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A-FABP mediates adaptive thermogenesis by
promoting intracellular activation of thyroid
hormones in brown adipocytes
Lingling Shu1,2,*, Ruby L.C. Hoo1,2,*, Xiaoping Wu1,2, Yong Pan1,2, Ida P.C. Lee1,2, Lai Yee Cheong1,3,

Stefan R. Bornstein4, Xianglu Rong5, Jiao Guo5 & Aimin Xu1,2,3

The adipokine adipocyte fatty acid-binding protein (A-FABP) has been implicated in obesity-

related cardio-metabolic complications. Here we show that A-FABP increases thermogenesis

by promoting the conversion of T4 to T3 in brown adipocytes. We find that A-FABP levels are

increased in both white (WAT) and brown (BAT) adipose tissues and the bloodstream in

response to thermogenic stimuli. A-FABP knockout mice have reduced thermogenesis and

whole-body energy expenditure after cold stress or after feeding a high-fat diet, which can be

reversed by infusion of recombinant A-FABP. Mechanistically, A-FABP induces the expression

of type-II iodothyronine deiodinase in BAT via inhibition of the nuclear receptor liver

X receptor a, thereby leading to the conversion of thyroid hormone from its inactive form

T4 to active T3. The thermogenic responses to T4 are abrogated in A-FABP KO mice, but

enhanced by A-FABP. Thus, A-FABP acts as a physiological stimulator of BAT-mediated

adaptive thermogenesis.
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O
besity, which is caused by an extended energetic
imbalance between energy intake and energy expendi-
ture, is an important risk factor for type 2 diabetes

and cardiovascular diseases1. Although the main function of
white adipose tissue (WAT) is to store excess energy,
brown adipose tissue (BAT), which is characterized by
multi-locular oil vacuoles, high mitochondrial content and the
presence of unique mitochondrial inner membrane protein
uncoupling protein-1 (UCP-1), dissipates energy as heat2. Thus,
BAT-mediated adaptive thermogenesis can be considered
a defense mechanism that protects the organism against
hypothermia or excessive weight gain in response to low
temperature, or excess nutrient supply3. Accumulating evidence
suggests that enhancing organismal thermogenesis is a promising
therapy to combat obesity4.

Adaptive thermogenesis is primarily regulated by sympathetic
nervous system (SNS), which heavily innervates interscapular
BAT3. When the SNS is activated, catecholamines are released
from sympathetic nerve endings and activate b-adrenoceptors on
adipocytes, leading to an increase of intracellular cyclic adenosine
monophosphate (cAMP) level. Elevated cAMP activates protein
kinase A (PKA), which induces UCP-1 expression and activity3.
Activated PKA also promotes lipolysis via stimulating hormone
sensitive lipase (HSL) to provide free fatty acids (FFAs) as energy
substrate for b-oxidation in mitochondria and UCP-1
expression5.

Thyroid hormones also contribute to adaptive thermogenesis
in BAT by coordinating with SNS to induce expression
of thermogenic genes6. Intracellular conversion of thyroxine
(T4) into bioactive 3,3,5-triiodothyronine (T3) by type II
iodothyronine deiodinase (D2) is required to activate the trans-
criptional program of thermogenic genes7. Other hormones,
produced by various tissues, that have also been shown to induce
BAT activity or browning of WAT include natriuretic peptides8,
fibroblast growth factor 21 (ref. 9), irisin10, adipocyte-secreted
leptin11, adiponectin12 and several type II immune cytokines
(IL4, IL13 and IL33) (refs 13–15).

The adipokine adipocyte fatty acid-binding protein
(A-FABP, also known as FABP4 or aP2) is abundantly expressed
in adipocytes16, but also produced in macrophages17, endothelial
cells18 and glial cells19. A-FABP functions as a lipid chaperone
that regulates trafficking, fluxes and signalling of FFAs, and
has an important role in linking lipid metabolism with
inflammation20. Although A-FABP was originally identified as
an abundant cytoplasmic protein in adipocytes, a portion of
A-FABP is released into bloodstream and acts as a humoral
factor to regulate glucose and lipid metabolism21,22. Circulating
A-FABP is elevated in obese individuals and correlates positively
with the features of the metabolic syndrome, and the incidence of
atherosclerosis and cardiovascular diseases18. Interestingly,
A-FABP knockout (KO) mice are protected against high-fat
diet (HFD)-induced metabolic dysfunction but exhibit increased
adiposity comparing with their wild-type (WT) littermates23.
RNAi-mediated germline knockdown of A-FABP leading to
a partial loss of A-FABP in mice also increases the susceptibility
to diet-induced obesity24. Elevated A-FABP expression is
observed in BAT of hibernating animals and cold-induced
rodents25,26. Expression of A-FABP messenger RNA (mRNA) is
also increased together with other thermogenic genes in BAT and
WAT of HFD-induced UCP-1 deficient mice, suggesting that
A-FABP might mediate a compensatory mechanism to maintain
energy homeostasis27. A recent study demonstrated that ablation
of both A-FABP and epidermal-FABP (E-FABP) impairs adaptive
thermogenesis in mice in response to fasting and cold stress28.
However, the underlying mechanism whereby A-FABP regulates
energy metabolism remains elusive.

In this study, we found that the obese A-FABP KO mice have
a marked attenuation of both HFD- and cold-induced
BAT activation and energy expenditure, and this phenotype
could be reversed by replenishment of recombinant A-FABP
(rA-FABP). Mechanistically, we uncovered a role of A-FABP in
promoting the intracellular conversion of T4 to T3 in BAT, and
show that this is mediated in part by facilitating the transport of
circulating FFAs released from WAT to BAT, which in turn
enhances thermogenesis.

Results
A-FABP KO mice are defective in adaptive thermogenesis.
To explore the potential roles of A-FABP in the regulation of
energy metabolism, global A-FABP knockout (KO) mice were
generated29 and fed with standard chow (STC) or HFD. A-FABP
KO mice are more susceptible to diet-induced obesity as
compared with their WT littermates (Fig. 1a). After feeding
with HFD for 24 weeks, body weight of WT mice was
significantly increased by 43.3±2% and the body weight gain
in A-FABP KO mice was even more drastic (B106.7±2.5%)
when compared with their respective STC-fed controls
(Supplementary Fig. 1a). Body composition analysis showed no
obvious difference in either lean mass or body fluid between
A-FABP KO mice and WT controls on either STC or HFD. By
contrast, the fat mass in HFD-fed A-FABP KO mice was 1.6-folds
higher than the WT littermates (Supplementary Fig. 1b). This was
further confirmed by dissection of mice showing a significant
expansion in most of the fat pads in HFD-induced KO mice when
compared with the respective WT controls (Supplementary
Fig. 1c). No significant difference was observed in the weight of
internal organs between WT or A-FABP KO mice. The weight of
liver was even lighter in A-FABP KO mice (Supplementary
Fig. 1d). Notably, there was no difference in the calorie intake
between WT and A-FABP KO mice when fed with either STC or
HFD (Supplementary Fig. 1e). Consistent with the previous
study23, A-FABP KO mice exhibited an improved metabolic
profile as indicated by the significant alleviation of HFD-induced
glucose intolerance and insulin resistance (Supplementary
Fig. 1f–h), a markedly reduced serum insulin and glucose levels,
lipid profiles and a significantly higher adiponectin level
compared with WT controls (Supplementary Fig. 1i–m).

Since A-FABP deficiency does not affect calorie intake, we next
investigated whether HFD-induced morbid obesity in A-FABP
KO mice was attributed to attenuated energy expenditure. The
whole-body oxygen consumption (VO2) was comparable between
STC-fed WT and A-FABP KO mice (Fig. 1b), while A-FABP
KO mice fed with HFD for 4 weeks displayed a significantly lower
oxygen consumption compared with the relative WT controls
(Fig. 1c). HFD-induced A-FABP KO mice displayed a higher
respiratory exchange ratio (Fig. 1d). In addition, glucose uptake
in soleus muscle and liver was also significantly increased in
A-FABP KO mice when compared with their WT littermates
(Supplementary Fig. 1n), suggesting that A-FABP KO mice prefer
to utilize carbohydrate rather than fatty acid as energy substrate.
There was no obvious difference in locomotory activity (Fig. 1e)
between HFD-induced WT and A-FABP KO mice.

To further verify the role of A-FABP in adaptive thermogen-
esis, HFD-fed WT and KO mice were housed at 6 �C for 8 h.
Rectal temperature was dropped from B37 �C to 34 �C in the
first 4 h in both the groups. Afterwards, the rectal temperature
of A-FABP KO mice maintained at B34 �C while that of
WT littermates gradually increased and significantly higher than
that of A-FABP KO mice after prolonged cold exposure (Fig. 1f).
Furthermore, A-FABP KO mice exhibited a significantly less
fat loss compared with WT controls after cold exposure for
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8 h (Fig. 1g). Taken together, these findings suggest that the
morbidly obese phenotype of HFD-induced A-FABP KO mice is
attributed to the impaired adaptive thermogenesis.

A-FABP deficiency impairs BAT recruitment in mice. Brown
adipose tissue (BAT) is the major organ responsible for adaptive
thermogenesis. We next examined the impact of A-FABP
deficiency in BAT recruitment in response to HFD and cold
exposure. STC-fed A-FABP KO and WT mice showed compar-
able BAT morphology, while HFD-fed A-FABP KO mice
displayed larger lipid droplets but reduced multi-locular struc-
tures comparing with WT controls (Fig. 2a, top). When exposed
to 6 �C for 24 h, size and number of lipid droplets in HFD-fed
WT mice were decreased more apparently than those in A-FABP
KO mice (Fig. 2a, bottom). This was confirmed by measurement
of triglyceride levels in BAT (Fig. 2b).

HFD or cold exposure induced approximately a fourfold
increase of UCP-1 expression in BAT of WT mice, whereas
A-FABP deficiency significantly attenuated cold- and
HFD-induced expression of UCP-1 (Fig. 2c–e). Consistently, in
response to HFD or cold challenge, A-FABP KO mice exhibited
compromised induction in the expression of thermogenic
genes (PGC-1a and Cidea) (Fig. 2f,g) while the expression of
membrane fatty acid transporters such as CD36 and fatty acid
transporter protein 1 were induced to a similar levels in both
types of mice (Supplementary Fig. 2). Notably, A-FABP KO mice

exhibited a similar cold-induced expression of UCP-1 and
thermogenic genes in the subcutaneous fat as that in the
WT littermates (Supplementary Fig. 3).

A-FABP facilitates the transportation of FFAs into BAT.
A-FABP is not only a cytoplasmic protein, but also present in
the circulation21. We next investigated the roles of circulating
A-FABP in thermogenesis. Circulating A-FABP in C57BL/6N
mice was progressively elevated upon feeding with HFD, and
this change was accompanied by increased level of FFAs
(Fig. 3a,b). When C57BL/6N mice were subjected to acute cold
exposure, both circulating A-FABP and FFAs were increased to
a peak level in 1 h, and gradually declined to a basal level
(Fig. 3c,d). Similar results were observed in mice treated with
the b-adrenergic receptor agonist norepinephrine (Fig. 3e,f),
suggesting that circulating A-FABP may be released simulta-
neously with FFAs upon thermogenic stimulation. Notably,
A-FABP abundance also increased markedly in WAT of
C57BL/6N mice in response to HFD or cold exposure (Supple-
mentary Fig. 4), suggesting that WAT may be the main source of
elevated circulating A-FABP and FFAs. Therefore, we next tested
whether A-FABP promotes adaptive thermogenesis by facilitating
the transport of FFAs into BAT.

Infusion of 3H-palmitate in C57BL/6N mice followed by
co-immunoprecipitation with anti-A-FABP antibody revealed
that serum A-FABP could form complex with circulating
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Figure 1 | A-FABP deficiency impairs adaptive thermogenesis in mice. (a) Representative photos of male 4-week-old A-FABP KO mice and their

WT littermates fed with either standard chow (STC) or high-fat diet (HFD) for 24 weeks (n¼ 12). (b,c) Oxygen consumption (VO2) of the mice fed with

(b) STC or (c) HFD for 4 weeks (n¼ 8). (d) Respiratory exchange rate (RER) and (e) locomotory activity (XAMB) of above mice fed with HFD for 4 weeks

(n¼8). (f) Rectal temperature and (g) fat mass loss of A-FABP KO or WT mice fed with HFD for 24 weeks followed by cold exposure (6 �C) for 8 h (n¼8).

Data are represented as mean±s.e.m. *Po0.05, **Po0.01, ***Po0.001 (Student’s t-test).
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FFAs (Fig. 3g). In vivo radioisotopic tracing showed that
uptake of 3H-palmitate in BAT and WAT of A-FABP KO mice
were significantly lower than that in their WT littermates
(Fig. 3h) while replenishment with rA-FABP, but not its mutant
R126Q which does not have binding capacity to FFAs30,
significantly enhanced the uptake of 3H-palmitate in BAT and
WAT (to a much lower extent) in both WT and A-FABP
KO mice (Fig. 3h,i). This was further confirmed by the result of
in vivo BODIPY-FA fluorescence chasing experiment (Supple-
mentary Fig. 5a,b). Similarly, BODIPY-FA uptake was markedly
attenuated in A-FABP-deficient primary brown adipocytes,

while pre-incubation of BODIPY-FA with rA-FABP enhanced
uptake of FFAs in both A-FABP deficient- and WT adipocytes
(Fig. 3j). Furthermore, rA-FABP exhibited a higher efficiency
than the classical FFA carrier bovine serum albumin (BSA)
in promoting FFA uptake in A-FABP-deficient adipocytes
(Fig. 3k). Fluorescent-labelled rA-FABP entered adipocytes
together with BODIPY-FA simultaneously while no fluorescent
signal was detected in the control in which no rA-FABP was
added (Fig. 3l). Replenishment of rA-FABP but not its mutant
R126Q significantly increased the FFA level in BAT and
this change was accompanied by a decreased FFA level in
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Figure 2 | A-FABP deficiency impedes HFD- and cold-induced activation of BAT in mice. Male 4-week-old A-FABP KO and their WT littermates were fed

with either STC or HFD for 24 weeks and subjected to room temperature (23 �C) or cold exposure (6 �C) for 24 h. (a) Haematoxylin and eosin (H&E)

staining, (b) triglyceride levels, (c) immunohistochemistry (IHC) staining and densitometry analysis (right panel) for UCP-1 in brown adipose tissue (BAT)

of mice. Scale bar, 20mm, with magnification of 400� . Representative images from three independent experiments are shown (n¼8). (d,e) BAT isolated

from above mice (d) fed with STC or HFD for 24 weeks or (e) exposed to 23 �C or 6 �C for 24 h were subjected to immunoblotting using an antibody

against UCP-1, b-tubulin as indicated. Right panels are the band intensity of UCP-1 relative to b-tubulin and expressed as arbitrary units (n¼8). (f,g) The

mRNA abundance of the thermogenic genes in BAT of above mice (f) fed with STC or HFD for 24 weeks or (g) exposed to 23 �C or 6 �C for 24 h (n¼8).

Uncropped western blot images are shown in Supplementary Fig. 13. Data are represented as mean±s.e.m. *Po0.05, **Po0.01 (one-way analysis of

variance with Bonferroni correction for multiple comparisons).
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WAT (Supplementary Fig. 5c) implicating that A-FABP acts as
a FFA chaperone in transporting FFAs released from WAT to
BAT. Notably, a significant portion of fluorescent-labelled
rA-FABP administered through tail vein injection was delivered
to BAT and WAT (to a lower extent). Cold exposure further
enhanced the accumulation of rA-FABP in the BAT (Supple-
mentary Fig. 5d,e). Furthermore, pre-incubation of palmitate with
rA-FABP enhanced palmitate-induced oxygen consumption rate
(OCR) in A-FABP-deficient adipocytes (Fig. 3m). Taken together,
these data suggest that exogenous A-FABP facilitates the uptake

of circulating FFAs into brown adipocytes to enhance its
utilization.

A-FABP enhances energy expenditure in A-FABP KO mice.
To further determine whether circulating A-FABP promotes
adaptive thermogenesis, rA-FABP or its mutant R126Q was
continuously delivered into the circulation of 4-week HFD-fed
A-FABP KO mice for a period of 2 weeks during which
the whole-body energy expenditure was measured. rA-FABP and
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its mutant R126Q were detectable in a comparable level in
the circulation (Fig. 4a), BAT and WAT (Supplementary
Fig. 6a,b). The whole-body energy expenditure was significantly
increased by 1.5-folds in rA-FABP-treated A-FABP KO mice
compared with PBS-treated mice (Fig. 4b,c). The A-FABP
KO mice infused with the mutant R126Q also showed an increase
of oxygen consumption, but only to an approximately half extent
as that of mice infused with rA-FABP (Fig. 4b,c). Notably,
infusion of rA-FABP or R126Q caused a modest decrease in
body weight and fat mass, whereas the calorie intake was not
affected (Supplementary Fig. 6c,d).

To evaluate the effect of A-FABP in modulating BAT recrui-
tment, A-FABP KO mice infused with the above proteins were
subjected to 6 �C for 8 h. rA-FABP significantly increased the
body temperature of A-FABP KO mice (Fig. 4d), suggesting an
improved cold tolerance. However, this effect on cold tolerance
was significantly attenuated in mutant R126Q-infused A-FABP
KO mice (Fig. 4d). There was a remarkable increase of cold-
induced multi-locular structures and upregulated UCP-1 expres-
sion in BAT of rA-FABP-infused KO mice (Fig. 4e,f), and were
accompanied by a significantly elevated expression of thermo-
genic genes (PGC-1 a, Cidea and Dio2) (Fig. 4g) comparing to the
PBS-infused control mice. However, the potency of the mutant
R126Q in inducing the expression of UCP-1 and other
thermogenic genes (except Dio2) were significantly lower than
rA-FABP (Fig. 4f,g). Consistently, infusion with rA-FABP or
R126Q to A-FABP KO and WT mice also modestly enhanced
BAT recruitment at 23 �C but such an effect was much lower than
their corresponding mice at 6 �C (Supplementary Fig. 6e–g and
Supplementary Fig. 7). Notably, there was no obvious change
in glucose tolerance, insulin levels and insulin sensitivity
(as determined by the insulin resistance index) in these
recombinant proteins-infused mice comparing to the PBS-infused
mice (Supplementary Fig. 8a–c,f–h). The inflammatory status in
the peripheral tissues was not altered in these mice (Supple-
mentary Fig. 8d,e,i,j). Taken together, these data suggest that the
fatty acid binding capacity of A-FABP is at least partially
contributed to its ability for the enhancement of thermogenesis.
However, the mutant R126Q was unable to increase FFA uptake
while it could still partially reverse the impairment of adaptive
thermogenesis in A-FABP KO mice, indicating that there may be
an additional mechanism contributing to the ability of A-FABP in
promoting thermogenesis.

A-FABP deficiency impairs conversion of T4 to T3 in BAT. To
explore additional mechanism whereby A-FABP regulates

adaptive thermogenesis, we investigated whether A-FABP defi-
ciency altered SNS activity. Oxygen consumption of A-FABP KO
and WT mice on STC or HFD were comparable in response to
norepinephrine (Supplementary Fig. 9a,b). Likewise, nor-
epinephrine-induced circulating FFA levels were similar between
HFD-induced WT and A-FABP KO mice (Supplementary
Fig. 9c). HFD-induced expression of b adrenergic receptor 3
(ADRB3) and the activation of tyrosine hydroxlase in BAT were
significantly increased to a similar level in both types of mice
(Supplementary Fig. 9d,e). These data suggest that A-FABP
deficiency does not attenuate SNS activity and lipolytic machinery
in mice.

Since SNS and thyroid hormones regulate adaptive thermo-
genesis cooperatively3, we evaluated whether A-FABP deficiency
impedes the activation of thyroid hormones. There was no
difference in circulating T4 or T3 levels between A-FABP KO
mice and their WT littermates fed with either STC or HFD
(Fig. 5a,b). T4 is the major form of thyroid hormone in blood
while it has to be converted to the activated form T3 within its
target tissues. T3 levels in BAT of WT mice were increased
significantly upon HFD feeding or cold exposure while this
induction was abrogated in A-FABP deficient BAT (Fig. 5c,d). To
investigate the effect of A-FABP in intracellular conversion of
thyroid hormones, HFD-induced A-FABP KO and WT mice
were supplemented with PBS or T4 for 5 consecutive days
followed by cold exposure for 24 h. Supplementation of T4
enhanced cold-induced energy expenditure in WT mice, whereas
such an effect of T4 administration was significantly attenuated in
A-FABP KO mice (Fig. 5e). However, energy expenditure
induced by supplementation of T3 was comparable between
A-FABP KO and WT mice (Fig. 5f), implicating that A-FABP
deficiency abolished T4 to T3 conversion in BAT. More multi-
locular structures and elevated UCP-1 expression were observed
in BAT of WT mice treated with either T4 or T3 (Fig. 5g,h).
However, treatment with T3, but not T4, induced such changes in
A-FABP KO mice (Fig. 5g,h). Similar results were observed in
T4- or T3-treated WT and A-FABP KO mice under 23 �C
(Supplementary Fig. 10a–d), although the magnitude of these
changes was much smaller compared with those at 6 �C. The
body weight, body composition and calorie intake were not
altered in both types of mice under these circumstances
(Supplementary Fig. 10e–h). Consistently, systemic supplemen-
tation with T3 markedly increased T3 levels in BAT of both
genotypes (Fig. 5i), while treatment with T4 could only increase
T3 levels in BAT of WT mice but not in A-FABP KO mice
(Fig. 5j), suggesting that A-FABP is required for conversion of T4
to T3 within BAT.

Figure 3 | Circulating A-FABP facilitates the uptake of free fatty acid into adipocytes. (a) Circulating A-FABP and (b) FFA profile of male 4-week-old

C57BL/6N mice fed with HFD for 24 weeks (n¼ 8). (c) Circulating A-FABP and (d) FFA level of male 8-week-old C57BL/6N mice during cold exposure

(6 �C) for 4 h (n¼8). (e) Circulating A-FABP and (f) FFA level of male 8-week-old C57BL/6N mice intraperitoneally injected with norepinephrine

(NE; 1 mg kg� 1) or PBS (vehicle) for 4 h under fasting condition (n¼ 6). (g) Co-immunoprecipitation (Co-IP) of A-FABP and 3H-palmitate in serum of male

8-week-old C57BL/6N mice after administration of 3H-palmitate (2 mCi) for 4 h. Right panel is the 3H-palmitate radioactivity of the co-immunoprecipitated

A-FABP protein (n¼ 6). (h,i) 3H-palmitate uptake in BAT and WAT of 8-week-old A-FABP KO mice and their WT littermates infused with PBS or

(h) recombinant A-FABP (rA-FABP; 1 mg h� 1) or (i) mutant R126Q (1 mg h� 1) (n¼ 6). (j) BODIPY-FA uptake in WT or A-FABP-deficient brown adipocytes

treated with PBS or rA-FABP (2mg ml� 1) for 10 min (min) (n¼6). (k) 3H-palmitate uptake in A-FABP-deficient adipocytes incubated with PBS, bovine

serum albumin (BSA; 3mg ml� 1) or rA-FABP (2 mg ml� 1) (n¼ 6). (l) In vitro fluorescent imaging analysis of brown adipocytes treated with BODIPY-FA

(2mM) with or without pre-incubation with fluorescent-labelled rA-FABP (2 mg ml� 1). Images were taken at 5, 10 and 30 min after treatment. Control

image was taken at 30 min in which A-FABP-deficient brown adipocytes were incubated with BODIPY-FA without pre-incubation with rA-FABP. Scale bar,

20mm, with magnification of 400� . Representative images from three independent experiments are shown (n¼6). (m) Oxygen consumption rate (OCR)

and its mean value (lower panel) of A-FABP-deficient brown adipocytes treated with palmitate (PA: 200 nM) with or without pre-incubation with rA-FABP

(2mg ml� 1) (n¼ 6). CPMA, count per minutes for beta particles; RFU, relative fluorescence units; OCR, oxygen consumption rate; FCCP, carbonyl cyanide-

4-(trifluoromethoxy) phenylhydrazone; R/A, rotenone/antimycin A. Uncropped image for co-immunoprecipitation is shown in Supplementary Fig. 13. Data

are represented as mean±s.e.m. *Po0.05, **Po0.01, ***Po0.001 (Student’s t-test (a–g), one-way analysis of variance with Bonferroni correction for

multiple comparisons (h–k,m)).
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A-FABP enhances T3 levels in BAT via LXRa-Dio2 pathway.
Type II iodothyronine deiodinase (D2), which is encoded by
the Dio2 gene, is the key enzyme responsible for local T4 to

T3 conversion7,31. Dio2 is downregulated by the nuclear receptor
LXRa32, while A-FABP represses LXRa activity and expression in
macrophages33. Therefore, we investigated whether A-FABP

a b
PBS

KO

rA-FABP

KO

R126Q

KO

c d

g

e
6 °C

PBS rA-FABP R126Q

H&E

IHC of
UCP-1

f

β-tubulin

UCP-1

PBS R126QrA-FABP

6 °C

KDa

35

55

A
-F

A
B

P
 (

ng
 m

l–1
)

V
O

2 
(×

10
3  m

l h
–1

kg
 le

an
 m

as
s–1

)
100

80

60

40

20

0

38

V
O

2 
(×

10
3  m

l h
–1

 k
g 

le
an

 m
as

s–1
)

P
ro

te
in

 in
fu

si
on

 (
3 

da
ys

)

9

8

7

6

5

4

3

2

37

36

35

R
ec

ta
l t

em
pe

ra
tu

re
 (

°C
)

34

33
U

C
P

-1
 in

te
ns

ity
(f

ol
d 

ch
an

ge
)

U
C

P
-1

 b
an

d 
in

te
ns

ity

R
el

at
iv

e 
m

R
N

A
 le

ve
l

4

3

2

1

0

10

8

6

4

2

0

N.D.

PBS
rA-FABP
R126Q

PBS
rA-FABP
R126Q

**
*****

PBS
rA-FABP

R126Q

** **
*

$
$

##

Time (h)

0 2 4 6 8

PBS-6 °C
rA-FABP-6 °C
R126Q-6 °C

PBS-6 °C
rA-FABP-6 °C
R126Q-6 °CPBS-6 °C

rA-FABP-6 °C
R126Q-6 °C

*
***

4

3

2

1

0

**

**
** *

*
*

*
* * *

*4

3

2

1

0
PGC-1α Cidea Dio2

PBS
rA-FABP
R126Q

Dark

7:
00

9:
00

11
:0

0
13

:0
0

15
:0

0
17

:0
0

19
:0

0
21

:0
0

23
:0

0
1:

00
3:

00
5:

00
7:

00

7:
00

9:
00

11
:0

0
13

:0
0

15
:0

0
17

:0
0

19
:0

0
21

:0
0

23
:0

0
1:

00
3:

00
5:

00
7:

00

DarkLightLight

Figure 4 | A-FABP enhances energy expenditure and BAT recruitment in A-FABP KO mice. Male 4-week-old A-FABP KO mice fed with HFD for 4 weeks

were infused with PBS (vehicle), recombinant A-FABP (rA-FABP, 1 mg h� 1) or A-FABP mutant R126Q (1mg h� 1) for 14 days with or without subjected to

cold exposure (6 �C). (a) Circulating rA-FABP level and (b) oxygen consumption (VO2) of A-FABP KO mice before or after infusion of recombinant proteins

(n¼6). (c) Mean VO2 of above A-FABP KO mice measured after infusion of recombinant proteins for 3 days (n¼ 6). (d) Rectal temperature of above

A-FABP KO mice infused with rA-FABP or R126Q during cold exposure (6 �C) for 8 h. (e) Haematoxylin and eosin staining and IHC staining of UCP-1 in

BAT of mice after cold exposure for 8 h, scale bar, 20mm; with magnification of 400� . The right panel is the densitometry analysis for UCP-1.

Representative images from three independent experiments are shown (n¼6). (f) BAT isolated from above mice was subjected to immunoblotting using

an antibody against UCP-1, b-tubulin as indicated. The right panel is the band intensity of UCP-1 relative to b-tubulin (n¼6). (g) The mRNA abundance of

the thermogenic genes PGC-1a, Cidea and Dio2 in BAT isolated from above mice (n¼ 6). CPMA, count per minutes for beta particles. N.D., not detected.

Uncropped western blot images are shown in Supplementary Fig. 13. Data are represented as mean±s.e.m. *Po0.05, **Po0.01, ***Po0.001,

$rA-FABP versus R126Q, $o0.05; #R126Q versus PBS, #Po0.05 (One-way analysis of variance with Bonferroni correction for multiple comparisons).
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regulates the conversion of T4 to T3 via LXRa-Dio2
signalling pathway. HFD and cold exposure greatly induced
the expression of A-FABP and Dio2 in the BAT of WT mice,
whereas this induction was obviously impaired in A-FABP
KO mice (Fig. 6a–d). On the contrary, LXRa expression
decreased substantially in WT mice in response to HFD or
cold exposure, but its expression in A-FABP KO mice was not
altered (Fig. 6a–d). Furthermore, treatment with rA-FABP
did not alter the gene expression of A-FABP while it
significantly suppressed LXRa but increased Dio2 expression
in both primary A-FABP-deficient and WT brown adipocytes

(Fig. 6e). Treatment with the mutant R126Q also showed
similar effects on the gene expression in both A-FABP
deficient- and WT brown adipocytes (Supplementary Fig. 11),
but to a lesser extent compared with those treated with rA-FABP.

To assess whether A-FABP represses LXRa activity, WT- or
A-FABP deficient primary brown adipocytes were treated
with the LXRa agonist TO901317 in the presence or absence
of rA-FABP followed by monitoring the expression of
the downstream target genes of LXRa, including stearoyl-
CoA desaturase (SCD-1) and sterol regulatory element-binding
transcription factor 1 (SREBP-1c)34,35. Treatment with TO901317
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Figure 5 | A-FABP deficiency impairs conversion of T4 to T3 in BAT of mice. (a) Circulating T4 and (b) T3 levels of male 4-week-old A-FABP KO mice

and WT littermates fed with STC or HFD for 24 weeks as indicated in Fig. 2 (n¼8). (c,d) T3 levels in BAT of male 4-week-old A-FABP KO mice and
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(6 �C) for 24 h. (e,f) Energy expenditure of mice supplemented with (e) T4 or (f) T3 followed by cold exposure (6 �C) for 24 h (n¼6). (g) Representative

IHC staining and densitometry analysis (right panel) for UCP-1 in the BAT of mice. Scale bar, 20mM, with magnification of 400� . Representative images

from three independent experiments are shown (n¼ 6). (h) The mRNA abundance of UCP-1 in BAT of above mice (n¼ 6). (i,j) T3 levels in BAT isolated
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are represented as mean±s.e.m. *Po0.05, **Po0.01 (one-way analysis of variance with Bonferroni correction for multiple comparisons).
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drastically increased the expression of SCD-1 and SREBP-1c
in primary brown adipocytes derived from both genotypes,
which were greatly suppressed by co-treatment with rA-FABP
(Fig. 6f). Consistently, the downregulated expression of Dio2 by
treatment with TO901317 was significantly reversed by rA-FABP
(Fig. 6f), suggesting that A-FABP increases Dio2 expression
via inhibition of LXRa.

A-FABP promotes proteasomal degradation of LXRa. To
further explore the potential mechanism whereby A-FABP
inhibits LXRa, A-FABP deficient- and WT primary adipocytes
were treated with the transcription inhibitor actinomycin D

followed by measuring the mRNA abundance of LXRa at
different time points. A-FABP deficiency did not have significant
effect on the basal mRNA level of LXRa. Furthermore, the
mRNA abundance of LXRa was gradually decreased to a similar
extent in both WT and A-FABP deficient adipocytes after treat-
ment with actinomycin D (Fig. 7a), suggesting that A-FABP does
not alter the mRNA stability of LXRa. We then examined
if A-FABP modulates the protein stability of LXRa using cyclo-
heximide (a protein synthesis inhibitor) chase assay. The degra-
dation of LXRa in A-FABP deficient primary brown adipocytes
after treatment with cycloheximide was significantly attenuated
comparing to that of the WT adipocytes (Fig. 7b), suggesting
that the presence of A-FABP accelerates protein degradation of
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LXRa. Conversely, treatment of cycloheximide together with
MG132 (an inhibitor that reduces proteasomal degradation of
ubiquitin-conjugated proteins) blocked the degradation of LXRa
in both WT and A-FABP-deficient primary adipocytes (Fig. 7c).
Furthermore, adenovirus-mediated overexpression of A-FABP
significantly enhanced the degradation of LXRa in A-FABP-
deficient primary adipocytes comparing with its controls with
overexpression of luciferase (Fig. 7d). Taken together, these data
suggest that A-FABP inhibits LXRa in part by promoting
ubiquitination-dependent proteasomal degradation.

A-FABP restores T4-induced energy expenditure in KO mice.
To confirm the role of A-FABP in intracellular conversion of
T4 to T3 in BAT, HFD-fed A-FABP KO and WT mice were

infused with either rA-FABP or PBS (as vehicle), followed
by subcutaneous injection of T4 for 5 consecutive days and
cold exposure for another 24 h (Fig. 8a). Energy expenditure
increased significantly in T4-treated WT mice comparing
with vehicle-treated controls (Fig. 8b,c). Consistent with the
above result (Fig. 5e), the oxygen consumption of T4-treated
A-FABP KO mice was comparable to that of WT mice without
T4 treatment, while replenishment of rA-FABP together with
T4 significantly increased oxygen consumption of A-FABP
KO mice similar to that in T4-treated WT mice (Fig. 8b,c),
suggesting that A-FABP is essential for the effect of T4 on
induction of energy expenditure in vivo. Moreover, T4-induced
increase in multi-locular cells and expression of UCP-1 in
BAT was significantly augmented by infusion of rA-FABP in
A-FABP KO mice (Fig. 8d).
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In line with our in vitro findings (Figs 6 and 7), replenishment
with rA-FABP significantly attenuated the expression of LXRa
in A-FABP KO mice, which was accompanied by enhanced
T4-induced expression of Dio2 and UCP-1 in BAT (Fig. 8e).
Replenishment with rA-FABP did not alter the circulating levels
of T4 or T3 in A-FABP KO mice (Fig. 8f,g). However, with the

pre-treatment of T4, the intracellular T3 level in BAT of A-FABP
KO mice infused with rA-FABP was significantly elevated
compared with A-FABP KO mice infused with PBS (Fig. 8h),
indicating that A-FABP controls the intracellular conversion of
T4 to T3 in BAT. Similar results were also observed in T4-treated
WT and A-FABP KO mice with or without replenishment with
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rA-FABP under room temperature (23 �C). Their body weight,
body composition and calorie intake were not altered under these
circumstances (Supplementary Fig. 12).

Discussion
Previous studies showed that A-FABP deficiency exacerbates
diet-induced body weight gain in mice. Deletion of A-FABP
and E-FABP is also shown to impair thermogenesis in mice
in response to cold stress under fasting state28. Although the
authors speculated that A/E-FABP may have a key role in
facilitating FFA transport from circulation to BAT thus providing
energy substrate for thermogenesis28, this hypothesis was not
experimentally validated. Thus, the role of A-FABP and its
underlying mechanism in adaptive thermogenesis remains poorly
understood. In this study, we demonstrated that A-FABP is a
physiological regulator of adaptive thermogenesis in response
to both HFD and cold exposure, through its intracellular actions
to promote the activation of thyroid hormones and its endocrine
actions to transport FFAs released from WAT to BAT for
b-oxidation (Fig. 9).

We observed a rapid elevation of A-FABP in bloodstream
and adipose tissues in response to cold and HFD challenges.
A rapid release of A-FABP from adipose tissues to circulation has
also been observed in mice treated with the b3-adrenergic
receptor agonist CL-316243 (ref. 22), suggesting that A-FABP is
an immediate responder of various thermogenic stimuli. While
BAT is a main site for adaptive thermogenesis by combustion
of FFAs, WAT is a major supply for FFAs through HSL-mediated
lipolysis of triglycerides stored in this tissue. Previous studies
have demonstrated the role of A-FABP in promoting lipolysis in
WAT, by enhancing HSL activity30,36. However, its function
in transport of FFAs is largely ignored, despite the fact that
A-FABP is a lipid-binding chaperone. While it is well known that
triglyceride-rich lipoproteins are the primary transporters for
delivery of FFAs in BAT37, we here provided several lines of

evidences demonstrating that the stimulatory effects of A-FABP
on adaptive thermogenesis are attributed in part to its ability in
transporting FFAs released from WAT to BAT. First, the dynamic
changes of circulating A-FABP and FFAs levels are strikingly
similar in response to thermogenic stimuli (Fig. 3). Second,
A-FABP can complex with FFAs in the circulation (Fig. 3). Third,
rA-FABP, but not its mutant R126Q which loses the lipid-binding
capacity, can directly stimulate the uptake of palmitate in primary
brown adipocytes and promote energy expenditure (Fig. 3).
Fourth, the defective thermogenesis, impaired BAT activity
and reduced FFA uptake into BAT in A-FABP KO mice can
be largely reversed by chronic administration of rA-FABP into
the circulation (Fig. 4). In line with this notion, capillary
endothelial A-FABP is essential for FFA transport from
the circulation into FFA-consuming tissues such as heart and
skeletal muscle38. It is worthy to note that although the
abundance of A-FABP is much lower than circulating FFAs,
the equilibrium between FFAs and FABP is achieved rapidly
within 2 s at 37 �C and within 20 s at 10 �C, and A-FABP
possesses the fastest off-rate from its bound FFA comparing
with intestinal-FABP and heart-FABP39. Therefore, A-FABP
may have a complementary role with triglyceride-rich lipo-
proteins in delivery of FFAs into BAT, by facilitating the release
of WAT FFAs into the circulation and transport of FFAs to
BAT. Nevertheless, as A-FABP is a cytoplasmic FFA chaperone20,
it may also facilitate the transportation of FFAs to mitochondria
for b-oxidation. In line with our findings, other transporters
of FFAs such as CD36 (ref. 40) and fatty acid transport protein
1 (ref. 41), are also important in adaptive thermoregulation by
facilitating FFA uptake into BAT.

Furthermore, we uncovered the stimulatory effects of A-FABP
on intracellular conversion of T4 to T3 as another important
mechanism for promoting adaptive thermogenesis. BAT with
abundant expression of both a1 and b1 thyroid hormone
receptors is a well-established target of thyroid hormone42. The
preponderance of thyroid hormones released from the thyroid
glands into bloodstream is its inactive form T4, which needs to be
converted intracellularly by D2 into its bioactive metabolite T3
for further activation of thyroid hormone receptors43. In BAT,
thyroid hormones act coordinately with SNS to promote
thermogenesis. Upon thermogenic stimuli, activation of SNS
induces a marked elevation of D2 expression (approximately 10-
to 50-fold) in BAT7, which in turn converts T4 to T3 (ref. 44).
The elevated T3 further induces D2 expression in BAT43, thereby
forming a positive feedback loop to increase availability of T3. On
the other hand, T3 enhances the expression of b-adrenoceptors in
both BAT and WAT45, thus potentiating the stimulatory effects
of catecholamines on thermogenesis in BAT6. Activated thyroid
hormone receptors also act directly to increase cAMP-mediated
induction of the expression of UCP-1 gene and to induce the
expression of a cluster of genes involved in mitochondrial
biogenesis37,46. Our present study found that thermogenic stimuli
(such as cold and HFD challenge)-induced expression of D2 and
conversion of T4 to T3 in BAT were markedly decreased in
A-FABP KO mice. Furthermore, supplementation of T4
significantly stimulated cold-induced oxygen consumption and
BAT activation in WT mice, but not in A-FABP KO mice,
although A-FABP KO and WT mice were equally sensitive to
norepinephrine-induced BAT activation and thermogenesis. In
support of our conclusion, phenotypic changes of D2 KO mice
are also strikingly similar to A-FABP KO mice in our study,
including diminished conversion of T4 to T3 in BAT, and
impaired adaptive thermogenesis in response to cold challenge
despite normal serum T3 levels7.

Our study demonstrated that the effects of A-FABP on
promoting D2 expression and T4 to T3 conversion were mediated
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by its suppression of LXRa, which is a nuclear receptor having a
key role in regulating bile acid, glucose and lipid homeostasis47.
In BAT of A-FABP KO mice, the impairment in cold-induced
expression of D2 was accompanied by an attenuated reduction of
LXRa. Vice versa, the effect of LXRa agonist TO901317 on
suppression of Dio2 in primary brown adipocytes was abrogated
by treatment with rA-FABP. Activation of LXRa suppresses the
transcription of the Dio2 gene by binding to its promoter, thus
reducing D2-mediated T3 production in BAT32. In line with our
study, LXR a/b � /� mice display increased energy expenditure
and UCP-1 expression in BAT while treatment with the LXR
agonist GW3965 exerted opposite effects48. The expression of
Dio2 is also sixfold higher in the LXRa � /� mice compared
with their WT littermates48. Furthermore, LXRs form complex
with its co-factor, the receptor interacting protein 140, which
competes with peroxisome proliferator-activated receptor
g (PPARg) and peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1a) for the enhancer region
of the UCP-1 gene promoter and represses the gene expression49.
Therefore, A-FABP may also enhance UCP-1 expression through
its suppressive effect on LXRa.

Consistent with our findings, A-FABP has been shown
to downregulate LXRa activity in macrophages, leading to
altered de novo lipogenesis and ER stress and exacerbated
atherosclerosis33. Furthermore, A-FABP mediates ubiquitination
and the subsequent proteasomal degradation of PPARg50

and LXRa can be ubiquitinated by BRCA1-associated Ring
domain/ breast and ovarian cancer susceptibility 1 and its stability
and activity can be regulated by ubiquitination-mediated
proteasomal degradation51 suggesting that A-FABP promotes
ubiquitination-dependent proteasomal degradation of LXRa
as one of the mechanisms by which A-FABP suppresses
LXRa. Further studies are needed to investigate how A-FABP
accelerates the proteosomal degradation of LXRa by modulating
ubiquitination. Notably, A-FABP is also a downstream target of
LXRa activation52, suggesting the existence of a negative feedback
loop between A-FABP and LXRa. It is also worthy to note that
unsaturated FFAs can act as the suppressor of LXRa by
preventing its binding to the target genes53. As we showed that
A-FABP can form complex with circulating FFAs and facilitates
their uptake into BAT, it is also possible that A-FABP-mediated
accumulation of intracellular unsaturated FFAs interferes with
the binding of LXRa to its responsive element on Dio2 promoter,
thereby increasing Dio2 expression in BAT. In addition, A-FABP
can modulate the activity of several transcription factors,
including janus kinase 2 and PPARg54,55, the latter of which is
also a regulator of LXRa expression56. Further investigations are
warranted to explore the involvement of these transcription
factors in mediating A-FABP-mediated suppression of LXRa and
subsequent induction of the Dio2 gene in BAT.

While our present study showed the salutary effects of A-FABP
on prevention of obesity through promotion of adaptive
thermogenesis in BAT, A-FABP actions in other tissues
have been shown to exacerbate obesity-related cardiometa-
bolic disorder via its pro-inflammatory activities18. In
macrophages, A-FABP potentiates toxic lipids- and endotoxin-
induced activation of inflammatory pathways (NF-kB and c-Jun
N-terminal kinase) and production of pro-inflammatory
cytokines57. Ablation of A-FABP in macrophage alone is
sufficient to render apolipoprotein E deficient mice refractory
to spontaneous development of atherosclerosis58. The secreted
form of A-FABP can also act on endothelium cells to induce
endothelial dysfunction59, on cardiomyocytes to suppress cardiac
contraction60 and to mediate cardiac dysfunction during ischemic
injury29 and on hepatocytes to promote gluconeogenesis leading
to altered glucose homeostasis22. On the other hand, circulating

A-FABP may possess insulinotropic action mediating glucose-
stimulated insulin secretion of pancreatic b cells61. Therefore,
these findings, together with our present study, highlight the
complex functions of A-FABP in obesity and its associated
cardiometabolic disorders due to its differential effects on various
target tissues at different stages of the disease. It is likely that
elevated A-FABP under physiological stimuli (such as cold
challenge) or early phase of obesity may serve as a defense
response to promote adaptive thermogenesis through its actions
in adipocytes. However, with the progression of obesity,
prolonged and excessive increase of A-FABP may exacerbate
metabolic and cardiovascular disorders through its effects on
non-adipose tissues, including macrophages, endothelium,
cardiomyocytes and hepatocytes. The dual effects of A-FABP
on obesity and its associated medical complications are strikingly
reminiscent of leptin, another adipocyte-secreted hormone that is
elevated in both animals and human with obesity62,63.
Intriguingly, leptin combats obesity through its hypothalamic
actions to reduce food intake and its actions in brown adipocytes
to enhance energy expenditure via promoting D2 activity and
conversion of T4 to T3 in BAT64. In contrast, excessive elevation
of leptin can also cause cardiovascular diseases, liver
inflammation and fibrosis through its actions on blood vessels,
cardiomyocytes and liver65,66.

In conclusion, our study demonstrated an important role of
adipocyte-derived A-FABP in adaptive thermogenesis, via its
actions on conversion of T4 to T3 by modulating the LXRa-Dio2
signalling axis and facilitating the uptake of circulating FFAs into
BAT. Notably, the pharmacological inhibitors of A-FABP such as
BMS309403 (ref. 67) and the recent identified A-FABP
monoclonal antibody CA33 (ref. 68) alleviate metabolic and
cardiovascular disorders in animals. Our study suggests that
global pharmacological inhibition of A-FABP may not be an
optimal therapeutic strategy for obesity-related cardiovascular
and metabolic diseases due to the potential impairment of
adaptive thermogenesis. Further investigations to dissect the
structural and molecular basis underlying the differential effects
of A-FABP in different tissues are needed in order to design more
effective therapeutic interventions for obesity and its related
medical complication by targeting A-FABP.

Methods
Animals. A-FABP KO mice in C57BL/6N background were generated using the
same procedures as previously described29. Age-matched male A-FABP KO mice
and their littermates were used in all the experiments of this study. Animals
were allocated to their experimental group according to their genotypes. No
randomization of mice was used. The investigators were not blinded to the
experimental groups. Mice were housed in a temperature-controlled facility
(23 �C, 12-hour light/dark cycle, 60–70% humidity). Four-week-old mice were
weaned and fed with either STC (Purina, Framingham, MA, USA) or Western diet
(D12079B, Research Diet, USA) for 4 or 24 weeks. Body composition was
determined bi-weekly by nuclear magnetic resonance (Bruker, minispec,
Germany). All experimental protocols were approved by the Committee on the Use
of Live Animals in Teaching and Research at the University of Hong Kong.

Cold exposure. Male 4-week-old A-FABP KO mice and their littermates fed with
STC or HFD for 24 weeks were provided with food and water ad libitum at 6 �C for
8 or 24 h. Rectal temperature was measured with 4610 Precision Thermometer
(Thermo Scientific, MA, USA), and serum was collected at various time points via
tail vein for lipid profile analysis.

Glucose tolerance test and insulin tolerance test. For glucose tolerance test,
male 4-week-old A-FABP KO mice and their littermates fed with STC or
HFD for 24 weeks mice were housed in clean cages with fasting for 16 h before
intra-peritoneally injected with D-glucose (1 g kg� 1). Blood glucose was monitored
at 0, 10, 20, 30, 45, 60, 75 and 90 min after glucose injection. Male 4-week-old
A-FABP KO mice and their littermates fed with HFD for 4 weeks infused with
rA-FABP (1 mg h� 1) or its mutant R126Q (1mg h� 1) were also subjected to
glucose tolerance test. For insulin tolerance test, male 4-week-old A-FABP
KO mice and their littermates fed with STC or HFD for 24 weeks mice were fasted
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for 6 h followed by intra-peritoneal injection of insulin (1 U kg� 1 for mice fed
with HFD and 0.5 U kg� 1 for mice fed with STC). Blood glucose was measured
at 0, 20, 40, 60 and 80 min after insulin injection. HOMA index was calculated
according to the formula: fasting insulin (micro U l� 1)� fasting glucose
(nmol l� 1)/22.5.

Indirect calorimetry. Whole-body oxygen consumption (VO2) was assessed
using Indirect Calorimetry with the Columbus Comprehensive Lab Animal
Monitoring System (CLAMS, Columbus, USA) as previously described12. Briefly,
male 4-week-old A-FABP KO mice and their littermates fed with STC or HFD for
4 weeks, mice were acclimated to CLAMS cages individually with food and water
ad libitum for 24 h. Data on OCR (VO2) were recorded every 10 or 11 min for a
48-hour period at 23 �C or 6 �C. Physical activity was measured by infrared
technology (OPT-M3, Columbus Instruments). Norepinephrine-induced energy
expenditure was determined. Briefly, male 4-week-old A-FABP KO mice and their
littermates fed with STC or HFD for 24 weeks mice were anaesthetized and
VO2 was recorded for the first 30 min to access basal energy expenditure.
Individual mice were then injected with norepinephrine (1 mg kg� 1,
Sigma-Aldrich), and VO2 was determined for another 60 min.

Generation of rA-FABP and A-FABP mutant R126Q. Mouse A-FABP
(GenBank BC054426.1) was cloned into the His-tag expression vector pDEST17.
A-FABP mutant R126Q was generated using Quick Change Multi Site-Directed
Mutagenesis kit (Life Technology, USA) with pDEST17-A-FABP vector, using the
primers described in Supplementary Table 1. Vectors were transformed into
BL21 Escherichia coli, induced with isopropyl b-D-1-thiogalactopyranoside
(1 mmol l� 1; Sigma-Aldrich), and His-tagged A-FABP was purified with imidazole
(Sigma-Aldrich). Identity and purity of protein were confirmed by
SDS–polyacrylamide gel electrophoresis, followed by Western blot or Coomassie
blue staining. Endotoxin was removed by Pierce High Capacity Endotoxin
Removal Spin Columns (Thermo Fisher Scientific, USA) and measured by
QCL-1000 End point Chromogenic LAL Assays (Lonza, Switzerland,

valueo0.02 EU mg� 1 protein).

Generation of adenovirus expressing A-FABP and luciferase. Adenovirus over-
expressing A-FABP (Ad-AFABP) was generated using AdEasy XL Adenoviral
Vector System according to the manufacturer’s instruction (BD Biosciences, USA).
Briefly, mouse A-FABP (GenBank BC054426.1) was cloned to pShuttle2 vector
followed by ligating the expression cassette to BD Adeno-XTM Viral DNA.
Recombinant Ad-AFABP was propagated in HEK293 cells and purified using
AdEasy Virus Purification Kits (Stratagene, La Jolla, California, USA). Recombi-
nant adenovirus encoding luciferase (Ad-Luci) was kindly provided by Christopher
Rhodes (University of Washington, Seattle)69. Briefly, the recombinant virus was
packaged and amplified in HEK293 cells and purified by cesium chloride density
gradient centrifugation.

Isolation and culture of primary adipocytes. The Stromal vascular fractions
(SVFs) of BAT were isolated as previously described12 with modification. Freshly
isolated BAT pads from male 6-week-old A-FABP KO mice and their relative
WT littermates were minced and digested in 0.1% (w/v) collagenase type I
(Invitrogen, CA, USA) for 30 min at 37 �C with gentle shaking in water bath. The
digestion mixture was passed through a 70 mm cell strainer (BD Biosciences)
and centrifuged at 700g for 5 min at 4 �C. The SVFs were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) with 10% fetal bovine serum
(Invitrogen, CA, USA) and 1% penicillin and streptomycin (PSF, Thermo Fisher
Scientific, USA) until confluence. To differentiate SVFs into mature adipocytes,
SVFs cells were treated with insulin (20 nM, Novartis, Swiss), 3-isobutyl-1-
methylxanthine (0.5 mM, Sigma-Aldrich), dexamethasone (1 mM, Sigma-Aldrich),
3,3,5-triiodothyronine (T3, 1 nM, Sigma-Aldrich), indomethacin
(125 nM, Sigma-Aldrich), retinoic acid (20 mM, Sigma-Aldrich) and Vitamin C
(142 mM, Sigma-Aldrich) in DMEM for 2 days then changed to DMEM containing
insulin (20 nM) and T3 (1 nM) for another 4 days.

Measurement of cellular OCR. Cellular OCR was measured using the XFe24
Extracellular Flux Analyser (Seahorse Bioscience, USA). SVFs isolated from male
6-week-old A-FABP KO mice and their relative WT littermates were seeded in
XFe24-well microplate with 1.5� 104 cells per well and differentiated into
mature adipocytes. Cells were pre-incubated with BSA (3 mg ml� 1), rA-FABP
(2mg ml� 1) or palmitate (200 nM, Sigma-Aldrich) for 30 min. Oligomycin
(5mM, ATP synthase inhibitor, Sigma-Aldrich), carbonyl cyanide-4-
(trifluoromethoxy) phenylhydrazone (FCCP, 50 mM, cellular uncoupler, Sigma-
Aldrich), rotenone/antimycin A (1 mM, Sigma-Aldrich) were sequentially added to
determine basal-, ATP-dependent-, maximal- and mitochondria-independent
oxygen consumption, respectively.

Replenishment of rA-FABP and thyroid hormones. Thyroxine (T4, 400 mg kg� 1,
5 days, Sigma-Aldrich) or T3 (500 mg kg� 1, 1 day, Sigma-Aldrich) were

administrated into male 4-week-old A-FABP KO mice and their WT littermates
fed with HFD for 4 weeks by subcutaneous injection. The rA-FABP or A-FABP
mutant R126Q was infused into the male 4-week-old A-FABP KO mice and their
WT littermates fed with HFD for 4 weeks by subcutaneous implantation of
ALZET Osmotic Pumps (Model 2004, Alzert, Cupertino, CA, USA) at a constant
rate of 1 mg h� 1 for 14 days. The circulating levels of A-FABP, T3 and T4 were
measured with their respective immunoassays.

Palmitate uptake in mice and primary adipocytes. Male 8-week-old A-FABP
KO mice and their relative WT littermates infused with rA-FABP (1 mg h� 1) or
R126Q (1 mg h� 1) or PBS for 14 days were orally administrated with 200 ml olive
oil containing 3H-palmitate (2 mCi, PerkinElmer, USA) for 4 h in the absence of
food and water. Interscapular BAT, subcutaneous WAT and epididymal WAT and
various peripheral tissues were freshly isolated and minced for measurement
of radioactivity. For in vivo FA tracing, BODIPY-FA (20 mM) was pre-incubated
with or without rA-FABP (50 mg) or A-FABP mutant R126Q (50 mg) for 30 min.
These BODIPY-FAs were injected through tail vein into male 8-week-old A-FABP
KO mice, and the fluorescence was monitored by the PE IVIS Spectrum in vivo
imaging system (PerkinElmer, USA). For palmitate uptake in primary adipocytes,
3H-palmitate (55 mCi mmol� 1, PerkinElmer, USA) or BODIPY-FA
(2 mM, Molecular Probes) was pre-incubated with BSA (3 mg ml� 1) or rA-FABP
(2 mg ml� 1) 30 min before adding to differentiated primary adipocytes for 10 min.
Radioactivity or fluorescence of cell lysates was measured by Liquid Scintillation
Counter (PerkinElmer, USA) or Infinite M200 Microplate Reader (Tecan Systems,
Inc. San Jose, CA, USA), respectively. For tracing of BIODIPY-FA and A-FABP,
rA-FABP was fluorescent-labelled using Alexa Fluor 488 Protein Labelling
Kit (Invitrogen, CA, USA). BODIPY-FA (2 mM) was pre-incubated with or without
fluorescent-labelled rA-FABP (2mg ml� 1) for 30 min, and was then added to
A-FABP-deficient primary brown adipocytes. The fluorescent images of cells were
obtained at different time points using a microscope (Bx41 System, Olympus) with
a colour digital camera (Olympus Model DP72).

Co-immunoprecipitation of A-FABP and 3H-palmitate. One-hundred microlitre
of serum of male 8-week-old C57BL/6N mice orally administrated with
3H-palmitate (2 mCi, PerkinElmer, USA) was harvested after 4 h, followed by
immunoprecipitation with goat anti-mouse/rat A-FABP antigen affinity-purified
polyclonal antibody (5mg ml� 1, AF1443, R&D Systems, Minneapolis, USA,) or
anti-mouse IgG (5 mg ml� 1, 02–6502, Thermo Fisher Scientific, USA) at 6 �C
overnight. The immunocomplexes were precipitated by incubation with protein G
beads (10,003, Thermo Fisher Scientific, USA) at 23 �C for 2 h. After washing
with ice-cold lysis buffer for six times, the immunoprecipitated complexes were
subjected to either Western blot analysis after eluted protein from 20 ml of beads by
heating in 20 ml of 2� SDS loading buffer for 10 min at 50 �C or liquid scintillation
counting to determine the radioactivity of 3H-palmitate70.

14C-glucose uptake. Male 4-week-old A-FABP KO mice and their WT littermates
fed with HFD for 4 weeks were intra-peritoneally injected with 2-[1-14C]-deoxy-D-
glucose (20 mCi, PerkinElmer, USA) for 2 h in the absence of food and water.
Interscapular BAT, liver and soleus muscle were isolated and minced for
measurement of radioactivity and normalized with protein concentrations.

Immunoblot analysis and real-time PCR. Proteins were separated by
SDS–polyacrylamide gel electrophoresis, transferred to polyvinylidene
difluoride membranes, and probed with primary antibodies A-FABP
(0.25 mg ml� 1, goat polyclonal; AF1443, R&D Systems), UCP-1 (0.5 mg ml� 1,
rabbit polyclonal; ab10983, Abcam, Cambridge, UK), liver X receptor
a (LXRa, 1 mg ml� 1, rabbit monoclonal; ab28478, Abcam), type II iodothyronine
deiodinase (D2, 0.25 mg ml� 1, rabbit polyclonal; ab77481, Abcam), tyrosine
hydroxylase (0.25 mg ml� 1, rabbit polyclonal; 2,792, Cell Signaling), b-tubulin
(0.25 mg ml� 1, rabbit polyclonal; 2,128, Cell Signaling, Beverly, MA, USA) and
glyceraldehyde 3-phosphate dehydrogenase (GAPDH, 0.1 mg ml� 1, rabbit
monoclonal; 5,174, Cell Signaling). The intensities of protein bands were quantified
using the NIH Image J software.

Total RNA was extracted with Trizol (Invitrogen) and reverse transcribed
into complementary DNA using Improm-II reverse transcription kit
(Promega, Madison, USA). Real-time PCR was performed using SYBR Green
master mix (Qiagen, Venlo, the Netherlands) on a 7,900 HT (Applied Biosystems,
CA, USA), normalized against the GAPDH gene. Primer sequences are listed in
Supplementary Table 1.

Analysis of mRNA stability in primary brown adipocytes. SVFs isolated from
male 6-week-old A-FABP KO mice and their relative WT littermates were
differentiated into primary brown adipocytes in 12-well plates. Differentiated
adipocytes were treated with actinomycin D (actD, 1 mg ml� 1) or vehicle (PBS).
The mRNA abundance of LXRa was measured at various time points (0, 4, 6, 12 h)
by real-time PCR.
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Analysis of protein stability in primary brown adipocytes. SVFs isolated from
male 6-week-old A-FABP KO mice and their WT littermates were differentiated
into primary brown adipocytes in 12-well plates. WT and A-FABP-deficient
primary adipocytes were treated with cycloheximide (50mg ml� 1, Sigma-Aldrich)
in the presence or absence of the proteasome inhibitor MG132 (10mM, Sigma-
Aldrich). In addition, A-FABP deficient primary adipocytes were infected with
adenovirus over-expressing A-FABP (Ad-AFABP) or luciferase (Ad-Luci) at
fifty multiplicity of infection (M.O.I) for 48 h followed by treatment with
cycloheximide (50mg ml� 1). Adipocytes were harvested at indicated time points
and the expression of LXRa and A-FABP was determined by western blot analysis.

Histological and immunohistochemistry analysis. Paraffin-embedded adipose
tissues were prepared at the thickness of 5 mM. Deparaffinized and dehydrated
sections were stained with haematoxylin and eosin (Sigma-Aldrich) as previously
described29. For immunocytochemistry, sections were sequentially incubated with
primary antibody UCP-1 (5mg ml� 1, rabbit polyclonal; Abcam, UK) overnight
and anti-rabbit secondary antibody (4mg ml� 1; Cell Signaling Technology) for 1 h
at 23 �C, followed by development with 3, 30 diaminobenzidine solution
(Sigma-Aldrich). The nuclei were counter-stained with haematoxylin. The
intensities of positively stained cells were quantified in each of five randomly
selected fields by the Image J software. Two independent investigators blinded
to sample identity, one investigator performed the staining and another
investigator analysed the adipose tissue sections.

Biochemical and immunological analysis. Serum insulin, adiponectin and
A-FABP levels were measured using Advanced Ultra Sensitive Mouse Insulin
Immunoassay kit, mouse adiponectin ELISA kit (AIS, HKU, Hong Kong) and
mouse A-FABP ELISA kit (BioVendor Laboratory Medicine, Modrice, Czech
Republic) respectively. T4 and T3 levels in serum or adipose tissues were
analysed using mouse T4 or T3 ELISA kit, respectively (Calbiotech, Spring Valley,
CA, USA). Plasma glucose was measured using an ACCU-Check glucose meter
(Roche, Indianapolis, IN, USA). Serum FFAs, triglyceride and cholesterol were
determined using FFAs, Half Micro Test kit (Roche, USA), Stanbio Liquicolor
Triglyceride and Stanbio Liquicolor Cholesterol (STANBIO Laboratory, USA),
respectively.

Statistical analysis. All statistical analyses were performed using Prism 6
(GraphPad Software Inc. La Jolla, CA92037 USA). Data were expressed as
mean±s.e.m. Animal sample size for each study was chosen on the basis of
literature documentation of similar well-characterized experiments, and no
statistical method was used to predetermine sample size. Statistical significance
was assessed by Student’s t-test or one-way analysis of variance with Bonferroni
correction for multiple comparisons. A value of Po0.05 was considered statistically
significant. Statistical outlier analysis was calculated using the GraphPad Outlier
calculator (http://graphpad.com/quickcalcs/Grubbs1.cfm). Those significant
outliers were excluded from data analysis.

Data availability. The data supporting the findings of this study are available
within the article and its Supplementary Information Files, or are available from
the corresponding author upon reasonable request.
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