Yoke thickness of movers 19.0 mm 

PM thickness 4.0 mm 

PM pole-pitch 24.28 mm 

Field modulation segment thickness 6.0 mm 

Air-gap length 1.0 mm 

Stack length 100.0 mm 

No. of field modulation segments 17 

No. of pole-pairs in mover 1 3, 4, 5, 6, 11, 12, 13 ,14 

No. of pole-pairs in mover 2 14, 13, 12, 11, 6, 5, 4, 3 

Gear ratios 4.67, 3.25, 2.4, 1.83, 0.54, 0.42, 0.31, 0.21 

No. of turns of magnetizing windings 50 

Remnant flux density of the Alnico PM 1.05 T 
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(b) 

Fig. 7. (a) Flux density and its spectra in the air-gap adjacent to mover 1 under the gear ratio of 14:3. (b) Flux density 

and its spectra in the air-gap adjacent to mover 2 under the gear ratio of 14:3. 
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Fig. 8 Force transmission capability under the gear ratio of 14:3 
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(b) 

Fig. 9. (a) Flux density and its spectra in the air-gap adjacent to mover 1 under the gear ratio of 13:4. (b) Flux density 

and its spectra in the air-gap adjacent to mover 2 under the gear ratio of 13:4. 

 

 

Fig. 10 Force transmission capability under the gear ratio of 13:4 
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(b) 

Fig. 11. (a) Flux density and its spectra in the air-gap adjacent to mover 1 under the gear ratio of 12:5. (b) Flux 

density and its spectra in the air-gap adjacent to mover 2 under the gear ratio of 12:5. 

 

 

Fig. 12 Force transmission capability under the gear ratio of 12:5 
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(b) 

Fig. 13. (a) Flux density and its spectra in the air-gap adjacent to mover 1 under the gear ratio of 11:6. (b) Flux 

density and its spectra in the air-gap adjacent to mover 2 under the gear ratio of 11:6. 

 

 

Fig. 14 Force transmission capability under the gear ratio of 11:6 
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Fig. 15. Buoy-based direct-drive wave energy converter. 

 

In order to establish the modeling for direct-drive wave power generation, some assumptions are taken into 

considerations: (i) The buoy is a submerged cylinder, where only the vertical motion of the buoy is considered. (ii) The 

cylinder radius is smaller than the incident wave length. (iii) The connecting rod between the buoy and the generator 

translator is assumed to be rigid. (iv) The linear potential theory is applied [39]. (v) The generator is modelled as a 

viscous damper. The system force equation is given by: 
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where mb is the mass of the buoy, mt is the mass of the generator translator, x is the buoy displacement, Fhd is the 

hydrodynamic force exerted on the buoy, Fe is the wave excitation force, Fr is the wave radiation force and Fhs is the 

hydrostatic stiffness force, Fs is the spring force, and Fg is the generator force. These forces can be expressed as: 
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where ks is the spring constant, kg is the generator damping coefficient, ρ is the density of water, g is the gravitational 

acceleration, a is the buoy radius, R is the radiation resistance and ma is the added mass. By combining (6) and (7), the 
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wave excitation force can be expressed as follows. Hence, the natural frequency of the direct-drive wave energy 

converter can be also deduced as: 
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Since the variation of gear ratios only changes the motion speed of the linear generator, the new translator velocity 

of the linear generator and the new displacement of the spring are the original ones multiplied by Gr. Also, it should 

be noted that the motion directions of the two movers of the proposed linear magnetic gear are opposite. Therefore, the 

spring force Fs and the generator force Fg are modified as: 
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According to (9), since the displacement of the spring is scaled up or down by magnetic gears, from the point view 

of the buoy displacement x, the spring constant can be considered as adjustable by changing the gear ratio. Thus, by 

combining (8) and (9), the natural frequency of the wave energy converter is modified as: 
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According to (10), it can be observed that by varying the gear ratio of the proposed linear magnetic gear, the natural 

frequency of the wave energy converter can be adjusted. If the magnetic gear ratio is greater than 1, the resonance 

frequency will be shifted towards the lower frequency to match the low-frequency wave nature. This concept has been 

verified in [40]. However, it cannot cover the whole wave spectrum due to the use of single gear ratio so that the 

conversion efficiency has to be compromised accordingly. 

The absorbed power by the linear generator can be expressed as: 
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where T is the harmonic wave period. Therefore, the power capture ratio is given by: 
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where a is the buoy radius, Te is the energy period, and Hs is the significant wave height. When the natural frequency 
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of the converter equals the frequency of incident waves, the resonance condition is then satisfied. Hence, the captured 

energy by the wave energy converter can be maximized. To verify the performances of the proposed linear magnetic 

gear, a wave with variable energy period is applied. One of its movers is connected to the submerged buoy and the 

other mover is mechanically coupled to a linear electric generator. The parameters of the wave energy converter are 

listed in Table II. 

 

TABLE II. KEY PARAMETERS OF WAVE ENERGY CONVERTER 

Items Values 

Buoy radius 0.5 m 

Buoy draft 0.2 m 

Buoy mass 100 kg 

Translator mass 800 kg 

Added mass 500 kg 

Spring constant 1 kN/m 

Generator damping coefficient 1 kNs/m 

Remnant flux density of the AlNiCo PM 1.05 T 

 

 

Fig. 16. Resonance frequency varies with gear ratios. 
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Fig. 17. Power capture ratio with single gear ratio. 

 

 

Fig. 18. Power capture ratio with multiple gear ratios. 

 

Fig. 16 shows the resonance frequency with respect to the gear ratios. By changing the linear magnetic gear ratio, 

the equivalent translator mass can be varied which results in the change of the resonance frequency. The frequency 

decreases from 2.4 Hz to 1.4 Hz in accordance with the gear ratio increasing from 0.21 to 4.67. Therefore, the wave 

energy converter can absorb the maximized energy at different sea states. Fig. 17 shows the power capture ratio of the 

wave energy converter under different angular frequencies of sea waves when the gear ratio equals 2.4. It can be found 

that the maximized ratio can reach 45% at its resonance frequency of 1.9 Hz. However, the average value of the power 

capture ratio is only 12.3%. By using the proposed linear magnetic gear, the power capture ratio can be improved by 

the adjustment of gear ratios. Fig. 18 depicts the result of the power capture ratio with various gear ratios. It can be 

observed that by changing the gear ratios at different angular frequencies, the power capture ratio can be varied and 

hence improved accordingly. In particular, the average value of the power capture ratio can be improved to about 
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28.7%. The results confirm that the proposed linear magnetic gear can offer significant contribution to the wave energy 

harvesting. 

For an irregular sea state, according to (10), in order to maximize the captured power, the magnetic gear ratio should 

be changed based on the frequency of the wave excitation force. The time for varying the gear ratio which is actually 

the time for magnetizing/demagnetizing time for AlNiCo PMs. Since the magnetization/demagnetization time required 

for changing the magnet pole-pair number of AlNiCo PMs only needs tens of milliseconds [41], there will be little 

influence due to changing the gear ratio as compared with the slow-motion sea waves. The changing frequency of the 

gear ratio depends on the number of the gear ratios and the sea states. When the frequency of incident waves changes 

too frequently, the number of gear ratios should be high enough to cover the whole spectrum. However, the higher the 

number of the gear ratio, the more difficult the proposed magnetic gear is constructed. Thus, it is preferred to divide 

the frequency of the wave excitation force into several ranges so that relevant corresponding gear ratios will be designed 

to match these ranges. 

V. CONCLUSION 

The linear magnetic gear with multiple gear ratios is presented in this paper. By utilizing the AlNiCo PMs and 

magnetizing windings, the pole-pair numbers of PMs on two movers can be varied electronically. Based on this 

technique, the magnetic gear ratios can be changed to cater for different scenarios. The novelty of the proposed 

magnetic gear is that the PM configuration adopts the surface-inset consequent-pole topology, while the magnetizing 

windings are wound in two movers. With this newly proposed topology, the position control can be omitted during the 

magnetizing or demagnetizing processes so that the corresponding magnetic permeance can be improved. By using the 

FEM analysis, the electromagnetic performances of the proposed linear magnetic gear with adjustable gear ratios are 

analyzed and evaluated. Then, the proposed linear magnetic gear is applied for the direct-drive wave power generation. 

By changing the gear ratios based on different angular frequencies of sea waves, the absorbed power of the wave energy 

converter can be improved regardless of the change of sea states. 
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