
Title Berberine Suppresses Cyclin D1 Expression through
Proteasomal Degradation in Human Hepatoma Cells

Author(s) Wang, N; Wang, X; TAN, HY; LI, S; Tsang, CM; Tsao, GSW; Feng,
Y

Citation International Journal of Molecular Sciences, 2016, v. 17, p.
1899:1-13

Issued Date 2016

URL http://hdl.handle.net/10722/238615

Rights This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.



 International Journal of 

Molecular Sciences

Article

Berberine Suppresses Cyclin D1 Expression through
Proteasomal Degradation in Human Hepatoma Cells

Ning Wang 1, Xuanbin Wang 2,3, Hor-Yue Tan 1, Sha Li 1, Chi Man Tsang 4, Sai-Wah Tsao 4

and Yibin Feng 1,2,3,*
1 School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China;

ckwang@hku.hk (N.W.); hoeytan@hku.hk (H.-Y.T.); u3003781@connect.hku.hk (S.L.)
2 Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital,

Hubei University of Medicine, Shiyan 442000, China; wangxb@hbmu.edu.cn
3 Hubei Key Laboratory of Wudang Local Chinese Medicine Research and School of Pharmacy,

Hubei University of Medicine, Shiyan 442000, China
4 Department of Anatomy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China;

annatsan@hku.hk (C.M.T.); gswtsao@hku.hk (S.-W.T.)
* Correspondence: yfeng@hku.hk; Tel.: +852-258-90431; Fax: +852-216-84259

Academic Editor: Toshio Morikawa
Received: 27 September 2016; Accepted: 9 November 2016; Published: 15 November 2016

Abstract: The aim of this study is to explore the underlying mechanism on berberine-induced
Cyclin D1 degradation in human hepatic carcinoma. We observed that berberine could suppress
both in vitro and in vivo expression of Cyclin D1 in hepatoma cells. Berberine exhibits dose- and
time-dependent inhibition on Cyclin D1 expression in human hepatoma cell HepG2. Berberine
increases the phosphorylation of Cyclin D1 at Thr286 site and potentiates Cyclin D1 nuclear export
to cytoplasm for proteasomal degradation. In addition, berberine recruits the Skp, Cullin, F-box
containing complex-β-Transducin Repeat Containing Protein (SCFβ-TrCP) complex to facilitate Cyclin
D1 ubiquitin-proteasome dependent proteolysis. Knockdown of β-TrCP blocks Cyclin D1 turnover
induced by berberine; blocking the protein degradation induced by berberine in HepG2 cells increases
tumor cell resistance to berberine. Our results shed light on berberine′s potential as an anti-tumor
agent for clinical cancer therapy.
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1. Introduction

Overexpression of Cyclin D1 in various human cancers is regarded as a key mechanism underlying
tumor angiogenesis, progression, and metastasis [1–6]. Cyclin D1 overexpression is also found to
enhance cancer cells′ resistance to chemotherapeutic agents [7]. Disruption of Cyclin D1 proteolysis
is one of the major mechanisms that cancer cells accumulate Cyclin D1 [8]. In particular, it was
noticed that Cyclin D1 was overexpressed in hepatocellular carcinoma (HCC) and was associated with
aggressive forms of HCC [9,10]. Chronic overexpression of Cyclin D1 in transgenic mice with HCC
was also observed [11].

Berberine is a natural product belonging to the group of isoquinoline alkaloids that are present in
many medical plants. The anti-tumor action of berberine was extensively reported, in which berberine
was shown to modulate several different signal transductions to induce tumor cell cycle redistribution
and apoptosis, and to inhibit tumor cell migration [12,13]. Several studies revealed that inhibitory effect
of berberine on Cyclin D1 expression in various cancer cell lines including neuroblastoma SK-N-SH &
SK-N-MC cells [14], human epidermoid carcinoma A431 cells [15], human prostate carcinoma LNCap,
DU145 & PC-3 cells [16], human leukemia cells HL-60 [17], and pulmonary giant cell carcinoma
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PG cells [11], indicating that Cyclin D1 may be a potential target for berberine in cancer therapy.
However, the exact mechanism of Cyclin D1 inhibition in berberine-treated cancer cells has not been
well documented. A recent study reveals that berberine suppresses the activity of the AP-1 signaling
pathway and decreases the binding of transcription factors to the Cyclin D1 AP-1 motif, indicating
that transcriptional inhibition of Cyclin D1 may be involved in berberine′s anti-tumor effect [18]. It is
interesting to examine whether the inhibitory action of berberine on Cyclin D1 expression in liver
cancer cells shares the same mechanism and to figure out the exact machinery that undergoes Cyclin
D1 suppression in human hepatoma cells exposed to berberine.

In this study, the underlying mechanism of Cyclin D1 suppression by berberine in human
hepatoma cells was examined. It was observed that berberine could suppress both in vitro and
in vivo expression of Cyclin D1 in hepatoma cells. Dose- and time-dependent Cyclin D1 inhibition is
observed in HepG2 cells exposed to berberine; and the rapid ablation of Cyclin D1 induced by 6 h
berberine treatment is found independent of transcriptional inhibition. We found Cyclin D1 undergoes
ubiquitinated degradation in berberine-treated HepG2 cells, and phosphorylation at Thr-286 site of
Cyclin D1 is required for berberine-driven Cyclin D1 degradation. The β-transducin repeat-containing
protein (β-TrCP) recruitment as E3 ligases by berberine are induced when Cyclin D1 proteolyzes.
Genetic depletion of β-TrCP attenuates berberine′s inductive action on Cyclin D1 degradation as
well as berberine′s anti-tumor effect. Our results indicate that involvement of β-TrCP as E3 ligase in
Cyclin D1 ubiquitination-dependent proteolysis is the mechanism in berberine′s inhibitory action on
Cyclin D1 expression in HepG2 cells, and contributes partially to the anti-tumor action of berberine.
This sheds light on berberine′s potential in the agent list for liver cancer therapy.

2. Results

2.1. Berberine Suppresses In Vitro and In Vivo Cyclin D1 Expression in Hepatoma Cells

It was extensively reported by our previous studies that berberine could suppress both in vitro
and in vivo growth of HCC [19–21]. Consistently, we observed reduced expression of Cyclin D1
in hepatoma cells with berberine treatment (Figure 1A). While berberine significantly reduced
proliferation of xenografted hepatoma, the expression of Cyclin D1 in hepatoma xenograft was in
parallel inhibited (Figure 1B). These observations confirmed the property of berberine in suppressing
in vitro and in vivo expression of Cyclin D1 in hepatoma. To further profile the action of berberine, we
systemically examined Cyclin D1 expression in berberine-treated HepG2 cells. HepG2 cells with 6 h
exposure to berberine exhibit significant dose-dependent reduction of Cyclin D1 expression (Figure 1C).
Time-dependent manner of Cyclin D1 expression inhibition was also observed in HepG2 cells exposed
to100 µM berberine (Figure 1C). Six hour exposure of 100 µM berberine to HepG2 cells was unable
to carry out any alteration on the cell phase distribution, indicating that the rapid suppression on
Cyclin D1 is not attributed to the cycle arrest induction by berberine in HepG2 cells (Figure 1D).
This observation indicates that Cyclin D1 inhibition may occur prior to cell cycle change and can cause
redistribution of cell cycle phases. Our findings reveal that berberine could rapidly inhibit Cyclin D1
expression in time- and dose-dependent manner but is independent on cell cycle.

2.2. Berberine Triggers Post-Translational Suppression on Cyclin D1 Expression

A previous study reveals that berberine suppresses the activity of the AP-1 signaling pathway
and decreases the binding of transcription factors to the Cyclin D1 AP-1 motif, indicating that
transcriptional inhibition of Cyclin D1 may be involved in the anti-tumor effect of berberine [11].
To determine if inhibition of berberine on Cyclin D1 expression in hepatoma cells undergoes the
same mechanism, we issued a quantitative real-time polymerase chain reaction (qPCR) analysis to
quantify the Cyclin D1 mRNA transcripts in HepG2 cells exposed to berberine. Interestingly, we
found that either 6 or 12 h exposure to berberine could not suppress the transcripts level of Cyclin D1,
however, the protein expression was significantly inhibited (Figure 2A). To further examine if Cyclin
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D1 suppression by berberine in HepG2 cells undergoes at a post-transcriptional level, we analyzed the
protein expression in HepG2 cells with or without 100 µM berberine intervention in the presence of
cycloheximide, a translation and protein synthesis inhibitor. We found that 100 µM berberine could
shorten the half-life of Cyclin D1 protein in the presence of 150 µg/mL cycloheximide (Figure 2B).
This action is further confirmed by the observation that presence of 20 nM MG-132, a proteasome
inhibitor, is able to completely block the Cyclin D1 ablation induced by berberine exposure in HepG2
cells (Figure 2C). Our results show that berberine could induce a rapid post-translational degradation
of Cyclin D1 in HepG2 cells.
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Figure 1. Berberine suppresses Cyclin D1 expression in hepatoma cells. (A) HepG2 and MHCC97L cells
were treated with 100 µM berberine for 24 h. the expression of Cyclin D1 was inhibited; (B) Xenograft
model was established as described and treatment of berberine can lead to reduced tumor size as well
as Cyclin D1 expression; (C) Upon 6 h exposure of 100 µM berberine, the expression of Cyclin D1
was potently repressed. Cyclin D1 was detected by immunoblotting with β-actin as internal control;
(D) HepG2 cells were treated with berberine at different doses for 6 h and then subject to cell cycle
analysis. No significant cell cycle phase redistribution was observed. * p < 0.05,** p < 0.01.
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berberine in the presence of 150 µg/ml Cycloheximide. Reduced half-life in berberine-treated cells 
were found; (C) Cells were treated with berberine in the presence of 20 nM MG-132. Cyclin D1 was 
detected by immunoblotting with α-tubulin as internal control. 
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its expression in HepG2 cells. Partial genetic deletion of β-TrCP in HepG2 cells attenuates berberine′s 
action on Cyclin D1 expression (Figure 3C). Our results may indicate that β-TrCP serves as the 
particular E3 ligase in berberine-driving Cyclin D1 proteolysis in HepG2 cells. 

Figure 2. Berberine inhibits Cyclin D1 expression in HepG2 cells via post-translational control.
(A) qPCR was used to detected the mRNA transcript of Cyclin D1 with GAPDH as internal control.
No mRNA changed while Cyclin D1 protein was reduced by berberine; (B) Cells were treated with
berberine in the presence of 150 µg/ml Cycloheximide. Reduced half-life in berberine-treated cells
were found; (C) Cells were treated with berberine in the presence of 20 nM MG-132. Cyclin D1 was
detected by immunoblotting with α-tubulin as internal control.

2.3. Berberine Promotes Cyclin D1 Ubiquitination in HepG2 Cells and Facilitates β-TrCP Binding

A direct evidence of berberine-induced Cyclin D1 unbiquitination in HepG2 cells was observed
(Figure 3A). The endogenous expressing Cyclin D1 in HepG2 cells with berberine treatment in the
presence of 20 nM MG-132 was immunoprecipitated using specific antibody against Cyclin D1
and analyzed using antibody against ubiquitin. Increased ubiquitinated Cyclin D1 was found in
a dose-dependent manner, indicating that berberine could promote the ubiquitination of endogenous
Cyclin D1. We observed that one of the F-box proteins, β-TrCP, could be triggered to bind to the
skp1-cullin-F-box (SCF) protein complex of Cyclin D1 upon berberine exposure (Figure 3B). As recently
reported, β-TrCP could serve as an E3 ligase and be incorporated in the SCF complex-facilitating
ubiquitination dependent Cyclin D1 proteolysis [22]. To figure out the direct evidence of the
involvement of β-TrCP in berberine-induced Cyclin D1 ablation, we used specific siRNA against
human BTRC gene to block its expression in HepG2 cells. Partial genetic deletion of β-TrCP in HepG2
cells attenuates berberine′s action on Cyclin D1 expression (Figure 3C). Our results may indicate that
β-TrCP serves as the particular E3 ligase in berberine-driving Cyclin D1 proteolysis in HepG2 cells.
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Figure 3. Berberine induces Cyclin D1 ubiquitination and recruits β-TrCPas an E3 ligase. (A) Cells were
treated by berberine for 6 h in the presence of MG-132 (20 nM). Ubiquitinated Cyclin D1 was precipitated
with antibody against Cyclin D1 and detected with ubiquitin antibody; (B) Cells were treated with
berberine for 6 h in the presence of MG-132 (20 nM). Ubiquitinated Cyclin D1 was precipitated with
antibody against Cyclin D1 and β-TrCP was detected with β-TrCP antibody; (C) shows that genetic
knockdown of β-TrCP attenuates berberine′s effect on Cyclin D1 degradation. (+ means presence of
the chemicals), ** p < 0.01.

2.4. Berberine Promotes Cyclin D1 Phosphorylation and Nuclear Export in HepG2 Cells

Previous studies reported that Cyclin D1 turnover was mediated by ubiquitin-dependent
proteasomal degradation and dependent on T286 (the threonine 286) phosphorylation [23]. However,
it was observed that certain mutations stabilized Cyclin D1 but did not affect its polyubiquitylation,
which could prove that the regulation of Cyclin D1 degradation may be ubiquitin-independent [24].
Identifying if the berberine-induced Cyclin D1 degradation in HepG2 is dependent on the
phosphorylation on its T286 site, we first examined if berberine could promote the Cyclin D1
phosphorylation in HepG2 cells. Western blot analysis indicates that berberine-facilitated Cyclin
D1 repression in HepG2 cells was accompanied with increases in Thr-286 phophorylation in the
presence of MG132, the proteasome inhibitor (Figure 4A), and the effect of berberine in triggering
Cyclin D1 phosphorylation in HepG2 cells is in dose- and time-dependent manner. This indicates that
phosphorylation of Cyclin D1 at the T286 site may be involved in its degradation induced by berberine.
Since the ubiquitination process of Cyclin D1 is conducted in cytoplasm, the nuclear export is necessary
for berberine-facilitated Cyclin D1 degradation. Both immunofluorescence and immunoblotting
analysis exhibit that berberine could reduce the nuclear localization of Cyclin D1 in HepG2 cells
(Figure 4B,C). These data suggest that the ability of berberine to promote phosphorylation dependent
nuclear transport and ubiquitination of Cyclin D1 plays an integral role in its subsequent degradation.
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Figure 4. Berberine induces Cyclin D1 phosphorylation at T286 site and its nuclear export in
HepG2 cells. (A) Cells were treated with berberine in the presence of MG132. The expression of
phosphor-Cyclin D1 was normalized by total Cyclin D1 to avoid fluctuation induced by dynamic
degradation of Cyclin D1; (B) Cells were treated with berberine for 6 h and fixed. Cyclin D1 was stained
(Red) and DAPI was used to stain the nucleus; (C) Cells were treated with berberine and cytosolic and
nuclear fractions were collected. β-actin and Lamin B1 were used as internal controls, respectively.
* p < 0.05.

2.5. Berberine-Induced Cyclin D1 Degradation Is T286 Phosphorylation Dependent

In order to determine if phosphorylation of Cyclin D1 at T286 site is required for its degradation
induced by berberine in HepG2 cells, we transfected pcDNA plasmid encoding either HA-tagged
Cyclin D1 (wild-type, wt) or HA-tagged Cyclin D1 T286A mutant (mut) into HepG2 cells which were
then exposed to berberine for 6 h. Immunoblotting analysis shows that the wild-type exogenous Cyclin
D1 undergoes rapid degradation in the presence of berberine while mutant Cyclin D1 remains intact
(Figure 5A). Since previous study reports that β-TrCP recruitment requires T286 phosphorylation of
Cyclin D1, we issued that the recruitment of protein complex including β-TrCP to Cyclin D1 should
be observed in cells transfected with wt Cyclin D1 but rather mut Cyclin D1. The protein complex in
HepG2 cells transfected with pcDNA3 plasmid encoding either wt HA-Cyclin D1 or mut HA-Cyclin D1
T286A was precipitated by HA antibody and β-TrCP was detected by immunoblotting. Recruitment
of β-TrCP was observed in HepG2 cells transfected with wt Cyclin D1 plasmid but not in cells
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with mut Cyclin D1 transfection when exposing to berberine, suggesting that T286 phosphorylation
is required for the recruitment of β-TrCP as E3 ligase for the ubiquitination of Cyclin D1 driven by
berberine (Figure 5B). This may indicate that berberine-induced Cyclin D1 ablation is T286-depdendent.
To further identify the contribution of Cyclin D1 ablation in berberine′s anti-tumor action, respectively,
the plasmid encoding either HA-Cyclin D1 wt or HA-Cyclin D1 T286A were transfected into HepG2
cells followed by berberine treatment and WST-1 assay was used to detect the cell response to berberine.
We found that cells with expression of mut Cyclin D1 show more resistance to berberine′s effect than
cells with wt Cyclin D1 transfection (Figure 5C). This indicates that cells that could not undergo T286
phosphorylation-mediated protein degradation when exposed to berberine are more likely to survive
upon berberine treatment. These results exhibit that berberine induced Cyclin D1 degradation partially
contributes to berberine′s effect.
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Figure 5. T286 phosphorylation is required from Cyclin D1 ubiquitin-proteasomal degradation
induced by berberine. (A) Cells expressing HA-tagged wt and mutant Cyclin D1 was treated
with berberine for 6 h. Expression of exogenous Cyclin D1 was blotted with hemagglutinin (HA)
antibody; (B) Cells expressing HA-tagged wt and mutant Cyclin D1 was treated with berberine
for 6 h. The protein complex was precipitated with HA antibody and precipitated β-TrCP and
Cyclin D1 were detected. INPUT level of β-TrCP was detected as control; (C) Cells expressing
HA-tagged wt and mutant Cyclin D1 was treated with berberine for 24 h. Cell viability was detected
by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (+ means presence of the
chemicals). * p < 0.05.

3. Discussion

In HCC, Cyclin D1 was found overexpressed and associated with aggressive forms of HCC [9,16].
Therefore, targeting Cyclin D1 by small molecule agents may be a therapeutically relevant strategy
for the treatment of Cyclin D1-overexpressing HCC [22]. As a natural product with a long
history and being intensively focused on its anti-tumor activity, berberine was reported to suppress
Cyclin D1 expression in various human cancer cell lines, however, few of studies reported the



Int. J. Mol. Sci. 2016, 17, 1899 8 of 13

underlying mechanism on Cyclin D1 inhibition action of berberine. From a translational perspective,
understanding how berberine-facilitated Cyclin D1 inhibition is an important and integral step
in drug discovery. In our study, we found a rapid suppression action of berberine on Cyclin D1
expression in human hepatoma cells HepG2, and berberine promotes an ubiquitination-dependent
proteolysis of Cyclin D1 in HepG2 cells. This kind of effect of berberine is dependent on Cyclin D1′s
phosphorylation at the T286 site. Some previous studies show that berberine could upregulate the
AMP-kinase and MAPK p42/p44 [25,26]. Phosphorylation of the related signaling by berberine may
be responsible for its various biological functions, and our finding shows Cyclin D1 phosphorylation
by berberine may be related to Cyclin D1 degradation in tumor cells. These findings suggest that the
ubiquitin-proteasome signal pathway involves as a novel mechanism in Cyclin D1 ablation induced
by berberine in HepG2 cells.

It was noticed that berberine can suppress the expression of Cyclin D1 in different hepatoma cell
lines including HepG2 and MHCC97L. As well, Cyclin D1 was potently inhibited in berberine-treated
hepatoma xenograft. The detailed mechanism of berberine in suppressing Cyclin D1 was elaborated
in a particular cell line HepG2. The origin of HepG2 remains to be controversial though there are a
plenty of studies that regarded it as a cell line of hepatocellular carcinoma. However, it was recently
shown that HepG2 cells share more genetic similarity with hepatoblastoma but not hepatocellular
carcinoma [27]. An increasing number of HCC cell lines has been developed and was used in the
study of liver cancer, however, not all the cell lines have a correlation with the clinical features of
liver tumor. Chen et al. compared the genomic data of tumor samples from clinical setting and that
of commonly used HCC cell lines, and found that around half of cell lines have poor correlation in
genetic features with human tumor samples. Fortunately, the four commonly used hepatoma cell
lines, HepG2, Huh7, Hep3B, and PLC/PRF/5 exhibited high correlation to the tumors [28]. In our
findings, the post-transcriptional mechanism of berberine-induced Cyclin D1 degradation was proven
in one of clinically correlated cell line HepG2. The significance of this study may be increased with
this mechanism being validated in other hepatoma cell lines.

The ubiquitin-proteasome dependent proteolysis is the important system in the control of
protein degradation in cells [29]. The ubiquitination system is consisted of ubiquitin-activating
enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin-protein ligases (E3) [30,31], among
which E3 is the specific enzyme for each degraded protein. For proteins controlling cell cycle,
the Skp1-Cullin-F-box (SCF) complex is the particular E3 ligase for its ubiquitination [32]. β-TrCP is one
of the F-box proteins that contain a protein structural motif of approximately 50 amino acids mediating
protein-protein interactions. β-TrCP is linked closely to cancer for its activity in the degradation
of IκBα and β-catenin [33]. Cyclin D1 was also reported as the substrate of β-TrCP in tumor cells
under glucose starvation or particular anti-tumor agent treatment. Increased interaction between
β-TrCP and Cyclin D1 was shown to promote Cyclin D1 protelysis in LNCap cells with exposure
of peroxisome proliferator-activated receptor-γ (PPARγ) agonist STG28 and thereby contributed to
its anti-tumor activity [22]. In our study, we observed that berberine, a natural product with wide
spectrum of anti-tumor activity, could promote the recruitment of SCF protein complex and Cyclin D1
in HepG2 cells and facilitate Cyclin D1 proteolysis. We found that Cyclin D1 expression inhibition
by berberine is dependent on ubiquitination pathway, and the particular F-box protein β-TrCP is
involved. Knockdown of β-TrCP expression attenuates the Cyclin D1 turnover induced by berberine in
HepG2 cells in a dose-dependent manner, indicating that β-TrCP plays a key role in berberine′s action.
Moreover, genetic deletion of β-TrCP partially increases the viability of HepG2 cells with exposure
of berberine, revealing that Cyclin D1 degradation induced by berberine may contribute partially to
its anti-tumor activity. The overall scheme of the mechanism underlying berberine′s action on Cyclin
D1 degradation is shown in Figure 6. We found that long-termed treatment of berberine increases its
potency in suppressing tumor cell growth as well as in potentiating Cyclin D1 turnover. Our findings
in this study indicate berberine′s potential as an anti-tumor agent with clear mechanism in inducing
Cyclin D1 degradation.
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4. Materials and Methods

4.1. Chemicals and Plasmids

Berberine chloride, protein synthesis inhibitor cycloheximide and proteasome inhibitor MG-132
were purchased from Sigma-aldrich (St. Louis, MO, USA). Plasmid pcDNA3 Cyclin D1-HA
(Plasmid 11181) and pcDNA3 Cyclin D1-HA (T286A, Plasmid 11182) were kindly provided by Bruce
Zetter (Harvard Medical School, deposited by Addgene, Cambridge, MA, USA); plasmid pcDNA3
HA-ubiquitin (Plasmid 18712) was provided by Edward Yeh (The University of Texas-Houston Health
Science Center, deposited by Addgene).

4.2. Cell Line and Cell Culture

The human hepatoma cell line HepG2 was obtained from American Type Culture Collection
(ATCC, Manassas, VA, USA). MHCC97L cells were kindly gifted by Man Kwan from Department of
Surgery, The University of Hong Kong (Hong Kong, China). Cells were maintained in the high glucose
Dulbecco′s Modified Eagle Medium (DMEM, Invitrogen, Carlsbad, CA, USA) supplemented with 10%
FBS (Invitrogen), and incubated in a humidified atmosphere containing 5% CO2 at 37 ◦C.

4.3. Xenograft Model

The protocol for animal study was approved by the Committee on the Use of Live Animals in
Teaching and Research (CULATR) of the University of Hong Kong (code: 2441-11). Animal was housed
in Laboratory Animal Centre of The University of Hong Kong with humane care. Four-week-old
female BALB/c nude mice received 1 × 106 MHCC97L cells by subcutaneous injection at the right
flank. One week after injection, mice were randomized into two groups. The treatment group of mice
received intraperitoneal injection of berberine (10 mg/kg/2 days) while mice in control group received
the same volume of saline buffer. Treatment lasted three weeks and at the end of study, mice were
sacrificed by overdose of pentobarbital (200 mg/kg) and tumor was dissected out for analysis.
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4.4. Real-Time Quantitative Polymease Chain Reaction

Total RNA was extracted and purified using RNeasy Mini Kit (Qiagen, Hilden, Germany)
following the manufacturer′s instruction. Reverse-transcription reaction was performed using
QuantiTech Reverse Transcription Kit (Qiagen) to prepare cDNA samples. The quantitative real-time
PCR (qRT-PCR) was conducted by QuantiTect SYBR Green PCR Kit (Qiagen) with 1 µM primers
for CCND1 (right: 5′-GACCTCCTCCTCGCACTTCT-3′; left: 5′-GAAGATCGTCGCCACCTG-3′;
Invitrogen, USA) on LightCycler 480 real-time PCR system (Roche, Basel, Switzerland). The expression
of GAPDH was used as endogenous control (right: 5′-GCCCAATACGACCAAATCC-3′; left:
5′-GCTAGGGACGGCCTGAAG-3′ Invitrogen, USA) for the normalization of gene expression
of CCND1.

4.5. Cell Cycle Analysis

HepG2 cells exposed to berberine (0, 50, 100 µM) for 6 h were collected and fixed in ice-cold 70%
ethanol overnight. Cells were then centrifuged for 5 min at 1500 rpm at room temperature. Ethanol
was discarded and cell pellet was re-suspended in PBS containing propidium iodide (5 µg/mL) and
RNase A (50 units/mL). Cell cycle phase distribution were examined by flow cytometer (Epics XL,
Beckman Coulter, Brea, CA, USA) and analyzed by Winmidi V2.9 program.

4.6. Immunofluoscence

HepG2 cells were seeded in 10 mm cover slip and incubated overnight. Then cells were treated
with berberine (0, 50, 100 µM) for 6 h. Cells were fixed in 4% paraformaldehyde for 1 h and then
penetrated in 0.1% Triton-X100 for 15 min. Cells were blocked in 5% normal goat serum in PBS
overnight at 4 ◦C followed by incubation with Cyclin D1 primary antibody (1:50) overnight at
4 ◦C. After washing, the bound primary antibody was detected using Texas Red goat anti-rabbit
antibody (Santa Cruz, 1:200) at room temperature for 2 h. The nuclear counterstaining was performed
using a 4,6-diamidino-2-phenylindole-containing mounting medium (Invitrogen) before examination.
Images were taken using confocal microscope (Carl Zeiss, Oberkochen, Germany, 400 magnification,
CCD camera).

4.7. Subcellular Fractionation

Cells were lysed with cold hypotonic buffer (10 mM Hepes, 10 mM KCl, 0.1 mM EDTA,
0.4% NP-40, 0.05 mM DTT) containing protease inhibitor cocktail (Roche) for 5 min and then
supernatant (Cytoplasmic fraction) was collected by centrifugation at 14,000× g 4 ◦C. The residue was
then extracted with nuclear extraction buffer (20 mM Hepes, 400 mM NaCl, 1 mM EDTA, 0.05 mM DTT,
in the presence of protease inhibitor cocktail) on ice for 30 min, followed by centrifugation at 14,000× g
for 10 min at 4 ◦C. Supernannt was collected as nuclear fraction. Both cytoplasmic and nuclear fraction
was separated and immunoblotted with β-actin and LAMIN B1 as control, respectively [22].

4.8. Immunoblotting

Protein was isolated on SDS-PAGE and then transferred to polyvinylidene fluoride membrane
(PVDF, Biorad, Hercules, CA, USA). The membrane was then blocked with 5% BSA overnight at
4 ◦C, followed by incubation with respective primary antibodies overnight at 4 ◦C. After washing,
the membrane was then incubated with appropriate secondary antibody (Abcam, Cambridge, UK) at
room temperature for 2 h. Image was captured using a chemiluminenescence imaging system (Bio-rad,
Biorad) with ECL advanced kit (GE Healthcare, Little Chalfont, UK) as substrate.

4.9. Co-Immunoprecipitation Assay

Cells were treated with berberine in the presence of MG-132 for 6 h. Collected cell pellets were
extracted using NP-40 lysis buffer (Invitrogen) supplemented with cocktail protease inhibitor (Roche)
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for 5 min on ice followed by centrifuging at 14,000 rpm at 4 ◦C for 10 min. The supernatant was
collected and aliquoted. Co-immunoprecipitation assay was performed using Dynabeads® protein
G kit (Invitrogen) following manufacturer′s instruction. Briefly, each 1.5 mg of magnetic beads were
transferred to a 1.5 mL microcentrifuge tube and separated on the magnet (Millipore, Billerica, MA,
USA) to remove the supernatant. Diluted antibodies were bound by incubating with the beads for
10 min at room temperature with rotation. The beads were collected by placing the tube on the
magnet and removing the supernatant. The cell lysate was then incubated with antibody-bound
beads for 10 min at room temperature with rotation and then discarded. After washing, the bound
protein was eluted by incubating the beads with 20 µL elution buffer for 2 min at room temperature
with rotation. The supernatant was collected and the eluted proteins were denatured and analyzed
by immunoblotting.

4.10. RNA Interference

HepG2 cells were seeded in DMEM medium supplemented with 10% FBS and 1% antibiotics
with 70% confluence. 24 h before transfection, medium was discarded and replaced with serum- and
antibiotic-free DMEM medium. Transfection was carried out using Lipofectamine 2000 (Invitrogen)
according to manufacturer′s instruction. 10 µg of siRNA against human β-TrCP (sc-37178, Santa Cruz,
CA, USA) was transfected. The cells were supplemented with DMEM medium with 10% FBS and 1%
antibiotics 6 h after transfection. Treatment of berberine was conducted within 48 h after transfection.

4.11. Statistical Analysis

All experiments were conducted in triplicate except particular notice. Results were analyzed
using student t-test and expressed as mean ± SD.

5. Conclusions

In conclusion, we observed that berberine exhibits dose- and time-dependent inhibition on
Cyclin D1 expression in human hepatoma cells. Berberine increases the phosphorylation of Cyclin
D1 at Thr286 site, and recruits the SCFβ-TrCP complex to facilitate Cyclin D1 ubiquitin-proteasome
dependent proteolysis. In addition, berberine potentiates Cyclin D1 nuclear export to cytoplasm for
proteasomal degradation. Knockdown of β-TrCP blocks Cyclin D1 turnover induced by berberine;
blocking the protein degradation induced by berberine in HepG2 cells increases tumor cell resistance
to berberine. Our results shed light on berberine’s potential as an anti-tumor agent for clinical
cancer therapy.
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